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ABSTRACT

Aims. We aim to present a generalized Bayesian inference method for constraining interiors of super Earths and sub-Neptunes. Our
methodology succeeds in quantifying the degeneracy and correlation of structural parameters for high dimensional parameter spaces.
Specifically, we identify what constraints can be placed on composition and thickness of core, mantle, ice, ocean, and atmospheric
layers given observations of mass, radius, and bulk refractory abundance constraints (Fe, Mg, Si) from observations of the host star’s
photospheric composition.
Methods. We employed a full probabilistic Bayesian inference analysis that formally accounts for observational and model uncer-
tainties. Using a Markov chain Monte Carlo technique, we computed joint and marginal posterior probability distributions for all
structural parameters of interest. We included state-of-the-art structural models based on self-consistent thermodynamics of core,
mantle, high-pressure ice, and liquid water. Furthermore, we tested and compared two different atmospheric models that are tailored
for modeling thick and thin atmospheres, respectively.
Results. First, we validate our method against Neptune. Second, we apply it to synthetic exoplanets of fixed mass and determine the
effect on interior structure and composition when (1) radius; (2) atmospheric model; (3) data uncertainties; (4) semi-major axes; (5)
atmospheric composition (i.e., a priori assumption of enriched envelopes versus pure H/He envelopes); and (6) prior distributions are
varied.
Conclusions. Our main conclusions are: (1) given available data, the range of possible interior structures is large; quantification of
the degeneracy of possible interiors is therefore indispensable for meaningful planet characterization. (2) Our method predicts models
that agree with independent estimates of Neptune’s interior. (3) Increasing the precision in mass and radius leads to much improved
constraints on ice mass fraction, size of rocky interior, but little improvement in the composition of the gas layer, whereas an increase
in the precision of stellar abundances enables to better constrain mantle composition and relative core size; (4) for thick atmospheres,
the choice of atmospheric model can have significant influence on interior predictions, including the rocky and icy interior. The
preferred atmospheric model is determined by envelope mass. This study provides a methodology for rigorously analyzing general
interior structures of exoplanets which may help to understand how exoplanet interior types are distributed among star systems. This
study is relevant in the interpretation of future data from missions such as TESS, CHEOPS, and PLATO.

Key words. methods: statistical – planets and satellites: interiors – stars: abundances – planets and satellites: composition –
planets and satellites: atmospheres – methods: analytical

1. Introduction

The characterization of planet interiors is one of the main foci
of current exoplanetary science. For the characterization of su-
per Earths and sub-Neptunes, we mostly rely on mass and ra-
dius measurements. Direct measurements of atmospheres are,
thus far, mostly limited to transiting hot Jupiters and a few Sub-
Neptunes (Iyer et al. 2016), with the exception of super Earth
55 Cnc E (Tsiaras et al. 2016; Demory et al. 2016). For inte-
rior characterization, common practice is the use of mass-radius-
plots where mass and radius of exoplanets are compared to
synthetically computed interior models (e.g., Sotin et al. 2007;
Seager et al. 2007; Fortney et al. 2007; Dressing et al. 2015;
Howe et al. 2014). However, it is difficult to know (1) how well
one interior model compares with the generally large number of
other possible interior scenarios that also fit data and (2) which

structural parameters can actually be constrained by the observa-
tions. Thus, this approach fails to address the degeneracy prob-
lem that is, that different interior models can have identical mass
and radius. In order to draw meaningful conclusions about an
exoplanet’s interior it is therefore necessary to account for this
inherent degeneracy (e.g., Rogers & Seager 2010; Schmitt et al.
2014; Carter et al. 2012; Weiss et al. 2016; Dorn et al. 2015).

The Bayesian analysis of Rogers & Seager (2010) to exo-
planets of three to four parameters was generalized for purely
rocky exoplanets by Dorn et al. (2015). Here, we extend the
full probabilistic analysis of Dorn et al. (2015) to more gen-
eral interior structures by including volatile elements in form
of icy layers, oceans, and atmospheres. The previous work of
Rogers & Seager (2010) uses a grid search method which calls
for strong a priori assumptions on structure and composition of
exoplanets to significantly reduce the parameter space. However,
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the number of parameters that affect mass and radius is large
(e.g., it comprises composition and size of core, mantle, ice lay-
ers, and gas, as well as internal energy). Here, we present a gen-
eralized Bayesian inference scheme that incorporates the follow-
ing aspects:

• Our method is applicable to a wide range of planet-types,
including rocky super Earths and sub-Neptunes.

• We employ a full probabilistic Bayesian inference analysis
using a Markov chain Monte Carlo (McMC) technique to
constrain core size, mantle thickness and composition, mass
of water-ice, and key characteristics of the atmosphere (e.g.,
mass, intrinsic luminosity, composition).

• We test two different atmospheric models, tailored to thick
and thin atmospheres, that account for enrichments in ele-
ments heavier than H and He.

• We employ state-of-the-art modeling to compute interior
structure based on self-consistent thermodynamics for a pure
iron core, a silicate mantle, high-pressure ice, water ocean,
and atmosphere (to some extent).

• Compared to previous work of Rogers & Seager (2010), our
scheme can also be used for high dimensional parameter
spaces.

Besides mass and radius estimates, additional constraints are
crucial to reduce model degeneracy (e.g., Dorn et al. 2015;
Grasset et al. 2009). Dorn et al. (2015) demonstrate that the
use of relative bulk abundance constraints of Fe/Si and Mg/Si
taken from the host star (henceforth referred to as abundance
constraints) leads to much improved constraints on core size
and mantle composition in the case of purely rocky exo-
planets. The validity of a direct correlation between stellar
and planetary relative bulk abundances is suggested by ob-
servational solar system studies and planet formation mod-
els (Carter et al. 2012; Lodders 2003; Drake & Righter 2002;
McDonough & Sun 1995; Bond et al. 2010; Elser et al. 2012;
Johnson et al. 2012; Thiabaud et al. 2015). Here, we also assume
solar bulk abundance constraints based on spectroscopic mea-
surements (Lodders 2003).

Our generalized interior structure model is based on pre-
vious studies of mass-radius relations. Generally, H2O in liq-
uid and high-pressure ice form (e.g., Valencia et al. 2007a;
Seager et al. 2007), and H2-He atmospheres (e.g., Rogers et al.
2011; Fortney et al. 2007) are considered. Although it would not
be surprising if the compositional diversity of ices and atmo-
spheres exceeds the one found in the solar system (e.g., Newsom
1995), the few observational data on exoplanets limit us to rela-
tively simple planetary interior models.

The structural parameters that we investigate include: (1) in-
ternal energy, mass, and composition of the gas layer; (2) mass
and temperature of the ice layer; (3) mantle size and compo-
sition; and (4) core size. For present purposes, we assume a
general planetary structure consisting of a pure iron core, a sil-
icate mantle, a water ice layer and an atmosphere. To com-
pute the resultant density profile for the purpose of estimating
mass and radius, we follow Dorn et al. (2015) and assume hy-
drostatic equilibrium coupled with a thermodynamic approach
based on Gibbs free-energy minimization and Equation-of-State
(EoS) modeling.

In this study, we wish to quantify the influence of the follow-
ing parameters on predicted interior structure and composition:
(1) planet radius; (2) data uncertainty (e.g., mass, radius, bulk
abundances); (3) semi-major axis; (4) atmospheric model; (5) at-
mospheric composition (i.e., a priori assumption of enriched

envelopes versus pure H/He envelopes); and (6) prior distribu-
tions. In a companion paper (Dorn et al. 2017), we present re-
sults on the application of our proposed method to six exoplan-
ets (HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e,
and HD 97658b) for which spectroscopic measurement of their
host star’s photospheres are available (Hinkel et al. 2014).

The outine of this study is as follows: we describe the itera-
tive inference scheme (Sect. 2.1), model parameters (Sect. 2.2),
data (Sect. 2.3), and the forward model (Sect. 2.4). In Sect. 3, we
validate our method against Neptune and present results for dif-
ferent synthetic planet cases. In Sects. 4 and 5, we discuss results
and conclude.

2. Methodology

2.1. Bayesian inference

We employ a Bayesian method to compute the posterior prob-
ability density function (pdf) for each model parameter m from
data d and prior information. According to Bayes’ theorem, the
posterior distribution p(m|d) for a fixed model parameterization,
conditional on data, is proportional to prior information p(m) on
model parameters and the likelihood function L(m|d), which can
be interpreted in probabilistic terms as a measure of how well a
given model fits data:

p(m|d) ∝ p(m)L(m|d), (1)

and

L(m|d) =
1

(2π)N/2(
∏N

i = 1 σ
2
i )1/2

× exp

−1
2

N∑
i = 1

(gi(m) − di)2

σ2
i

 , (2)

where N is the total number of data points, and σi is the es-
timated error on the ith datum. In practice, the posterior dis-
tribution can not be derived analytically; instead we employ
McMC simulation that samples the prior parameter space and
evaluates the distance of the response of each candidate model
to data. Finally, we use the Metropolis-Hastings algorithm to ef-
ficiently explore the posterior distribution.

Briefly, the inference strategy works as follows. An initial
starting model is drawn randomly from the prior distribu-
tion. The posterior density of this model is calculated using
Eqs. (1), (2). A new (candidate) model is subsequently cre-
ated from a proposal distribution that is centered around the
current model. Moving from the current to the new model is
accepted with a probability that depends on their likelihood ra-
tios (Mosegaard & Tarantola 1995). The method works itera-
tively and the samples that are generated with this approach are
distributed according to the posterior distribution. We refer to
Dorn et al. (2015) for more details.

The large number of models needed for the analysis requires
very efficient computations. Presently, generating models of the
internal structure of a planet takes on average 40−90 s of CPU
time on a four quad-core AMD Opteron 8380 CPU node and
32 GB of RAM. Ten independent McMC chains were run. Burn-
in periods (i.e., number of samples until stationary distribution
has been reached) last on average some hundred samples. Con-
vergence is reached when the effective length (actual length di-
vided by the autocorrelation length) is large (>1000). In all, we
analyzed some 105 models.
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Table 1. Summary of model parameters m.

Parameter Description Model

rcore core radius I, II
Fe/Simantle mantle Fe/Si I, II
Mg/Simantle mantle Mg/Si I, II
rmantle mantle radius I, II
mwater mass of water I, II
menv mass of envelope I
L envelope Luminosity I
Zenv envelope metallicity I
pbatm pressure at bottom of atmosphere II
N number of scale-heights of opaque

layers
II

µ mean molecular weight II
α temperature-related parameter II

Notes. Zenv (model I) is defined as the envelope mass fraction of ele-
ments heavier than H and He (here C and O).

Table 2. Summary of data d.

Parameter Description Comment

M planetary mass
R planetary radius
Fe/Sibulk bulk planetary ratio Fe/Si
Mg/Sibulk bulk planetary ratio Mg/Si
cminor mantle composition of minor

elements: CaO, Al2O3, Na2O
fixed

a semi-major axis fixed
Rstar stellar radius fixed
Tstar stellar effective temperature fixed

Notes. We do not account for uncertainty in those parameters that are
labeled as “fixed”.

2.2. Model parameterization

Our exoplanet interior model consists of a layered sphere with
an iron core surrounded by a silicate mantle, a water layer, and
an atmosphere as illustrated in Fig. 1. We distinguish between
two different atmospheric models: a radiative transfer model
(model I) and a pressure scale-height model (model II). These
models are discussed further in Sect. 2.4.4. The key characteris-
tics of both models are parameterized in Table 1.

2.3. Data

The data d that we rely on are listed in Table 2.
Fe/Sibulk is the mass ratio between the mass of iron to sili-

cate for the entire planet (core and mantle), whereas Fe/Simantle
is only that which is contained in the mantle. Since all magne-
sium and silicate are in the mantle, Mg/Sibulk equals their mass
ratio for the mantle Mg/Simantle. We use the stellar abundances
(Fe/Sistar and Mg/Sistar) as a proxy for Fe/Sibulk and Mg/Sibulk.
Similarly, we fix the absolute abundance of minor refractory el-
ements (Na, Ca, and Al) in the mantle cminor to stellar values.
Here, we consider solar estimates for Fe/Si and Mg/Si and asso-
ciated uncertainties, as well as Na2O, CaO, and Al2O3 using the
values of Lodders et al. (2009). Stellar radius, and stellar effec-
tive temperature are also fixed parameters. Because uncertainty
on stellar radius is generally small compared to uncertainties on
planet radius, we neglect possible correlations between both and
fix stellar radius.

a) model I

c 

rsolid

rc

mwater

menv,Zenv,L

b) model II

c 

rsolid

rc

mwater

pbatm
.

µ,α,N

Fig. 1. Illustration of model parameterization. a) Model I parameters
are core radius rcore, mantle composition c comprising the oxides Na2O-
CaO-FeO-MgO-Al2O3-SiO2, mantle radius rmantle, mass of water mwater,
mass of envelope menv, envelope Luminosity L, and envelope metal-
licity Zenv. b) Model II parameters are as for a), with atmosphere pa-
rameterized by pressure at the bottom of the atmosphere pbatm, number
of scale-heights of opaque layers N, mean molecular weight µ, and a
temperature-related parameter α. See Sect. 2.2 and Table 1 for more
details.

2.4. Structure model

Data d and model parameters m are linked by a physical model
embodied by the forward operator g(·),

d = g(m). (3)

For a given model m of the interior structure, mass M, radius R,
and Fe/Sibulk are computed and compared with observed data d.
The function g(m) combines thermodynamic, Equation-of-State
(EoS), and atmospheric modeling as described in the following
sections.

2.4.1. Iron core

In our model, we assume that the core is made of pure solid
hcp (hexagonal close-packed) iron. Unlike in Earth’s core, we
neglect light elements and nickel and disregard other iron poly-
morphs that stabilize at high temperatures. To compute the
core density profile, we use an EoS for hcp iron provided by
Bouchet et al. (2013). It is based on results obtained from ab ini-
tio molecular dynamics simulations for pressures up to 1500 GPa
and temperatures up to about 15 000 K and is in good agreement
with experimental data obtained at Earth’s core conditions. This
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extensive pressure-temperature (p-T ) range allows for modeling
rocky exoplanets up to ten Earth masses (MC). Throughout, we
assume an adiabatic temperature profile.

2.4.2. Silicate mantle

Computing the mantle density profile is done in a manner
analogous to Dorn et al. (2015). Equilibrium mineralogy and
density are computed as a function of pressure, temperature,
and bulk composition by Gibbs energy minimization (Connolly
2009) within the model chemical system Na2O-CaO-FeO-MgO-
Al2O3-SiO2. For these calculations the pressure is obtained by
integrating the load from the surface boundary condition. As in
Dorn et al. (2015) we fix the thermal gradient in the mantle based
on the adiabatic gradient of Earth’s mantle. The mantle surface
temperature equals the maximum of either the temperature at the
bottom of the water layer or 1600 K (usual reference temperature
of the Earth). For this purpose, we adopt the thermodynamic for-
mulation of Stixrude & Lithgow-Bertelloni (2005) and parame-
ters given in Stixrude & Lithgow-Bertelloni (2011).

2.4.3. Water layer

Water has a rich phase diagram with a variety of structural transi-
tions depending on temperature and pressure (e.g., French et al.
2009). In most of our planet realizations, temperatures in the wa-
ter layer generally range from ∼250 K to ∼1000 K and pressures
up to a few hundred GPa. In order to compute the density profile
of the water layer, we follow Vazan et al. (2013), using a quo-
tidian equation of state (QEoS), which combines the Cowan ion
EoS with the Thomas-Fermi model for electrons and treats H2O
as a mixture of atoms. This QEoS is in good agreement with the
widely used ANEOS (Thompson & Lauson 1972) and SESAME
EoS (Lyon & Johnson 1992). Above 44.3 GPa, we use the tab-
ulated EoS from Seager et al. (2007) that is derived from DFT
simulations and predict a gradual transformation from ice VIII
to X. We assume an adiabatic thermal profile in the ice layer.

2.4.4. Atmospheric models

Previous works on mass-radius relationships are often re-
stricted to pure H/He envelopes (e.g., Rogers & Seager 2010;
Howe et al. 2014). However, the compositional diversity might
be large (Newsom 1995) and significantly effect radius (e.g.,
Baraffe et al. 2008; Vazan et al. 2015). Here, we employ two
different atmospheric models that account for enriched at-
mospheres (with the caveat of assuming ideal gas behavior).
Model I solves the radiative transfer equation. This model as-
sumes ideal gas behavior and accounts for the presence of H,
He, C, and O. It considers opacities that are adapted to so-
lar abundances (Lodders 2003). More detailed and complex
calculation of absorption and emission coefficients that inherit
self-consistent opacities, scattering, clouds, and non-equilibrium
chemistry could theoretically also be taken into account. How-
ever, in practice, the sparseness of available data does not war-
rant a more sophisticated treatment. Mass and radius observa-
tions will only allow us to constrain key characteristics of the
envelope. For comparison, we also employ a second atmospheric
model II that calculates an isothermal atmosphere with a simple
pressure model using the scale-height model. Model II is com-
putationally very inexpensive. The validity of models I and II
is roughly restricted to 0.01 > menv/M and 0.0001 > menv/M,

respectively. Details on these limits are discussed in Sect. 3.2.2.
Both models are described in the following.

Atmospheric model I: relies on the atmospheric code presented
in Venturini et al. (2015), which has been adapted to compute
planetary radii. For a radius and mass of the solid interior,
distance to star a, stellar effective temperature Tstar, stellar ra-
dius Rstar, planet envelope luminosity L, envelope metallicity
Zenv, and envelope mass menv, we solve the equations of hy-
drostatic equilibrium, mass conservation, and energy transport.
As in Venturini et al. (2015), we implement the CEA (Chemical
Equilibrium with Applications) package (Gordon & McBride
1994) for the EoS, which performs chemical equilibrium calcu-
lations for an arbitrary gaseous mixture, including dissociation
and ionization and assuming ideal gas behavior. We assume an
envelope with an elemental composition of H, He, C, and O. We
define the envelope metallicity as the mass fraction of C and O
in the envelope, which can vary between 0 and 1. The reason to
implement CEA and not a more sophisticated EoS (for example,
one that can take into account degeneracy of free electrons) is
simply because no such EoS exists for an arbitrary mixture of H,
He, C, and O.

These chemical elements are fundamental because they al-
low for the formation of key atmospheric molecules such as
H2O, CH4, CO2, and CO (Madhusudhan 2012; Lodders 2002;
Visscher & Moses 2011; Heng & Lyons 2016). Moreover, ef-
fects of electron degeneracy pressure are important to compute
radius of planets with massive envelopes. Even for the most ex-
treme model realizations in this study where the mass fraction of
the envelope is about 1% (for a planet of 7 MC), we expect the
error to be less than 10% in radius.

For the energy transport, we adopt the model presented in
Jin et al. (2014), where an irradiated atmosphere is assumed at
the top of the gaseous envelope and for which the analytic ir-
radiation model of Guillot et al. (2010) is adopted. This irradi-
ation model assumes a semi-gray, globally averaged tempera-
ture profile. Specifically we are using an analytical solution of
the radiative transfer equation in the two-stream approximation.
This irradiation model assumes a semi-gray, global temperature-
averaged profile (Guillot et al. 2010), for which optical depth τ
is related to the infrared mean opacity (κth) by dτ/dr = κthρ, where
ρ is density.

For the temperature gradient of the irradiated atmosphere,
we solve the radial derivative of Eq. (49) of Guillot et al. (2010):

T 4 =
3T 4

int

4

[
2
3

+ τ

]
+

3T 4
eq

4

[
2
3

+
2

3γ

{
1 +

(
γτ

2
− 1

)
e−γτ

}
+

2γ
3

(
1 −

τ2

2

)
E2(γτ)

]
, (4)

where γ = κv/κth is the ratio between visible and infrared
opacity, Tint is the intrinsic temperature given by Tint =
(L/(4πσR2

P))1/4, and E2(γτ) is the exponential integral, defined
by En(z) ≡

∫ ∞
1 t−ne−ztdt with n = 2. The boundary between the

irradiated atmosphere and the envelope is set at γτ = 100/
√

(3)
(Jin et al. 2014). For γτ larger than this, the usual Schwarzschild
criterion to distinguish between convective and radiative layers
is applied. That is, if the adiabatic temperature gradient is larger
than the radiative one, the layer is stable against convection, and
the radiative diffusion approximation is used for computing the
temperature gradient:

dT
dr

= −
3κthLρ

64πσ̄T 3r2 , (5)
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where L is the intrinsic luminosity, σ̄ is the Stefan-Boltzmann
constant. Since we do not perform evolutionary calculations, L is
a model parameter (see Sect. 2.2). However, when the radiative
gradient is larger than the adiabatic gradient, the layer is con-
vective, and the temperature gradient is assumed to be adiabatic
(which is computed with the EoS).

In Guillot et al. (2010), κth and κv (and therefore, γ) are
free parameters. In order to reduce the number of free param-
eters, we use the prescription of Jin et al. (2014) who calibrate
γ for different equilibrium temperatures in order to reproduce
results from more sophisticated atmospheric models for which
a wavelength-dependent opacity function is used while solving
for radiative equilibrium (Parmentier et al. 2013; Fortney et al.
2008). We implement this calibration in our numerical scheme,
that is we interpolate the values of γ for a given equilibrium tem-
perature from Table 2 of Jin et al. (2014). In this way, without
using detailed opacity calculations in the treatment of irradia-
tion, we mimic the fundamental physics underlying atmospheric
absorption and re-irradiation in a more simple (and numerically
inexpensive) fashion. In order to compare the transit radius of
a model realization with the measured radius from primary tran-
sits, we follow Guillot et al. (2010) and evaluate where the chord
optical depth τch becomes 2/3.

Atmospheric model II: assumes a simplified atmospheric model
with a thin, isothermal atmosphere in hydrostatic equilibrium
and ideal gas behavior, which is calculated using the scale-height
model. For a given pressure pbatm, mean molecular weight µ,
mean temperature (parameterized by α), number of scale heights
of opaque layers N and a given solid interior we compute planet
radius.

The scale-height H is the increase in altitude for which the
pressure drops by a factor of e and can be expressed by

H =
TatmR∗

gbatmµ
, (6)

where gbatm and Tatm are gravity at the bottom of the atmosphere
and atmospheric temperature, respectively. R∗ is the universal
gas constant (8.3144598 J mol−1 K−1) and µ the mean molecular
weight. The pressure p at a given depth z is the result of weight
of the overlying gas layers. The hydrostatic equilibrium equation
gives:

dp
dz

= −gp. (7)

With the assumption that gravity g is constant and using the EoS
for ideal gas, the density ρ can be expressed as:

ρ =
pR∗

Tatmµ
· (8)

The combination of the previous equations and the subsequent
integration over pressure and altitude z (z = 0 where p = p0 and
ρ = ρ0) leads to p = p0 exp(−z/H) and ρ = ρ0 exp(−z/H). The
mass of the atmosphere matm is directly related to the pressure
pbatm as:

matm = 4πpbatm
r2

batm

gbatm
, (9)

where rbatm and pbatm are radius and pressure at the bottom of
the atmosphere, respectively. The thickness of the opaque atmo-
sphere layer zatm is:

zatm = HN, (10)

where N is the number of opaque scale-heights H. The atmo-
sphere’s constant temperature is defined as

Tatm = αTstar

√
Rstar

2a
, (11)

where Rstar and Tstar are radius and effective temperature of the
host star and a is semi-major axes. The factor α is a model pa-
rameter (see Sect. 2.2) and incorporates possible cooling and
heating of the atmosphere, it can vary between 0 and αmax. There
is an upper bound αmax, because there is a physical limit to the
amount of warming by greenhouse gases. We approximate αmax
for a moist (water-saturated) atmosphere (see Appendix A).

Generally, atmospheres can contain trace elements present at
low pressures that have negligible contribution to the mass of
the envelope but a significant contribution to the optical depth.
In order to account for such effects, we use pbatm and N as inde-
pendent parameters.

We have chosen to make model II very general, that is we
decouple structure and transmissivity of the gas layer by distin-
guishing between µ and N. The equivalent procedure of this in
model I would be to define opacities as free parameters. Model II
has four compared to three degree of freedom in model I.

2.5. Prior information

Table 3 lists prior parameter distributions. The chosen prior pa-
rameters distributions are wide reflecting a conservative choice.
Different priors are discussed in Sect. 3.3.

Prior bounds on Fe/Simantle and Mg/Simantle are linked to the
stellar abundance constraints. Since all Si and Mg are assumed
to be in the mantle, Mg/Sistar defines the prior on Mg/Simantle.
We assume Mg/Sistar to be Gaussian distributed. Fe, on the other
hand, is distributed between core and mantle. Thus, the bulk
abundance constraint Fe/Sibulk (=Fe/Sistar) defines only the up-
per bound of the prior on Fe/Simantle. There is an additional nu-
merical limitation that the absolute iron oxide abundance in the
mantle cannot exceed 70%. For pbatm (model II), menv and L
(model I), we assume the logarithm of these parameters to be
uniformly distributed. The upper bound on the mass of the enve-
lope in model I is set to 90% of the planet mass, which is roughly
the scale of Saturn and possibly Jupiter. The range of luminosi-
ties L is chosen such that it embraces those of the Moon and
Neptune. For model II, the mass of the envelope is parameterized
through pbatm. Its prior upper bound is arbitrarily set to 1 GPa. At
such high pressures, the atmosphere may no longer behave like a
gas and the simplified pressure scale-height model becomes in-
valid (e.g., Andrews 2010). Only model realizations with pbatm
well below 1 GPa can be used for further interpretation. The
temperature-related parameter α uniformly varies between 0 and
αmax, making up for possible cooling and heating of the atmo-
sphere; αmax scales with surface gravity (see Appendix A).

An example of the influence of different priors on interior
model predictions is discussed at the end of this study. Some
examples are also shown in Rogers & Seager (2010). In a future
study, we will address this problem in more detail.

3. Results

3.1. Method validation: Neptune

As in Dorn et al. (2015), we validate the methodology
against solar system planets. Here, we compare with Neptune
(M = 17.15 MC, R = 3.87 RC, where RC is 1 Earth radius), the
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Fig. 2. Sampled one-dimensional (1D) marginal posterior cdfs (blue) of model I parameters for Neptune: a) mass of envelope menv; b) envelope
Luminosity L; c) mass of water mwater; d) mantle radius rmantle; e) core radius rcore; f) Fe/Simantle; g) Mg/Simantle. Prior and posterior nearly
completely overlap in g). The envelope metallicity Zenv (not shown) is fixed, Zenv = 0. The prior cdfs are plotted in red. Gray area in plots a)−d)
represent independent literature estimates (see main text).

Table 3. Prior model parameter ranges.

Parameter Prior range Distribution Model

rcore 0.01rsolid–1 rsolid uniform in r3
core I, II

Fe/Simantle 0–Fe/Sistar uniform I, II
Mg/Simantle Mg/Sistar Gaussian I, II
rsolid 0.01R–1.1 R uniform I, II
mwater−ice 0–0.98 M uniform I, II
menv 10−10 MC–0.9 M uniform in log(menv) I
L 1018 − 1023 erg/s uniform in log(L) I
Zenv 0–1 uniform in 1/Zenv I
pbatm 10−4–109 Pa uniform in log(pbatm) II
N 0–log(109/10−4) ≈ 30 uniform II
µ 2.3–50.0 uniform in 1/µ II
α 0.0–αmax uniform II

smallest volatile-rich solar system planet. For model I, we have
restricted the gas envelope to a pure H/He gas layer (Zenv = 0)
and use the more appropriate EoS of Saumon et al. (1995) for
Neptune, since the (otherwise employed) assumption of ideal
gas behavior can result in radius uncertainties larger than 10%
for a gas mass fractions of a few percent. Although both atmo-
spheric models I and II are not specifically tailored for Neptune,
their application serve as a benchmark test and are not meant to
provide new insights on Neptune’s interior.

For Neptune, geophysical data (gravitational and magnetic
moments, solid-body rotation period, and heat flux) and atmo-
spheric composition estimates are available that provide us with
constraints on a possible three-component interior: (1) an out-
ermost molecular envelope largely composed of H/He, (2) a
weakly conducting ionic ocean of water, methane, and ammo-
nia, and (3) a rocky central core (e.g., Soderlund et al. 2013;
Podolak et al. 2000; Ness et al. 1989). The transition between
outermost envelope and ocean is predicted to be around 0.8 R

by Lee et al. (2006), whereas the transition from ocean to rock
likely occurs below 0.3 R (Redmer 2011). The transitions are
neither well determined (Podolak et al. 2000; Nettelmann et al.
2013) nor necessarly sharp (Helled et al. 2010). For a three-
component structure of H/He, H2O, and SiO2, Helled et al.
(2010) suggest an upper bound on the water mass fraction of
90% and an upper bound on the envelope mass fraction of 24%.
If the ice/rock ratio is restricted to proto-solar, Hubbard et al.
(1995) find that Neptune could consist of about 25% rock,
60−70% ice, and 5−15% gas by mass.

Here, we use uncertainties of 1% on both the observed M and
R, and 10% on the solar ratios Fe/Sistar and Mg/Sistar (Lodders
2003). Results for the two atmospheric models are shown in
Figs. 2 and 4, respectively. The one-dimensional (1D) marginal
posterior cumulative distribution function (cdf) for each model
parameter (in blue) is plotted with the prior distribution (in red)
and independent parameter estimates (gray areas). The cdf de-
scribes the probability of a model parameter m with a certain
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Table 4. Data of synthetic planets.

name M [MC] σM R [RC] σR σFe/Sibulk σMg/Sibulk Semi-major
axis [AU]

ρ̄ [g/cm3] Additional comments

Case A 7 5% 1.7 2% 20% 20% 1 7.86 Figs. 6, 7
Case B 7 5% 2.2 2% 20% 20% 1 3.62 Figs. 6, 7, 11, 10
Case C 7 5% 2.6 2% 20% 20% 1 2.20 Figs. 6, 7, 12, 8, 9
Case D 7 5% 2.9 2% 20% 20% 1 1.58 Figs. 6, 7
Case E 7 20% 2.2 10% 20% 20% 1 3.62 Figs. 11, 10
Case F 7 5% 2.2 2% 50% 50% 1 3.62 Figs. 11, 10
Case G 7 5% 2.2 2% 80% 80% 1 3.62 Figs. 11, 10
Case H 7 5% 2.6 2% 20% 20% 0.1 2.20 Fig. 12
Case J 7 5% 2.6 2% 20% 20% 0.1 2.20 H/He atmosphere only, Fig. 12
Case K 7 5% 2.6 2% 20% 20% 1 2.20 H/He atmosphere only, Fig. 12

(a) (b)

Fig. 3. Sampled two-dimensional (2D) marginal posterior pdfs (blue) of
model I parameters for Neptune: a) mass of envelope menv and envelope
Luminosity L; b) mass of water mwater and mantle radius rmantle. Gray
areas represent independent literature estimates (see main text).

probability distribution to be less or equal to a given value of
m. In addition, Fig. 3 shows the 2D marginal posterior pdfs for
those model parameters of model I for which we have indepen-
dent estimates. These plots suggest the following:

• The interior structure of Neptune is constrained by the data.
• Available independent parameter estimates (shown in gray)

overlap with the blue posterior cdfs for menv, L, mwater, and
rmantle (model I, Figs. 2 and 3); for model II (Fig. 4) this is
only the case for matm (derived from pbatm and Eq. (9)), mwater
and rmantle are over-and under-predicted, respectively.

• With only mass, radius, and abundance constraints,
our method (model I) predicts independent geophysical
estimates of Neptune’s interior. Compared to independent es-
timates, our calculated confidence regions for the structural
parameters are larger, since we rely on limited data:

0.01 < menv/M < 0.2,
0.75 < mwater/M < 0.98,
0.01 < rmantle < 0.25,

1021 erg/s < L < 1024 erg/s.

• The simplified pressure model II leads to an overestimation
of mwater and underestimation of rmantle compared to model I.
This is because the same radius fraction of gas results in dif-
ferent p-T boundary conditions for the ice layer for both
models. The simplified pressure model II generally overes-
timates pbatm, which leads to an increase in water ice density.
In order to fit the radius, the higher water ice density implies

a larger mwater. At the same time, the mass contribution of the
rocks needs to be reduced so as not to overestimate mass.

Without the restriction to pure H/He in model I and under
the assumption of ideal gas, the results are similar with the
largest discrepancy in the estimate of a gas mass fraction (with a
50%-percentile of 0.01 menv/M under the ideal gas premise com-
pared to 0.06 menv/M in Fig. 2).

3.2. Synthetic cases

Next, we apply our method to synthetic exoplanets. Applica-
tion to actual observations is presented in a companion paper
(Dorn et al. 2017). In this study, we emphasize instead the influ-
ence of the following parameters on interior predicitions: bulk
density ρ̄, data uncertainties, semi-major axis, atmospheric com-
position, and prior distributions. For the latter, we test the a priori
assumption of enriched envelopes versus pure H/He envelopes.
For all synthetic planets we assume M = 7 MC, since the
transition between rocky and non-rocky planets seems to oc-
curr around this mass (e.g., Weiss & Marcy 2014; Rogers 2015).
Table 4 lists all relevant data for the synthetic cases and Fig. 5
shows their masses and radii plotted against curves of idealized
compositions. For all synthetic cases, we assume solar values for
abundance constraints (Lodders 2003), stellar effective temper-
ature and stellar radius of the Sun. In the following, we discuss
these test cases.

3.2.1. Influence of bulk density

Planets A, B, C, and D are assigned different radii (1.7, 2.2, 2.6,
and 2.9 RC) and hence bulk densities ρ̄ (Table 4). Uncertainties
for mass and radius are assumed to be similar to the predicted
uncertainties from the PLATO mission (Rauer et al. 2014), that
is 5% and 2%, respectively. The influence of planet bulk density
on retrieved parameters is shown in Figs. 6 and 7. We observe, as
expected, that bulk density correlates positively with the size of
the rocky interior rmantle, and correlates negatively with mass of
water (mwater) and gas (menv). Core size and mantle composition
(Figs. 6f−h and 7g−i) show only small variations, because they
are constrained by the solar abundances.

Among the parameters characterizing the gas layer for
model I (Fig. 6), menv and Zenv are constrained by data, whereas
envelope luminosity L is not. For the planet with the highest bulk
density (case A) the gas layer contributes very little to planet
radius, i.e., metallicity is high and/or menv is small. Case A is
found with a 90% probability to have an atmosphere smaller in
mass than Earth (10−7 menv/M). Compared to high bulk density
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Fig. 4. Sampled 1D marginal posterior cdfs (blue) of model II parameters for Neptune: a) pressure at bottom of atmosphere pbatm; b) atmospheric
mass fraction matm/M (Eq. (9)); c) temperature-related parameter α; d) number of scale-heights of opaque layers N; e) mean molecular weight µ;
f) mass of water mwater; g) mantle radius rmantle; h) core radius rcore; i) Fe/Simantle; j) Mg/Simantle. The prior cdfs are plotted in red. Gray areas in b),
e), f) represent independent literature estimates (see main text).

Fig. 5. Masses and radii of synthetic planets (black dots, cases A−K), observed exoplanets (gray dots) from Dressing et al. (2015), and Earth
and Venus. Planets are plotted against mass-radius curves of idealized compositions for which a surface temperature of 300 K has been assumed.
Planet cases A−K are summarized in Table 4.
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Fig. 6. Sampled 1D marginal posterior cdfs of model I parameters for synthetic planet cases (A−D) of 7 MC that vary in terms of radii: 1.7 RC (A),
2.2 RC (B), 2.6 RC (C), 2.9 RC (D); a) mass of envelope menv; b) envelope luminosity L; c) envelope metallicity Zenv; d) mass of water mwater;
e) mantle radius rmantle; f) core radius rcore; g) Fe/Simantle; h) Mg/Simantle.

Fig. 7. Sampled 1D marginal posterior cdfs of model II parameters for synthetic planet cases (A−D) of 7 MC that vary in terms of radii: 1.7 RC (A),
2.2 RC (B), 2.6 RC (C), 2.9 RC (D); a) pressure at bottom of atmosphere pbatm; b) atmospheric mean molecular weight µ; c) temperature-related
parameter α; d) number of scale-heights of opaque layers N, e) mass of water mwater; f) mantle radius rmantle; g) core radius rcore; h) Fe/Simantle;
i) Mg/Simantle. Depending on the case, the upper prior bound in c) differs, which is indicated by the vertical colored lines corresponding to the
respective case.

planets, low density planets can have gas of lower metallicity
while gas mass fraction tends to be higher. For very low density
planets (case D) when even pure water ice is not sufficient to ex-
plain radius, small menv are excluded as a result of which menv is
larger than 10−5 M with a probability of 90%.

The gas layer parameters for model II (Fig. 7) indicate that
the number of opaque scale-heights N and temperature (param-
eterized by α) in the gas layer appear to be best constrained by
data. The expected trend of a higher temperature (larger α) and
an increased number of scale-heights that are needed to explain
low bulk density planets is clearly visible (Figs. 7c and d). Mean

molecular weight µ and pbatm are both weakly constrained for
the high bulk density cases (A, B, and C). When pure water ice
cannot compensate enough to fit radius (case D compared to
the other cases) the gas layer moves to higher pressures pbatm,
lower mean molecular weights, higher temperatures (α), and
more scale-heights (Fig. 7 light green curve).

Although the use of both atmospheric models yield very sim-
ilar parameter distributions for the rocky part of the planet, there
are significant differences in mwater, particulary for the low den-
sity planets (cases C and D). This is because parameters related
to gas and ice layers are those with the largest influence on planet
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Fig. 8. Sampled 2D marginal posterior pdfs of model I parameters for synthetic planet case C showing the correlation between: a) rcore and rmantle;
b) rmantle and mwater; c) mwater and menv; d) menv, and Zenv; e) mwater and the averaged µ corresponding to Zenv. Those model realizations that explain
the data within 1σ are plotted in blue. Samples in c), d) for which gas mass fractions menv/M > 0.01 are highlighted in green and should be taken
with care. See main text for discussion of features B1 and B2.

Fig. 9. Sampled 2D marginal posterior pdfs of model II parameters for synthetic planet case C showing the correlation between: a) rcore and rmantle;
b) rmantle and mwater; c) mwater and pbatm; d) pbatm, and µ; e) mwater and µ; f) mwater and α; g) mwater and N. Those model realizations that explain the
data within 1σ are plotted in blue. Samples in c), d) for which gas mass fractions menv/M > 0.0001 are highlighted in green and should be taken
with care.

radius. Hence differences in the atmospheric model affect the gas
structure and in consequence the distribution of mwater. We will
discuss these differences in more detail in the following.

3.2.2. Influence of atmospheric model

Here, we take a closer look at the different parameter estimates
for case C when using model I and II. We plot the sampled 2D
marginal posterior distributions of model parameters in Figs. 8
and 9. Overall, the distributions show similar trends with clear
differences for the rocky and icy interior depending on atmo-
spheric model:

• There is a strong correlation between mwater and menv in
model I (Fig. 8). For model II, the corresponding correla-
tion between mwater and pbatm is weak. This reflects a higher
degeneracy in the gas layer parameters for model II (more
degrees of freedom).

• For model II, strongest correlations with mwater are seen for
µ and α among the gas parameters.

• For model I compared to model II, rmantle tends to be larger
(Figs. 8a and 9a).

• There is a clear discrepancy in the estimated mwater between
the two models. For model I, the minimum mwater is esti-
mated to be about 0.1 M, whereas for model II it is 0.5 M.

Model II leads to the misinterpretation that relatively low-
density planets (case C) require a massive ocean to explain mass
and radius. This is in line with earlier conclusions suggesting
that it is impossible to distinguish between a thick atmosphere
and an ocean based on mass and radius alone (e.g., Adams et al.
2008). This is important in view of the different formation his-
tories implied by either interpretation. The results show that the
simplified pressure model II fails to explain thicker atmospheres
and thereby overestimates the amount of water ice. This is be-
cause it does not account for energy transport and thus overes-
timates the pressure increase with atmospheric depth. Thicker
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Fig. 10. Sampled 1D marginal posterior cdfs of model I parameters for synthetic planet cases B, E, F, G that vary in terms of data uncertainties. B
is the reference case (σM = 0.05 M, σR = 0.02 R, 20% for both σFe/Sibulk and σMg/Sibulk ), E has larger uncertainties in mass and radius (σM =
0.2 M, σR = 0.1 R), whereas F and G have larger uncertainties in the abundance constraints, 50% and 80%, respectively. a) Mass of envelope
menv; b) envelope luminosity L; c) envelope metallicity Zenv; d) mass of water mwater; e) mantle radius rmantle; f) core radius rcore; g) Fe/Simantle;
h) Mg/Simantle. The priors in g) and h) are not shown as not to overload the plot, because they differ among the cases.

atmospheres can in principle be realized, if temperatures (i.e., α)
exceeding the prior range (αmax, Appendix A) would be allowed,
implying a larger greenhouse effect. However, there is a physi-
cal upper limit, the Komabayashi-Ingersoll Limit (Komabayasi
1967; Ingersoll 1969), to the amount of outgoing long-wave ra-
diation that can be absorbed and emitted by greenhouse gases
that warm the atmosphere. More advanced modeling would be
required to determine this upper limit for the studied cases, but
this is outside of the scope of this study.

In the 2D plots (Figs. 8b and c) showing the correlation be-
tween rmantle and rcore, and rmantle and mwater, respectively, two
“branches” (labeled B1 and B2) are visible (valid for massive
atmospheres menv > 0.01 M ) which are characterized by:

• B1:
mwater < 0.5 M,
Zenv < 0.02,
L > 1022.5 erg/s;

• B2:
mwater > 0.5 M,
0.02 < Zenv < 1.0,
1018 erg/s < L < 1022.5 erg/s.

For gas envelopes of supersolar abundances (B2), self-gravity
of massive gas layers leads to compressed envelopes. To fit ra-
dius in this case, a large mwater is required. For subsolar abun-
dances and very high luminosities (B1), the envelopes are thick
and make up for a large fraction of planet radius (>25%). How-
ever, a minimum mwater of 0.1 M appears to be required to fit
radius. This is because we restrict the prior range on luminos-
ity L to a maximum of 1023 erg/s (Neptune-like 1022.52 erg/s).
If larger luminosities than the prior range were allowed, thicker
gas layers with negligible ice mass fractions could be realized.
This suggests that constraints on the luminosities would allow
to partly lift the degeneracy between an ocean and a thick atmo-
sphere. This will be investigated in more detail in the future.

We compare the planetary radii that are computed with both
atmospheric models by using the calculated pressures and tem-
peratures from model I (e.g., pressures at bottom and top of the
gas layer and an averaged temperature) as input in model II for a

rocky interior of 7 MC. For an envelope mass of menv > 10−3 MC

(corresponding to pbatm ≈ 1000 bar), the discrepancy in radius
becomes comparable to the observed radius uncertainty of 2%.
We note that the comparison of both models is sensitive to the
choice of temperature averaging. Hence, for large bulk density
planets with thin atmospheres (cases A and B), the choice of at-
mospheric model does not significantly affect estimates of the
rocky and icy interior (Figs. 6 and 7), whereas it becomes rele-
vant for relatively low-density planets (cases C and D).

For the cases studied here, we conclude that the more ac-
curate representation of gas layer physics makes model I more
favorable inspite of larger computational costs. In the case of
thin atmospheres, model II is valid.

3.2.3. Influence of data uncertainty

Here, we study the influence of data uncertainty on structural
parameter estimation. As summarized in Table 4, we vary un-
certainty in mass and radius between cases B (σM of 5%, σR of
2%) and E (σM of 20%, σR of 10%); we vary uncertainties on
planet bulk abundances between cases B (20%), F (50%), and
G (80%). All cases B, E, F, and G have the same bulk density of
3.62 g/cm3. The smallest chosen data uncertainties reflect those
of high quality data similar to those expected from PLATO. Re-
sults are shown in Figs. 10 and 11. The results can be summa-
rized as follows:

• Mass and radius uncertainties mainly affect estimates of
rmantle, mwater, and Zenv. For example, the retrieved confidence
region for rmantle and mwater is three times larger in case E
compared to case B (the 5% to 95% percentile range of rmantle
for case E is 0.28–0.73 R compared to 0.54−0.66 R in case B;
similarly the range of mwater for case E is 0.08−0.93 M com-
pared to 0.22−0.5 M in case B).

• Mass and radius uncertainties do not significantly affect es-
timates of core and mantle composition, since they are con-
ditioned to the same abundance constraints (cf. case B and
E).

• Reducing the uncertainties on the abundance constraints
mainly improves the ability to constrain the mantle
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Fig. 11. Sampled 1D marginal posterior cdfs of model II parameters for synthetic planet cases B, E, F, G that vary in terms of data uncertainties. B is
the reference case (σM = 0.05 M, σR = 0.02 R, 20% for both σFe/Sibulk and σMg/Sibulk ), E has larger uncertainties in mass and radius (σM = 0.2 M,
σR = 0.1 R), whereas F and G have larger uncertainties in the abundance constraints, 50% and 80%, respectively. a) Pressure at bottom of
atmosphere pbatm; b) atmospheric mean molecular weight µ; c) temperature-related parameter α; d) number of scale-heights of opaque layers N;
e) mass of water mwater; f) mantle radius rmantle; g) core radius rcore; h) Fe/Simantle; i) Mg/Simantle. The priors in h) and i) are not shown as not to
overload the plot, because they differ among the cases.

composition. For example, the 5% to 95% percentile ranges
for Mg/Simantle in cases F and G are larger by a factor of 2.6
and 3.4 compared to case B, respectively.

• Compared to the studied cases, the influence on determin-
ing core size is more pronounced for purely rocky planets
as described by Dorn et al. (2015). Here, only moderate ef-
fects are seen for core size estimates, where the 5% to 95%
percentile range of core size rcore is 30% larger for case G
compared to B.

• Uncertainties on the abundance constraints have only minor
effects on estimates of rmantle and mwater. Between cases B
and G, for example, the 50th percentile of mwater varies by up
to 8%.

For the studied cases, mass and radius uncertainties are more
important than uncertainties on Fe/Sibulk and Mg/Sibulk to con-
strain key structural parameters such as mwater and rmantle. This
conclusion might vary depending on the actual planet mass and
bulk density.

3.2.4. Influence of semi-major axes

The semi-major axis influences the energy budget available in
the gas envelope and thereby the radius of the planet. Figure 12
demonstrates the effect of distance to the star on estimates of
menv. For the same planet with a smaller semi-major axis (case H
compared to C), the interior can be explained by a smaller
menv and higher envelope metallicity Zenv, although the effect on
Zenv is small (not shown). This result is intuitive, since a hot-
ter gas envelope implies a lower gas density, which results in a
larger radius. Thus, in order to compensate for a higher intrin-
sic luminosity while still fitting the radius, the gas mass must
be smaller and/or more heavier elements need to be present.

Fig. 12. Sampled 1D marginal posterior cdfs of menv (model I) for the
synthetic planets: case C at 1 AU, case H at 0.1 AU, case J at 1 AU, and
case K at 0.1 AU. For cases J and K, the gas composition is restricted to
pure H/He (Zenv = 0) using the EoS of Saumon et al. (1995).

If only pure H/He gas layers are considered, the same trend
for menv is observed (cases K and J in Fig. 12a). Compared
to metal-rich envelopes, the restriction to pure H/He envelopes
leads to smaller menv for the reason just discussed.
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Fig. 13. Sampled 1D marginal posterior cdfs (blue) for different priors
(red) of core size rcore for Neptune (applying model I). Distributions are
depicted in dashed when the prior is uniform in rcore and solid when it
is uniform in rcore rcore

3 . The latter is identical to Fig. 2e.

3.3. Influence of prior distribution

The results obtained by a Bayesian inference analysis are subject
to the choice of prior, which, if not chosen carefully can lead to a
significant imprint on parameters that are weakly constrained by
data. In the following, we consider a number of different priors
to illustrate this on a selected set of parameters that are sensed
differently by the data considered here. We have singled out core
size, which is largely determined by bulk abundances and mass,
in addition to envelope metallicity and luminosity that are mainly
constrained by radius and stellar irradiation.

Figure 13 illustrates the effect of different prior choices on
estimated (posterior) core size rcore for a Neptune-sized planet.
Here, we contrast a uniform prior in rcore with a uniform prior in
rcore

3 . A uniform prior in rcore gives more weight to smaller core
sizes relative to a uniform prior in rcore

3 . But since rcore
3 is directly

proportional to core mass it represents the more natural choice.
The results indicate that the effect of the prior is negligible for
the 50%-percentile of rcore. This is an example where the choice
of prior is less significant.

Next, we investigate an example where the estimated param-
eter is only weakly constrained by data. This is, for example, the
case for envelope metallicity Zenv. We compare a uniform prior in
Zenv and in 1/Zenv for a case-C planet. A uniform prior in 1/Zenv is
motivated by the fact that H and He are most abundant elements
and that primary atmospheres are likely rich in H and He (e.g.,
Alibert et al. 2004). Also, the scale height of the gas layer corre-
lates positively with 1/Zenv. The results are shown in Fig. 14 and
illustrate that a uniform distribution in Zenv, relative to a uniform
in 1/Zenv, gives more weight to larger envelope metallicities. This
implies that we are favoring lighter-element atmospheres over
heavier-elements. A uniform prior in Zenv may be more appro-
priate for secondary (outgassed) atmospheres, for which heavy
element enrichment is a priori a more likely scenario.

Finally, we consider luminosity L. For purposes of illustra-
tion, we chose the following range 1022.52±0.05 erg/s, which cor-
responds to the observed luminosity of Neptune. More gener-
ally, additional constraints such as infrared flux measurements
would allow for a narrower prior range on luminosity. Figure 15

Fig. 14. Sampled 1D marginal posterior cdfs (blue) for different priors
(red) of envelope metallicity Zenv for case C (7 MC, 2.6 RC, applying
model I). Distributions are depicted in dashed when the prior is uniform
in Zenv and solid when it is uniform in 1/Zenv. The latter is identical to
Fig. 6c.

illustrates the effect of assuming different prior ranges on L in
estimating gas mass fraction menv/M for the case of a Neptune-
sized planet. The new prior range on L leads to an improved con-
straint on gas mass fraction of 0.05 < menv/M < 0.09 that better
predicts independent geophysical estimates relative to the earlier
determined range (0.01 < menv/M < 0.2), where a relative wide
prior range was invoked (Table 3). In this example, the choice of
prior has no significant effect on the 50%-percentile of menv/M.

From the above, we can conclude that the posterior distribu-
tion is mostly affected by the assumed prior distribution for those
parameters that are weakly constrained by data. In summary, it
should be emphasized that the choice of prior is not arbitrary but
need to be based (whenever possible) on observations, labora-
tory measurements and/or theoretical considerations.

4. Discussion

Here, we have extended the method of Dorn et al. (2015) from
purely rocky exoplanets to general exoplanet types that include
volatile-rich layers in the form of water ice, oceans, and atmo-
spheres. For the same data of mass, radius, and bulk abundance
constraints, the degeneracy of core and mantle parameters is gen-
erally larger in planets of general structure than for purely rocky
planets, since their contribution to mass and radius can in part be
compensated by volatile material.

The key to constrain the structural parameters resides in the
large density contrasts between rock, water, and gaseous layers.
In other words, our ability to constrain interiors is because of the
different data sensitivity of the various parameters. The abun-
dance constraints couple core size with mantle size and compo-
sition. The relative sizes of core and mantle are thus determined
by Fe/Sibulk. The mass of the planet mainly dictates the absolute
size of the rocky part and the mass of water. Planetary radius
meanwhile determines the characteristics of the envelope and the
water layer.

The strength of the presented inference method is that it is
modular, i.e., different interior structure models can be tested
against each other. However, the applicability and informative
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Fig. 15. Sampled 1D marginal posterior cdfs (blue) for mwater assuming
different priors on L for Neptune (applying model I). Solid blue line
refer to wide prior range on L (1018−1023 erg/s), whereas dashed blue
line refer to narrow prior range on L (1022.47−1022.57 erg/s). The for-
mer is identical to Fig. 2a. Gray area represent independent literature
estimates (see main text).

value of the inference method is subject to imposed assumptions
on the structure model. For example, the two tested atmospheric
models differ in terms of complexity and general applicability.

Model I is more elaborate in that it calculates pressure-
temperature profiles for a given composition while solving for
hydrostatic equilibrium, mass conservation, and energy trans-
port. But it is restricted to H, He, C, and O and it assumes equi-
librium chemistry, ideal gas behavior, as well as prescribed opac-
ities. The latter are fit to results of radiative equilibrium models
that use a wavelength-dependent opacity function by Jin et al.
(2014) for solar metallicities. In that regard, the opacities used
are not self-consistent when non-solar metallicities are consid-
ered (Zenv , 0.02). Different values of opacities can lead to dif-
ferences in radius by up to 5%. Models that compute line-by-
line opacities with their corresponding atmospheric abundances
should be performed in the future to compute planetary radii in a
self-consistent way. The assumption of ideal gas behavior intro-
duces a bias in radius for large atmospheric mass fractions, for
example for a 1% menv/M planet atmosphere the difference in the
radius between ideal gas and the Saumon et al. (1995) EoS (for
H-He) can reach 10%.

Model II assumes an isothermal, homogeneous atmosphere
and ideal gas behavior. Therefore, model II is strictly only valid
in the case of thin atmospheres (menv <∼ 10−3 MC). While, future
available spectroscopic measurements will allow to constrain the
key characteristics of the atmosphere (Benneke & Seager 2012),
it will be difficult to make use of these additional constraints
when using the simplified atmospheric model II since isothermal
temperatures are non-physical. However, in the case of thin at-
mospheres, model II has the advantage of being computationally
inexpensive and very general in the way it is set up, i.e., it does
not make assumptions about opacities but fully decouples struc-
ture and opacity of the atmosphere by distinguishing between
µ and N, where N accounts for the effect of trace elements in
the atmosphere that can have a big impact on opacity. Therefore,
model II is especially useful for secondary atmospheres on small

exoplanets, where the composition of the atmosphere can be very
diverse. In comparison, model I uses prescribed opacities and
thus neglects trace elements. Although not warranted here, it is
possible to treat opacities in model I as free parameters to ac-
count for trace elements at the cost of increasing the number of
parameters.

A further limitation of the structural model is the assumption
of a pure iron core. If volatile elements in the core are negli-
gible, this assumption leads to a systematic overestimation of
core density and thus an underestimation of core size. In addi-
tion, we assume sub-solidus conditions in the rocky interior and
a perfectly known EoS for all considered materials. Pressures
and temperatures in the various planet cases considered here ex-
ceed the ranges that can be measured in the laboratory and while
ab initio calculations could fill the gaps, these are not always
available. Available EoS include some (mostly unquantifiable)
uncertainty (see Connolly & Khan 2016, for detailed examples).

Here, we have used water as a proxy for the composition of
the ice and ocean layers, but other compositions are also possible
(e.g., CO, CO2, CH4, NH3). Water is often used as a proxy for
ice, since (1) oxygen is more abundant than carbon and nitrogen
in the universe, and (2) water condenses at higher temperatures
than ammonia and methane.

5. Conclusions and outlook

We present a generalized inference method that enables us to
make meaningful statements about the interior structure of ob-
served exoplanets. Our full probabilistic Bayesian inference
analysis formally accounts for data and model uncertainties, as
well as model degeneracy. By employing a Markov chain Monte
Carlo technique, we quantify the state of knowledge that can be
obtained on composition and thickness of core, mantle, water
ice, and gaseous layers for given data of mass, radius, and bulk
abundance proxies for Fe/Sibulk and Mg/Sibulk obtained from
spectroscopic measurements. We have built upon the work of
Dorn et al. (2015) and extended the dimensionality of the inte-
rior characterization problem to include volatile elements in the
form of gas, water ice and ocean. Our method succeeds at con-
straining planet interior structure even for high dimensional pa-
rameter spaces and thereby overcomes limitations of previous
works on mass-radius relationship of exoplanets.

We have validated our method against Neptune. Using syn-
thetic planets, we have determined how predictions on interior
structure depend on various parameters: bulk density, data uncer-
tainties, semi-major axes, atmospheric composition (i.e., a priori
assumption of enriched envelopes versus pure H/He envelopes),
and prior distributions. Furthermore, we have investigated two
different atmosphere models and quantify how parameter esti-
mates depend on the choice of the atmosphere model. We sum-
marize our findings as follows:

• It is possible to constrain core size, mantle size and com-
position, mass of water ice, and key characteristics of the
gas layer (e.g., internal energy, mass, composition), given
observations of mass, radius, and bulk abundance proxies
Fe/Sibulk and Mg/Sibulk taken from the host star.

• A Bayesian analysis is key in order to rigorously anal-
yse planetary interiors, as it formally accounts for data and
model uncertainty, as well as the inherent degeneracy of the
problem addressed here. The range of possible interior struc-
tures is large even for small data uncertainties. Our method is
able to quantify the probability that a planet is rocky and/or
volatile-rich.
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• Our method has been successfully validated against Nep-
tune for which independent structure estimates based on
geophysical data (e.g., gravitational and magnetic moments)
are available.

• Model parameters have different sensitivity to the vari-
ous data. Constraints on bulk abundances Fe/Sibulk and
Mg/Sibulk determine relative core size and mantle compo-
sition. Mass mostly determines the size of the rocky and
icy interior, whereas radius mainly determines structure and
composition of the gas and the water ice layers.

• Increasing precision in mass and radius leads to a much bet-
ter constrained ice mass fraction, size of rocky interior (con-
fidence regions of mwater and rmantle in case B are three times
smaller compared to case E), and some improvement on the
composition of the gas layer, whereas an increase in preci-
sion of stellar refractory abundances enables improved con-
straints on mantle composition and relative core size.

• We have proposed two different atmospheric models: model I
solves for radiative transfer; whereas model II uses a simpli-
fied scale-height pressure model. Both models yield differ-
ent insights about possible gas layer characteristics that are
subject to prescribed assumptions. In particular, for thick at-
mospheres, we see a clear discrepancy between model I and
II which result in different estimates of rock and ice layers.
The validity of model II is strictly limited to thin atmospheres
(menv . 10−3 MC).

• We have investigated the effect of prior distribution on esti-
mated parameters and observed that the assumed prior distri-
bution significantly affects the posterior distribution of those
parameters, that are weakly constrained.

In a companion paper (Dorn et al. 2017), we present the applica-
tion of our method to six observed exoplanets, for which mass,
radius, and stellar abundance constraints are available.

The method presented here is valuable for the interpreta-
tion of future data from space missions (TESS, CHEOPS, and
PLATO) that aim at characterizing exoplanets through precise
measurements of R and M. Improving measurement precision,
however, is costly as it depends on observation time. Our method
helps to quantify the scientific return that could be gained as data
precision is increased. Moreover, our study is relevant for the
understanding on how interior types are distributed among stars
and the implications of these for planet formation.
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Appendix A: Approximation of αmax

There is a physical upper limit to the amount of warming by
greenhouse gases. The Komabayashi-Ingersoll (KI) limit de-
scribes the maximum amount of radiation which can be trans-
ferred by a moist atmosphere, which occurs when the trans-
parency τs of the atmosphere becomes very small, i.e., τs = τlimit.

For model II, this limit is represented by αmax and that we
roughly approximate as follows:

αmax = Tlimit/Tstar

√
Rstar

2a , (A.1)

where Rstar and Tstar are radius and effective temperature of the
host star, a is semi-major axes, and Tlimit is:

Tlimit =
T0

ln
(
κ∗p0
τlimitg

) · (A.2)

Here, T0 is the temperature at some vapor pressure p0 (here,
we use p0 = 1 × 105 Pa and T0 = 373 K for water,
(Goldblatt & Watson 2012)); κ and τlimit are opacity and opti-
cal depth at the KI limit, g is surface gravity. The fraction κ/τlimit

is approximated for Earth (Tlimit ≈ 400 K) and is estimated to
be 10−7 (in SI units). Thereby, Tlimit (Eq. (A.2)) scales with the
surface gravity. This is a rough estimate for Tlimit and thus αmax.
More advanced modeling would be required to better determine
this limit, but this is outside of the scope of this study.

Equation (A.2) is derived from τs = κ∗ps/g and the Clausius-
Clapeyron equation, that relates the surface pressure ps and tem-
perature Ts:

ps = p0 exp
(
−

T0

Ts

)
· (A.3)
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