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GENERAL WAVE SPECTRUM MODEL

1.0 General

In many engineering proJjects a mathematical description
of the site specific wave data is necessary. ARs the
spectral approach is gaining ground in the calculation
of wave forces, harbour tranquillity, etc. the designer
needs a flexible mathematical description of the wave
spectrum.

In the preparation of wave flume tests an accurate
description of the spectrum observed locally is of
great importance as well.

The theoretical spectra that are described in the lite-
rature such as Pierson-Moskowitch (11, Jonswap (23,
Sanders (3] and T.M.A. [4] do not provide the required
fLexibility to model locally measured wave spectra.
Except for their specific range of application, fully
grown sea at deep water for the P-M spectrum, develo-
ping sea for the Jonswap or Sanders spectrum and sea in
shallow water for the TMA spectrum, the theoretical
spectral form is seldom similar to the measured data at
a specific site.

In this report the application of the general wave
spectrum, that was developed at the design of the storm
surge barrier in the Eastern Scheldt (51, is described.
This spectrum model has been used in several other
projects such as the calculation of the wave load on
the IJmuiden sea lock (8], the design of a harbour in
India and the redesign of the Closure dike (9]. Here
its ease of application was proven and experience was
gained as to the values of the parameters in specific
cases.




2.0 The general wave spectrum model

The general wave spectrum, originally developed in the
design of the Eastern Scheldt Barrier to model swell,
proved very useful in coastal engineering design pro-
jects at various sites in the world.

It is able to describe the spectral form of wind wave
spectra, swell spectra and shallow water wave spectra

quite accurately.

The general wave spectrum that is one dimensional, 1is
mathematically expressed as follows:
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A definition sketch is given in Figali

The expressions for « and the moments of the general
wave spectrum are easily established.

The expression for « that is needed if the spectral

form has to be hindcasted from the significant wave

height and the peak frequency, reads:
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Fig 1 The definition sketch of the general wave
spectrum

The expression for the x-th spectral moment is readily
derived for the general spectrum. The x-th spectral
moment is defined as:

The result of the integral, that can be solved analyti-
calklyy 1s:

o g2 m) (n+m) -(n-%x-1) -(n-x-1)
==t }

4 (n=-x-1) (m+x+1) () h

On the basis of this result the mean zero-crossing




period and the mean period between maxima can be eval-
uated:

A simple but practical measure of the spectral width
is the Tp / Tz ratio, which can also be calculated as a
function of the spectral form fixed by m,n and q (see
Appendix I)

The Tp/Tz ratio gives a quick impression of the
spectral width.

The formal expression for the spectral width €, that is
frequently mentioned in the litterature is a function
of m,n and q, viz.:
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The computer program MOMENT.PARS, that calculates the
practical measure of spectral width Tp/Tz and the for-
mal spectral width parameter € as a function of m,n and
q is given in Appendix II




2.0 The estimation of the form parameters of the gene-
ral wave spectrum

For a specific project the spectral form has to be
established after a thorough analysis of the wave cli-
mate. The analysis has to provide the evidence that the
wave spectrum during a specific season ( e.g. South
West monsoon ) or for a typical type of storm shows
similarity for a number of occurrences. If a class of
similar spectra is identified on empirical and physical
basis, the form can be described by the general wave
spectrum model.

In a practical case the powers m and n are estimated by
a regression analysis of the normalised left and the
normalised right flank of a number of measured spec-
tra from the same class.

The theoretical spectrum is normalised by & division by
the spectral peak value S(f ):

P
1f the left flank is defined as:
& -4 =(m+n) m
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The normalised left flank reads:

1f the right flank is given by:
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The normalised right flank reads:
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The simple result is that spectral values { f , S(f) }
can be normalised by dividing the frequency by the peak
frequency and the spectral value by the spectral peak
value,

The normalised values of several measured spectra are
split in a left and a right flank and consequently

collected per flank.

The values of m and n are established by a regression
analysis on the normalised left flank and the norma-
lised right flank data set respectively.

A form of forced regression is preferred however as the

coefficient a has to be equal to 1.0 while the
wponent b is chosen to minimise the residual standard

deviation around the regression equation:

b
Yy = a where a = 1.0

An example of the fitting procedure performed with the
computer program LINFIT.PRS is given in the Figures 2
and 3.




REGRESSION ANALYSIS left flank SW. \wiowscow
Analysis of 28 datapoints
The fitted function is :

h SR 0.963 = X° 7.000

0.123
0.333

St. deviation of estimate
Max.deviation of estimate

=4
st)

1.00 ‘

0.30
0.80

fatted funcrtion

o s SR

0.0 » ):—-’1/1 .1 RGN i P LR

2 052 0.53 0.63 0.68 0.4 0.79 0.84 0.89 0.5 1.00

Y:=81IN I-axis -}- ‘

P

£-i.3‘2..FITTING THE LEFT FLANK OF THE  MONSOON
SPECTRUM



REGRESSION ANALYSIS right flank
Analysis of 50 datapoints
The fitted function is -

Y= 0.994 * X~ -3.500

St. deviation of estimate
Max.deviation of estimate

HB\J - Mamm OO

0.085
0.293

titred ftunctior

gijs.snrmc THE RIGHT FLANK OF THE MONSOON

SPECTRUM




4.0 A comparison of the general wave spectrum with the
P-M spectrum, the Sanders spectrum and the Jonswap
spectrum

One of the first expressions for a wave spectrum was
given by Pierson and Moskowitz C13J:

2 -4 -5 5 f -4
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PM 4 f
p

This spectral form was observed on the North Atlantic
ocean for fully grown ocean waves.

During the Jonswap experiments carried out at the North
Sea, it was found that this expression did not fit the
spectra observed during ideal generation conditions.
For these conditions a better fit was reached if a peak
enhancement factor was added to the P-M expression:
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where T,60 = form parameters

1t should be noted that the typical position of the P-M
spectrum and the J-spectrum along the frequency axis
differs considerably for equal significant wave height.
The steepness Hs / Lp for the P-M spectrum is equal to
2.%% % while this value is 4 to 5 % depending on the
fetch length for the J-spectrum.

From a visual comparison of the general spectrum model
and the P-M-spectrum it appears that the best fit is
found for m = 7 and n = & ( see Fig.4.)

The form of the J-spectrum is best approximated if m
and n are chosen 8 and 5 respectively (see Fig.5.)

With these values for m and n the Sanders spectrum is
also well represented (see Fig.b)«
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Fig. - 4 The comparison between the P-M spectrum and
the general spectrum with m = 7 and n = 4&;
The wave steepness defined on deep water
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spectrum

1. 6 The comparison between the Sanders
and the general spectrum with m = 8 and n =
5; The wave steepness defined on deep water
Hs/Lp = 5.0%
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m =7 and n = 3.9 for monsoon waves and the
general spectrum with fp = 0.2, m =7 and n =

3.9 for wind waves
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5.0 Practical experience

In a number of projects experience has been gained with
the application of the general wave spectrum,

The table gives values for m and n for a number of wave
climates observed in projects. These values could pro-
vide some guidance in future projects, but should not
be accepted as a law.

Also typical values found in previous projects for the
spectral width and the wave steepness, defined on deep
water, are given

type m n Tp/Tz € Hs/Lp
developing sea 8.0 5.0 1.26 0.68 0.05
fully grown sea 8.0 4.0 1.40 0.75 0.026
shallow water swell 4.0 2.5 1.80 0.79 0.03
deep water swell 5.0 6.5 1.08 0.5%7 0.002
monsoon 7.0 3 w5 1.5%6 0.77 0.01

Untill now only single peaked spectra have been consi-
dered.

In some cases double peaked spectra are found. This is
mostly seen where new wind waves grow on top of a
swell.

The swell may be represented by a field of waves broken
due to limited depth (shallow water swell) or by wave
energy that originates from distant wave fields and
that reaches the site after considerable dispersion.

In both cases new waves with a shorter peak period may
grow on top of the swell under the influence of local
wind.

Two examples are the wave spectra observed in the
Eastern Scheldt and the wave spectra that are measured
along the Indian coast during the NE-monsoon. It should
be noted that in the second example the direction of
swell and wind waves may be totally different.

These double peaked spectra are easily modelled by
adding two general wave spectra with different peak
periods and other parameters.

e el e Sk TS SR ot 1 T NER S
s pl w pe

A plot of a fictitious double peaked spectrum, that
depicts a young sea (m = 8, n = 9% developing on top of
a monsoon wave field (m =7, n = 3.%), is presented in
Fig. 7.

The existence of a wave spectrum in a mathematically
tractable form as described above facilitates the ap-
plication of the spectral approach for linear phenomena
as diffraction or wave forces on structures.
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The principle of the spectral approach is given in Fig.
8.

energy Im2dl

Incoming wave
vl energy Spectrum.

oer
o4r

osr

° H N A o
° 0.08 0.1 (8} 02 oas 0.3
frequency (Hz)

X

xa'l-l

oer Lranster

function

02 oas 03

energy Im2l
1.2

ost transformed wave

ener krum,
o4t ergy Speckrum

0a2r

) L e Nl et e~ RSO

o.% 0.2 [ 31} 0.3
frequency [Hzl

Fig. 8. The principle of the spectral approach for
diffraction.
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soment.pas biz.

PROGRAM SPECTRAL_HUHENT_CALCULRTIUN(INPUT,OUTPUT):

USES Crt,MathLib;

CONST

8 = 9813

VAR

FUNCTION Spectral Mosent (x: INTEGER; alfa, s, n, £_p,f_h: REAL):REAL;

X : INTEBER;
alta,

19,
T_p_T 2 _ratio,
epsilon + REAL;

VAR

Constant,Hulpl, Hulp2 : KEAL;

BEGIN

END

Constant := alfa # SOR(B/SOR(2#pil);

Hulp! t=  n-x-1;

Hulp2 = (n+m)/{{mtx+1)#(Hulpl));

Spectral Moment := Constant#! Hulp2# Power (£_p,-Hulpl)
- Power {f_h,-Hulp!)/Hulpl};

BEBIN

alfa := 0.06194;
1= 5.0

_p = B.1;

hi=q#fp;

- B2

WRITELN(* M , N 2 ‘);READLN{(m,n);

IF ABS(n - S.8)¢ 8.81 THEN n := 4.99;

..
"n

K2:

NA

{ to prevent division by 8 in N & }
Spectral _Mosent(8, alfa, a,n,f_p,f_h);
Spectral Mosent (2, alfé, a,n,f_p,f hl;

Spectral_Noment (4, alfa, a,n,f_p,f h);

appedix IC


http://SPECTRAL.riOHEMT_CALClh.AT

sosent.pas bl:.

T z := SQRT(X_8/N_2);

1 8 1= SQRT(M_2/M_4);

Top.T 2 ratig:=1/{thpeiial;

epsiion := SGRT{1- M_2#K 2/M @/M_4);

WRITELN(' T p/T_2 = *,T_p_T 2 ratip:18:3);

n

WRITELNG' o ‘yepsilon:18:3);

READLN;

ENb.

(2]
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spectra.pas biz.

PROGRAX Spectra(input,output};
USES Printer,Crt,Braph,Mathlib,Plotlib;

CONST
HAX

28;

TYPE
ARY

ARRAYL1..MAX] OF REAL;

VAR
Answer v LHAk:
NAAM,JobNamse : STRING[3R1:
1,N : INTEBER;
t,tp,
Sp_sax,Sp_min,
Hs,
%_spectrua,N_spectrus,
Alfa PN Alfa_J,Al4a_S,Alfa M,Alfa B,
hulp,hulpl,hulp2: REAL;
Frequency,Sp 1 ARY;

PROCEDURE BET DATA{ VAR N : INIEBER j VAR X,Y : ARY ;
s L)

Y
VAR Y _max,Y min : REAL);
CONST

Q = 18el;

VAR

1 : INTEGER;
Dummyi,
Dumay2,Dusayd : REAL;

BESTAND : TEXT;

PROCEDURE MaxMin V( V :REAL ;VAR V_max,V_sin :REAL);
BEGIN
IF V > V_sax THEN V_sax := V;
IF ¥ ¢ V_ain THEN V_sin := V;
END;

BEGIN
Y max :=-0Q; Y ein :=0;
ClrScr;
WRITE('NAME OF INPUY FILE ? ')3
READLN(NARM) ;
N:=@;.
ASS{GN{BESTAND ,NARM) ;
RESET(BESTAND) ;
READLN{BESTAND,JobNase);
READLN(BESTAND,Hs);
READLN(BESTAND,Fp);
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spectra.paz b.i:. 2

READLNIBESTAND NI ;
FOR 1 :=1 TO K DO
BEGIN

READLN(BESTAND,XI23,¥YI110y
BotoXYi3d,4) ;HRITE (23, Y1 1R:3);
MaxMin VIYLil,Y_max,Y_min);
END;
END;

PROCEDURE PARAMETER Pierson_M(hs,FP:REAL;VAR Alfa:REAL:;
CONST
C57= 8.8616215; { *2/ 2p:*-4 }
N=3;
VAR
Hi,H2 :HEAL;

BEGIN
Hi 1= N & Power{ ¥ ,(N-1));
Alfa:= SOR(Hs)/(163CST) #Hi;
END; {PARAMEIER

PROCEDURE FARAMETER Jonswap (He,FP:KEAL;VAR Alfa:REAL);

CONST
CST= 0.B616215; { g*2/ 2pi*-4 )
gamsa = J.J3;
N = 53

VAR

Hi,HZ sREAL;

BEGIN
Hi := Power{ Fp ,(N-11);
H2 := 8.845 # Power(gaama,.883) + 8.135;
Alfa:= SGR(Hs)/(16#CST) #H1/({H2);

END; {PARAMETER?

PROCEDURE PARANLTER_Momsoon (Hs,FP:REAL;VAR Alfa:REAL);
CONST

CST= 8.8616215; { g2/ 2pi*-4 }

F¥ = 0.5;

K o=7.6; N=3.5;
VAR

Hi,H2 :REAL;

BEGIN

Hi := (N-1)% Power ( FN#FP ,(N-1));

H2 = (N+M)/{(H+1)#Power (FN, (N-1)) - Power (FP, (N-1});
Alfa:= SOR(Hs)/(146#CST) #H1/(H2);

END; {PARABETER?} ?

PROCEDURE PARAMETER_Sanders(Hs,FF:REAL;VAR Alfa:REAL);
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spectra.pas blz.

CONST
CST= 8.0616215; ({ g*2/ 2pi*-4 J
game2 = 8.73;

N h

VAR
Hi,HZ :REAL;

BEBIN
Hi 1= {N-1)% Power{ FF ,(N-1}}3
H2 := 3 - 2¢games;
Alfa:= SGR(Hs)/(16#C51) #H1/(H2){
END; (PARAMETERY

PROCEDURE PARAMEVER Beneral (M,N,Hs, FP:REAL;VAR AlfazKEAL):
CONST
CS7= 8.8616215; { g2/ 2pi*-4 3
¥ = 0.5;
VAR
Hi,H2 :REAL;

BEGIN
Hi := (N-1)# Power{ FMFP ,(N-1));
H2 1= (NeN)/(M+1)#Power (FH,(N-1)) - Power (FP, (R-1)};
Alfar= SOR(Hs)/(1630S%) #H1/(H2};

END; {PARANETER?

FUNCTION Pierson_M_Spectrum(f,fp,alfa :REAL):REA.;

CONST
{ alfa =8.B8B1;  original value !}
CST = 6.B616215; { g2/ 2pi*-4

g =9.8!3
sa  =8.87;
sb  =8.89;

gamsz =3.3;

BEGIN

Pierson_N_Spectrus := alfa# L] ¢
pouer(f,-ﬁ)iexp(-SIAlpouer((flfp),-4))

END;

£ FUNCTION Jonswap_Spectrum(f fp,alfa :KEAL):KEAL;

CONST TEaf 10 bnneey zetruatik NoF Fo miainbAL ety
sa =0.87;
sb  =0.89;

gansa=3.3;



spectra.pas blz. -

VoR
€ KEAL;

BEGIN
IF §¢={p THEN s:=sa ELSE si=sb:
Jonswag Spectrus:= Pierson K _Spectrue(f,fp,aifa) ¥ Power (gamsa,expil-sqris-fp)}/
(2#sgris)esgrifp))))
ENE:

FUNCTION Monsoon_Spectrum!( ¢,4p,Alfa:REAL):REAL;

CONST
CS1= B.B616215; ( g*2/ 2pi*-4 }
NE= 3,03
k= 7.8
FX = 8.5
K = HNN;
BEE!Ik

IF § >= fp THEN
Monsoon_Spectrus := Alfa # CS1 # Power (,-K)
ELSE
Nonsoon_Spectrum := Alfa # CS1 ¢ Fower (£p,-{N+N)) & Power (f,A);
END; {Nonsoon_Spectrus}

FUNCTION Sanders_spectrus{f ,fp,alfa :KEAL):REAL;

CONST
4 = 0.86175;
gasss = 0.75;
VAR

fe : REAL;

BEGIN
fa  := gasea ¥ fp;
IF # ¢ §a THEN Sanders_spectrus := B.8
ELSE BEGIN
If § )= fp THEN Sanders_spectrum := alfa # ¥ Power {£,-3)
ELSE Sanders_spectrus := (f- fs)¥ alfa # C & Power {£p,-3) / (fp-ie)
END;
END;

FUNCTION Beneral SpectrusiM,N,f,fp,Al#a:REAL}:REAL;



gpectra.pas blz.

CONS!
£S1= B.0b616215;
BN 003

BEG1IN

1§ 0= fp  THEN
General Soectrum:= Aifa # C57 # Power{f,-Ni
ELSE
beneral Spectrus := Aifa # 51 # Fower {fo,-(MN)) & Fower {§ 1)
END; {Monsoon_Spectrue’

FUNCTION Spectrus( Tpe : INVEBEK; 4, fp : REAL):REAL;
BEGIN
CASE Tpe OF
1: Spectrum := Pierson M Spectrus(F ,tp,Alfa_FA):
2: Spectrua Jonswap_Spectrum(r ,Fp,Alfa_d};
: Spectrus := Sanders_Spectrua(f,rF,Alfa_S);
: Spectrus := Monsoon_Spectrus(F,FP,Al{a M)
: Spectrus := Seneral_Spettrun(H_spectrun,N_spectrun,F,FP,AI(a_G);
END
END;

PROCEDURE Brafiek_en_Print;

BEGIN
f 1= 0.3%p;

Hulpi := spectrua(S,fp,fp};
15 INT(Hulpi)<1.® THEN Hulp2 := 1.0

ELSE Hulp2 := 2.5;
IF Hulp! > 2.5 THEN Hulp2 := 5.8 # IN1(Hulp1/5.8+8.5);

graphPager (2.8,8.8,2.5,Hulp2, "frequency [Hz1", energy (02.5]");

FOR 1 := 110 N D0 DrawCirc)e(Frequency(13,Spl11};3

while § ( 3#p do
begin
hulp := spectrum(S,f,fp};
feken_grafiek (f,hulp};
f:=4+0.08!
end;
$ 1= 0.3%fp;

while § { 3#fp do

begin
hulp := spectrus(l,f,fp);
DrawCircle(f huip);
f:=4+8.001

end;




spectra.pss  biz.

DutTestXY{488,5¢, 'Hardcopy (Y/N} 2 “): Answer := Readkey:
15 UpCase(Answer) 15 [°Y", J°) THER
BESIN
Setloiorté::
QutTextXyi48@,53, ‘Harccopy (Y/n} 7 )5
SetColor (15}
Hardcopvifaise,6i: 1 6 groct :
{ WRITELN{(LST,JobNaes}; }
WRITELA{LST, CHRI12) )

ENE;
Closebraph; fextsode (23 |
END; |
|
1
BEGIN
¥_spectrue := 7.0;
N_spectrus := 3.3;
{ M_spectrue h_spertrus
Eastern Scheldt 4.2 2.5
Monscon spectrue 7.8 oo |
P.Monsoon spectrue S.2 6.5
Hurricane spectrue 12.8 4.8 |
Developing sea 8.2 5.2 }
WRITE('Piekérequentie = "); READLN(ip}:
WRITE('H sign = ‘)3 READLN(Hs);
{ BET_DATA( X ,Frequency,Sp, Sp_max,Sp_ain )3l
PARAMETER_Piersor_M(Hs,FP, Rlfa_PH):
PARAMETER Jonswap (Hs FF, Alfa_d);
PARAMETER Sanders(Hs,FP, Alfa_S);
PARAMETER Monsoon(Hs FP, Alfa M};
PARANETER General (M_spectrue,N_spectrus Hs,FP, Alfe_B);
Grafiek_en_Print;
WRITELN('Alfa = ", Rifa_B:18:4);
READLN;
END.



