
                       

Marine Species Distributions: 

From data to predictive models 
 

 

Samuel Bosch 

 

Promoter: Prof. Dr. Olivier De Clerck 

 

Thesis submitted in partial fulfilment of 

the requirements for the degree of 

Doctor (PhD) in Science – Biology 

 

Academic year 2016-2017 

 

                                                       





Members of the examination committee 

Prof. Dr. Olivier De Clerck - Ghent University (Promoter)* 

Prof. Dr. Tom Moens – Ghent University (Chairman) 

Prof. Dr. Elie Verleyen – Ghent University (Secretary) 

Prof. Dr. Frederik Leliaert – Botanic Garden Meise / Ghent University 

Dr. Tom Webb – University of Sheffield 

Dr. Lennert Tyberghein - Vlaams Instituut voor de Zee 

 

* non-voting members 

 

 

 

Financial support 

This thesis was funded by the ERANET INVASIVES project  

(EU FP7 SEAS-ERA/INVASIVES SD/ER/010) and by 

VLIZ as part of the Flemish contribution to the LifeWatch ESFRI. 

  



 

  



 

Table of contents 

Chapter 1 General Introduction 7 

Chapter 2 Fishing for data and sorting the catch: assessing the 
data quality, completeness and fitness for use of data 
in marine biogeographic databases 

25 

Chapter 3 sdmpredictors: an R package for species distribution 
modelling predictor datasets 

49 

Chapter 4 In search of relevant predictors for marine species 
distribution modelling using the MarineSPEED 
benchmark dataset 

61 

Chapter 5 Spatio-temporal patterns of introduced seaweeds in 
European waters, a critical review 

97 

Chapter 6 A risk assessment of aquarium trade introductions of 
seaweed in European waters 

119 

Chapter 7 Modelling the past, present and future distribution of 
invasive seaweeds in Europe 

147 

Chapter 8  General discussion 179 

References 193 

Summary 225 

Samenvatting 229 

Acknowledgements 233 

 



 

 



 

Chapter 1 

 

General Introduction
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Species distribution modelling 
Throughout most of human history knowledge of species diversity and their 

respective distributions was an essential skill for survival and civilization. In this 

respect it is not surprising that distributions of species and the mechanisms 

governing the distributions has intrigued humans from the early dawn of humanity 

up till present. Some of the earliest scientific writings about distributions of species 

and the interrelationships between species and the environment in which they live 

are found in History of Animals by Aristotle and Enquiry into Plants by Theophrastus 

(Mayr, 1985; Magner, 2002). More recently the link between species distributions, 

geography and the physical environment was noted by the likes of von Humboldt 

and Bonpland (1805), Watson (1847), de Candolle (1855), Wallace (1876) and 

Grinnell (1904), gradually leading to the advent of the research fields ecology and 

biogeography. 

While these early writings were merely of a qualitative and descriptive nature, in the 

21th century, ecology and biogeography under the influence of e.g. Hutchinson, 

Elton, McArthur and Wilson became progressively infused with theory and 

mathematics, thereby paving the way for species distribution modelling. The core of 

predictive modelling in geographic space involves the quantification of species-

environment relationships (Guisan & Zimmermann, 2000). Species distribution 

modelling (SDM) as a separate research field emerged from the intersection of 

ecological gradient analysis (Whittaker et al., 1973), biogeography (Box, 1981), 

remote sensing and geographic information science (Franklin, 1995). SDM, also 

known as ecological niche modelling, habitat suitability modelling or climate 

envelope modelling, is now a widely used method in ecology, conservation biology, 

biogeography, paleoecology and global change biology. Apart from modelling 

species distributions, the same methods used in SDM have also been used in other 

fields to model for instance the geographical variation in species traits (Briones et 

al., 2014), agricultural crops (Hijmans et al., 2003), wildfire frequency (Syphard et al., 

2008) and the distribution of humans and Neanderthals (Banks et al., 2008; Benito et 

al., 2017). 

Species distribution modelling (SDM) is the process of using numerical tools to 

combine observations of species occurrence or abundance with environmental 

information (Elith & Leathwick, 2009). One of the core assumptions of SDM is that 

species are in equilibrium with their environment whereby a certain species 

occupies all suitable habitats (Austin, 2002; O’Connor, 2002; Araújo & Peterson, 

2012). Invasive species in theory violate this assumption because they are expected 
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to be still expanding their range in the invaded region. These static, correlative 

models are opposed to more dynamic models of ecosystem processes (Guisan & 

Theurillat, 2000; Guisan & Zimmermann, 2000). Disturbances of the equilibrium 

between a species and its environment due to migration, invasion or biotic 

interactions put a natural upper limit on the performance of species distribution 

models. Some authors attempt to overcome this by building mechanistic distribution 

models, which incorporate information on the response of a species to different 

environmental conditions (Kearney & Porter, 2009). Others, combine both 

environmental and species co-occurrence data into a joint species distribution 

model (Clark et al., 2014; Harris, 2015; Ovaskainen et al., 2015; Tikhonov et al., 

2017). Alternatively some studies include a temporal or dispersal aspect into their 

models (Zurell et al., 2009; Gutt et al., 2012; Génard & Lescourret, 2013; 

Mieszkowska et al., 2013; Hayes et al., 2015), resulting in models able to capture the 

dynamic aspect of the species distribution better. Such models, however, require 

additional knowledge on dispersal capacity and ecophysiology of the species that is 

often unavailable for marine species. 

Regardless of the flavour of the species distribution model, all models require an 

estimate of the species distribution, either through presence-only or presence-

absence data, as well as environmental data which is relevant for the geography of 

the species. Evidently, inadequate estimates of the distribution and environmental 

information, will reflect on the quality of the SDM. 

Niche 
The theoretical framework of SDM is based on the ecological niche concept (Guisan 

& Zimmermann, 2000; Pulliam, 2000). Biologists commonly distinguish three types 

of niches: the “Grinellian”, the “Eltonian” and the “Hutchinsonian”. Grinnell (1917) 

restricted the term niche to the climatic and habitat conditions where a species 

occurs (Pulliam, 2000; Guisan & Thuiller, 2005; Peterson et al., 2011). Elton (1927), 

on the other hand, viewed the niche as the functional role of a species in a 

community, especially its position in food webs, thereby highlighting species 

interactions. Lastly, Hutchinson (1957) defined the niche as “… the hypervolume 

defined by the environmental dimensions within which that species can survive and 

reproduce.” He furthermore distinguished the fundamental and realized niche, 

where the fundamental niche is the response of the species to the environment 

without taking species interactions into account and the realized niche takes species 

interactions into account. As correlative species distribution modelling starts from 

the realized distribution in geographic space it is only able to model the realized 

niche in environmental space (Austin, 2002; Colwell & Rangel, 2009). Translated to 
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geographic space, this realized niche may include areas where the species is not 

present due to dispersal limitation or biotic interactions. For species with source-sink 

populations even modelling the realized niche can be problematic when occurrences 

are recorded in unsuitable geographic and environmental space (Pulliam, 2000; 

Austin, 2002). For instance an invasive seaweed might be recorded shortly after its 

introduction in places where the year round conditions are not suitable for its long 

term survival and reproduction. But, if this record is used in a species distribution 

model it will lead to an overprediction of suitable areas. 

Figure 1. BAM diagram adapted from 
Soberón (2007) and Peterson et al. 
(2011) with the suitable abiotic (A) and 
biotic (B) conditions and the accessible 
area (M). Solid circles represent source 
populations, open shapes absences. The 
intersection between A and B is 
comprised of GO, which is the occupied 
distributional area, and GI, which is the 
potentially invadable distributional area. 
Note that the species absent in all areas 
except GO, but only areas relevant for 
niche modelling have absences depicted. 
Open stars represent areas where the 
species is not competitive, open squares 
are areas with abiotically unsuitable 
conditions. G is the total area of the 
study. 

 

Soberón and Peterson (2005) identified four factors determining the distribution of a 

species: abiotic conditions (A), biotic factors (B), regions that are accessible through 

dispersal (M) and the evolutionary capacity of the species to adapt to new 

conditions. Building on previous work by Pulliam (2000), Soberón and Peterson 

(2005) developed the BAM diagram, a Venn diagram representing all these 

distribution determining factors except evolution (Fig. 1). The center of the BAM 

diagram is the area occupied by the species (G0), the invadable area, which is 

geographically not accessible through migration but abiotically and biotically suitable 

is denoted as GI. 

Distribution data 
Most commonly used species distribution modelling algorithms require species 

occurrence and sometimes species absence data as modelling input. Ideally, such 

distribution data used for SDM comes from a well-designed biological survey, with 

accurately located species presences and absences from a known and uniform 
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sampling area (Franklin, 2009). However, an ever increasing amount of species 

occurrence information is available online, both from well-designed surveys and 

more anecdotal data from e.g. specimen collections and historical surveys. For 

example, the Global Biodiversity Information Facility (GBIF) currently hosts over 700 

million distribution records from 1.6 million species. The largest marine database of 

species occurrences, the Ocean Biogeographic Information System (OBIS, Grassle, 

2000), has grown from 400,000 records in 2002 to over 45 million records in 2017. 

Unfortunately, not all data are of the same quality as they are subject to uneven 

sampling, taxonomic misidentification, errors in spatial coordinates and other data 

entry errors. Hence there is a need for adequate quality control of the provided 

data. Such errors have an even more significant impact when erroneous distribution 

points are located at the edge or outside of the true distribution of the species 

(Graham et al., 2007a; Naimi et al., 2014). In order to mitigate this issue Robertson 

et al. (2016) developed the R package biogeo for detecting and correcting errors in 

occurrence data and for the assessment of data quality of datasets from museum 

collections. In Chapter 2 we present a system implemented on the OBIS database 

that assigns various quality control (QC) flags to the records. These flags range from 

taxonomic and geographic issues, completeness of data to outlier detection. The 

OBIS R client, robis (Provoost et al., 2016), can be used to filter distribution records 

based on these QC flags. 

The issue of sample selection bias is however not solved by quality control. Some of 

the proposed approaches to handle this involve filtering out species occurrences 

which are spatially (Veloz, 2009; Beck et al., 2014; Boria et al., 2014; Aiello-Lammens 

et al., 2015) or environmentally (Varela et al., 2014) close to each other. 

Additionally, for presence-only methods, a target group background can be used 

(Dudík et al., 2005; Phillips et al., 2009). With a target group background, 

background data is generated by randomly selecting species observations from a set 

of species which have been sampled in a similar way as the target species thus 

effectively creating background data with the same sample selection bias as the 

occurrence data used. Fourcade et al. (2014) concluded, for the presence-only 

algorithm MaxEnt, that systematically sub-sampling distribution records was 

generally the best performing methods for reducing bias in sample selection. For 

marine species, occurrence records are generally biased towards the coast and 

shallower waters (Robinson et al., 2011). 

The best species distribution models can be obtained when models are fitted with 

reliable absences (Wisz & Guisan, 2009; Smith et al., 2013). But, these are rarely 
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reported for marine species and are currently not supported by public databases 

such as OBIS and GBIF. Absences can however in some cases be estimated for 

species collected in systematic surveys (Coro et al., 2016). As imperfect detection of 

marine species is very common, estimated absences are unreliable for all but the 

most surveyed and detectable species (Ready et al., 2010; Monk, 2013). Therefore, 

most applied marine SDM is presence-only modelling, where absences are 

substituted by a generated sample of observations that characterize the available 

environment, termed pseudo-absences or background data (Franklin, 2009). 

Many studies on the selection of pseudo-absence or background data, and closely 

related to this, the extent of the study area, have been published (Phillips & Dudík, 

2008; VanDerWal et al., 2009; Wisz & Guisan, 2009; Anderson & Raza, 2010; Lobo & 

Tognelli, 2011; Stokland et al., 2011; Barbet-Massin et al., 2012; Hanberry et al., 

2012; Senay et al., 2013; Assis et al., 2014). Chefaoui & Lobo (2008) showed that the 

method of pseudo-absence selection has a direct influence on model predictions. 

They concluded that selecting pseudo-absence points randomly leads to species 

distribution models that predict smaller suitable areas and more closely resemble 

the realized distributions. Conversely, when pseudo-absence data is filtered in order 

to increase the environmental distance between presence and pseudo-absence data 

then model predictions reflect the potential distribution. In general there are two 

aspects to be considered with respect to pseudo-absence selection: the number of 

points and the location of points. For both aspects no consensus has been reached 

yet. Furthermore, the correct decision also depends on the goal of the study since 

the background data should reflect the environmental conditions and spatial extent 

of the ecological question of interest (Barve et al., 2011; Saupe et al., 2012). 

Predictors 
The predictors used for species distribution modelling generally consist of various 

environmental data sources such as climatological, topographic, geological and 

nutrient related maps (Franklin, 2009). However, the preparation of environmental 

data for SDM is a time-consuming task which has fuelled several independent 

initiatives to compile global datasets of environmental variables at a uniform spatial 

resolution and projection. Such datasets include WordClim for terrestrial species and 

Bio-ORACLE for marine species (Hijmans et al., 2005; Tyberghein et al., 2012). Do 

note that a significant number of studies compile their own data as not all data is 

available on a global scale or available at the desired resolution. In order to promote 

the use of these and other pre-compiled datasets we developed an R package 

sdmpredictors, presented in Chapter 3, which allows the exploration and 
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downloading of environmental data from WorldClim, ENVIREM, Bio-ORACLE and 

MARSPEC. 

Environmental predictors of species distributions can be classified in two distinct 

ways: idealised types and distal or proximal predictors (Austin, 2002). The three 

idealised kinds of predictors are: direct, resource and indirect (Austin, 1980). Direct 

predictors have a direct physiological influence on the survival of a species but are 

not consumed by them (e.g. temperature). Resource predictors are consumed (e.g. 

light, nutrients) and indirect predictors have no physiological effect (e.g. longitude). 

The correlation between indirect predictors and the species distribution is due to 

their local correlation with one or more direct or resource predictors. Proximal and 

distal on the other hand refer to how close a predictor is in the chain of processes 

linking a predictor to its impact on the species. For example, the available sunlight at 

the surface of the blades of a seaweed would be a more proximal resource gradient 

than photosynthetically active radiation. The most robust and transferable species 

distribution models will be obtained when including only direct and proximal 

predictors (Austin, 2002). Moreover, as the shape of the species response to an 

indirect predictor depends on the nature of the correlation between the indirect and 

the direct and resource predictors, it can take any form (Guisan & Zimmermann, 

2000). Indirect variables replace in many cases a combination of proximal direct and 

resource predictors. 

Next to these abiotic factors shaping the distribution of species, some modellers 

include biological predictor variables in species distribution models. Accounting for 

biological factors such as the distribution of habitat forming species, dispersal range, 

species aggregations and interactions is likely to increase the performance of species 

distribution models, especially at landscape scale (Guisan et al., 2006; Nyström 

Sandman et al., 2013; Reiss et al., 2015). 

Although the choice of the of environmental predictors has a large influence on SDM 

performance, the selection of predictors is not always obvious. This problem lead to 

several studies examining how to select the predictors that are to be used by the 

species distribution modelling algorithm. Brandt et al. (2017) noted that for broad-

scale SDM, using statistical methods of variable selection is a useful first step. 

Statistical variable selection can for example be performed by inspecting the variable 

importance from random forests (Breiman, 2001; Genuer et al., 2015) or MaxEnt 

(Phillips et al., 2004) or by using Bayesian variable selection methods (O’Hara & 

Sillanpää, 2009). This statistical selection should be followed by a selection of 

predictors based on expert input in order to refine the models. These results 
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corroborate the findings by Petitpierre et al. (2017), who found that the a priori 

selection of ecologically meaningful predictors showed on average better 

transferability of SDM. On the other hand some other studies found that only using 

statistical methods of predictor selection results in adequate models (Pearce et al., 

2001; Seoane et al., 2005; Charney, 2012). Alternatively, instead of a priori selecting 

predictors, Barbet-Massin and Jetz (2014), in their study on the relevance of 

different predictors for modelling bird distributions in North-America, assessed 

predictor relevance by comparing the results of models build with all possible 

combinations of predictors from different correlation groups. Predictors were 

grouped if members of a group had a Pearson correlation > 0.7 as including 

predictors with high collinearity leads to unstable parameter estimates (Dormann et 

al., 2013). Another approach is to remove correlations by using principal 

components analysis (PCA). PCA produces perfectly uncorrelated axes as output, 

providing an effective replacement for correlated variables (Dormann et al., 2013). 

Selecting the two first axes of a PCA calibrated on all predictors results on average in 

a better SDM transferability (Petitpierre et al., 2017). However, several 

disadvantages are linked to models fitted with principal components. Principal 

components are less ecologically interpretable and because correlations between 

predictors can change in the future they can’t be used for climate change predictions 

(Janekovi & Novak, 2012; Petitpierre et al., 2017). 

A cursory review of marine SDM studies published between 2003 and 2013 shows 

that 29 out of 49 studies mention biological reasons, expert opinion or previous 

studies as a justification for the included predictors, while 15 studies mention no 

reason and the remaining five studies selected the predictors based on availability 

and correlation. As for the number of predictors included, this ranged from 3 to 26 

predictors with a median of 7 (see Supporting information for the list of studies). 

Algorithms 
Various algorithms or modelling methods are used for modelling species 

distributions (Franklin, 2009). Most commonly used methods have their origins in 

statistics or machine learning and differ in both how model are fitted and in the 

complexity of the resulting models. However differences in performance among 

different types of models tend to be smaller than differences among species (Elith et 

al., 2006; Franklin, 2009). 

We distinguish two types of algorithms based on, whether or not they require 

(pseudo-)absence data. Presence-absence and presence-background methods are 

further divided into statistical and machine learning methods. Some examples of 
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methods using only occurrence records include envelope methods such as BIOCLIM 

(Busby, 1991)  and environmental distance methods such as DOMAIN (Carpenter et 

al., 1993) or the Mahalanobis distance (Clark et al., 1993). BIOCLIM fits a 

multidimensional envelope model, which predicts the presence of species in 

environmental conditions that are not outside the 5% most extreme conditions, 

where the presence of a species has been previously reported. 

The most commonly used statistical presence-absence methods are: generalized 

linear models (Nelder & Wedderburn, 1972), generalized additive models (Hastie & 

Tibshirani, 1986) and multivariate adaptive regression splines (Friedman, 1991). 

Furthermore, some Bayesian approaches have been applied to SDM (Franklin, 2009). 

Supervised machine learning methods based on presence-absence data, on the 

other hand, include decision trees based methods such as random forests (Breiman, 

2001) and boosted regression trees (Friedman, 2001), artificial neural networks 

(McCulloch & Pitts, 1943; Hopfield, 1982), genetic algorithms (GARP, Stockwell & 

Noble, 1992) and support vector machines (Cortes & Vapnik, 1995). 

Presence-absence methods can be applied to presence-only data if a sample of 

available locations, called pseudo-absence or background data, is generated 

appropriately (Franklin, 2009). Some methods like ecological niche factor analysis 

(ENFA, Hirzel et al., 2002), maximum entropy (MaxEnt, Phillips et al., 2004), 

expectation maximization (Ward, 2006), Poisson point process models (Warton & 

Shepherd, 2010) and maximum likelihood (Royle et al., 2012) have been specifically 

developed for this. 

Recently two new SDM methods have been proposed. The first one, GRaF, uses a 

Bayesian machine learning technique called Gaussian random fields to create 

models (Golding & Purse, 2016). The second one, Plateau, attempts to create 

ecologically plausible climate envelopes by restricting the shape of the relationship 

between species distributions and climatic variables in spatial Bayesian species 

distribution models (Brewer et al., 2016). 

Numerous studies have compared the performance of SDM algorithms (Elith et al., 

2006; Guisan et al., 2007b; Meynard & Quinn, 2007; Tsoar et al., 2007; Ready et al., 

2010; Lorena et al., 2011; Bucklin et al., 2015; García-Callejas & Araújo, 2015). From 

these we can conclude that more advanced methods like random forests, boosted 

regression trees and MaxEnt generally perform very well. But several authors noted 

that there is considerable variation between species and regions. An additional 

factor is that each algorithm has several settings that can be tuned, which tends to 

be a difficult task when modelling a large number species as is commonly done in 
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comparative studies. Indeed several studies have shown that species-specific tuning 

results in a significant improvement of the species distribution models by mitigating 

problems induced by sample selection bias and better transferability due to the 

selection of appropriate model complexities (Anderson & Gonzalez, 2011; Warren & 

Seifert, 2011; Radosavljevic & Anderson, 2014; Moreno-Amat et al., 2015). However, 

for rare species using a community-level approach for tuning instead of species-

specific tuning is more appropriate (Madon et al., 2013). 

The inconsistency in algorithm performance across species has led to the 

aggregation of results from different algorithms into an ensemble model (Araújo & 

New, 2007; Marmion et al., 2009; Buisson et al., 2010; Crimmins et al., 2013). The 

advantages of ensemble methods are that they can reduce the risk of choosing a 

wrong hypothesis or local minimum and it may be possible to expand the space of 

representable functions, and thus form a more accurate approximation to the true 

unknown hypothesis (Zhou, 2012). An important aspect of ensemble modelling is the 

ensemble diversity: the difference among the individual learners. The individual 

learners must be different in order to be able to improve the performance and they 

must not be very poor (Tumer & Ghosh, 1996; Zhou, 2012). While Marmion et al. 

(2009) found that the usage of ensemble models may significantly increase the 

accuracy of species distribution models, Crimmins et al. (2013) are in disfavour of 

ensemble models as they don’t provide superior models while decreasing the 

ecological interpretability of the models. 

Evaluation 
In order to evaluate species distribution models there is a need for independent test 

data. Special attention has been given to the creation of cross-validation datasets, 

which is a non-trivial aspect given the spatial and sometimes temporal nature of the 

data (Arlot & Celisse, 2010; Roberts et al., 2016). An alternative or supplementary 

approach is to correct evaluation metrics based on the result of a null model (Raes & 

ter Steege, 2007; Hijmans, 2012). 

The choice of evaluation metric is ideally made based on the goal of the study, 

whereby different weights are given to different errors (Guisan & Zimmermann, 

2000; Mouton et al., 2010). Although criticised by Lobo et al. (2008), the area under 

the curve of the receiver operating characteristic (AUC, Hanley & McNeil, 1982) is 

the most commonly used evaluation metric for SDM. A large number of other 

metrics have been used, proposed and compared (Boyce et al., 2002; Allouche et al., 

2006; Hirzel et al., 2006; Hand, 2009; Liu et al., 2011; Márcia Barbosa et al., 2013). 

Evaluation metrics can be distinguished based on two characteristics: whether they 
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need a threshold and whether they use test (pseudo-)absence data for evaluating 

the models. An example of a presence-only metric is the Boyce index (Boyce et al., 

2002), which measures whether the number of predicted cells for a series of 

threshold values correlates with the number of evaluation points. The main appeal 

of the AUC is that it is a threshold independent metric. In order to calculate 

threshold dependent evaluation metrics, a method for picking the optimal threshold 

has to be selected. While various methods for doing this have been proposed, the 

technically optimal method is to select the threshold where the sum of the 

sensitivity (number of true positives / number of positive cases) and specificity 

(number of true negatives / number of negative cases) is maximized (Liu et al., 

2013). Thresholding of suitability maps, and thus converting them into binary maps, 

is a common procedure as it allows for an easier interpretation and facilitates 

decision making. But, it is advised to also distribute the continuous probability maps, 

thus enabling the end user to select thresholds based on the specific objective of the 

study (Freeman & Moisen, 2008). 

Forecasting 
Several studies have identified anthropogenic climate change as one of the major 

threats to biodiversity, next to habitat destruction, pollution (eutrophication), 

invasive species and overexploitation of natural resources (Thuiller et al., 2005; 

Brook et al., 2008; Pereira et al., 2010). SDM is commonly used to predict species’ 

range shifts under future climate scenarios (Hijmans & Graham, 2006; Jueterbock et 

al., 2013; Pearson et al., 2013). But careful interpretation of these species 

distribution models is needed as the predictive accuracy can be poor (Rapacciuolo et 

al., 2012; Smith, 2013). 

All aspects of SDM (occurrences, background, predictors, algorithms and model 

selection) have an impact on future climate predictions of species distributions. Both 

Synes and Osborne (2011) and Braunisch et al. (2013) noted that selection of 

predictors has a particularly high impact. Moreover the number of predictors 

available for future climate predictions is limited. For future climate change 

modelling additional uncertainty is introduced due to the availability of different 

global circulation models and climate change scenarios (Buisson et al., 2010). 

Related to this, Stoklosa et al. (2015), showed that errors in environmental data can 

lead to biased coefficient estimates in the species distribution models and proposed 

a framework for integrating this uncertainty by creating maps depicting uncertainty.  

Furthermore, as the distribution of species is also shaped by biotic interactions and 

dispersal limitations, changes in these biotic interactions with changing 
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environmental conditions under climate change may lead to considerable additional 

uncertainty in their future distribution (Pearman et al., 2008; Robinson et al., 2011). 

Recent advances in joint species distribution modelling aim to uncover and integrate 

these biotic interactions in SDM in order to improve predictions for the current and 

future climate (e.g. Clark et al., 2014; Pollock et al., 2014). Moreover, even without 

changes in biotic interactions, predicting the future distribution assumes the 

absence of niche shifts which is not always the case (Pearman et al., 2008; Early & 

Sax, 2014; Guisan et al., 2014). 

Seaweeds as a case study 
Some application areas for marine SDM include marine spatial planning, the creation 

of monitoring designs, assessing the risks involved with non-native species and 

predicting future distributions in order to account for climate change (Reiss et al., 

2015). However, some marked differences between the terrestrial and marine 

modelling setup are obvious. Firstly, sampling is more expensive in the marine 

environment, resulting in occurrence records with a lower spatial resolution and 

which are biased towards the coast and economically important areas (Robinson et 

al., 2011; Reiss et al., 2015). Moreover, the detectability of many marine species is 

much lower than for terrestrial species (MacLeod et al., 2008). Additionally the 

environmental data is equally less sampled with a higher reliance on remotely 

sensed data and fewer in situ data points as compared to the terrestrial 

environment, which limits the resolution and accuracy of the available data. 

Next to modelling a broad range of marine species in Chapter 4, we selected 

seaweeds as a case study for marine SDM as their distribution is strongly affected by 

environmental factors (Lüning, 1990; Adey & Steneck, 2001). More specifically its 

global distribution is mainly limited by temperature, while other abiotic factors, such 

as bathymetry, substrate type and available light, play a role at a regional or local 

scale (Lüning, 1990). However, seaweed species used for modelling should be 

selected with care as they are prone to misidentifications (Marcelino & Verbruggen, 

2015). Earlier SDM studies have used seaweeds to demonstrate the usability of the 

Bio-ORACLE dataset (Tyberghein et al., 2012), to model invasive seaweeds 

(Verbruggen et al., 2013) and to assess the impact of future climate change 

(Jueterbock et al., 2013; Assis et al., 2014; Martínez et al., 2015). 

Introduced seaweeds 
The study of introduced species is an important part of ecology as they are 

considered to be a major threat for native species communities (Norse, 1993; 
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Molnar et al., 2008; Winter et al., 2009). The introduction of species systematically 

results in biotic homogenization and changes in ecosystem functioning (Olden et al., 

2004; Hooper et al., 2005; Sousa et al., 2009; Winter et al., 2009). Europe is a hot-

spot for aquatic introductions with around 600 alien species established at present 

(Gollasch, 2006). In this thesis we define alien species as species that are introduced 

outside their natural geographic range due to human activities, while, invasive 

species are introduced species that are spreading at such a rate that they are 

damaging the environment, economy or human health. 

Alien seaweeds represent one of the largest groups of marine aliens in Europe, and 

constitute between 20 and 29 % of all alien marine species (Schaffelke et al., 2006). 

Seaweeds are major primary producers in coastal areas, and are extremely 

important for coastal ecosystems by supporting high biodiversity through structuring 

complex habitats for associated species. Large-scale substitution of dominant native 

seaweeds with alien species will consequently alter coastal productivity and food 

web structure, and therefore impact ecosystem services. Only a few impact studies 

on invasive seaweeds have been carried out worldwide, and these have detected a 

range of negative ecological effects, with reduction in abundance of native biota 

being most frequently reported (Williams & Smith, 2007). Rising temperatures will 

most likely impact the alien fauna component more than the native one and cause 

increasing abundances of the alien component (Sorte et al., 2010), but very little is 

known about how temperature variation influences the relationship between alien 

and native seaweeds. But, previous studies have demonstrated that temperature is a 

key parameter for the distribution of some invasive seaweeds (Nejrup et al., 2013; 

Samperio-Ramos et al., 2015; Cecere et al., 2016). 

Species are introduced unintentionally (e.g. shipping) or intentionally (e.g. 

aquaculture) (Gollasch, 2007). Boat traffic and aquaculture, in particular oyster 

import from Asia, have been identified as the most important vectors for introduced 

seaweeds in Europe (Mineur et al., 2008, 2014). It is however likely that other 

significant vectors exist. A more complete understanding of the introduction process 

is paramount for predicting future spread. Prediction of the future range of invasive 

seaweeds is important for risk assessment and future management. Establishment 

of invasive seaweeds is strongly linked to environmental conditions. Previous risk 

analyses have tried to match traits of alien seaweeds to environmental factors 

(Nyberg & Wallentinus, 2005), but these analyses have not been able to include 

climate variation as a factor. Advanced species distribution modelling techniques 

present a more powerful way to predict range extensions and shifts and allow 
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predicting the range of invasive seaweeds in future climatic scenarios (Tyberghein et 

al., 2012; Verbruggen et al., 2013). 

The predictive performance of distribution models of introduced species depends on 

the degree of niche conservatism between the native and invaded range (Pearman 

et al., 2008). For introduced species we distinguish two types of niche shifts: 1) niche 

shifts into environmental conditions in the invaded range that are available in the 

native range (analog conditions) and 2) niche shifts into novel conditions (non-

analog conditions) (Guisan et al., 2014). While niche conservatism in analog 

conditions has been shown to be prevalent for introduced terrestrial plants and 

birds (Petitpierre et al., 2012; Strubbe et al., 2013), this has not yet been confirmed 

for introduced seaweeds. 

Aims and outline 
The overall objective of this thesis is to improve and contribute to the process and 

understanding of marine species distribution modelling in order to facilitate an in 

depth study of the trends, vectors and distribution of introduced seaweeds in 

Europe. 

In Chapter 2 we provide quality indicators for the marine species distribution data 

available in the European and international Ocean Biogeographic Information 

Systems (EurOBIS and OBIS). Next to various checks on data integrity and 

completeness, outliers in geographic and environmental space were identified, 

allowing end)users to select distribution data that is fit for their specific purposes. 

In Chapter 3 we make global environmental datasets for species distribution 

modelling in the past, current and future climate more accessible. This is achieved by 

developing an R package that facilitates the usage of various published marine and 

terrestrial environmental datasets for species distribution modelling. 

Based on the results from chapters 2 and 3 we developed a marine benchmark 

dataset with distribution data and environmental data for more than 500 species 

(MarineSPEED). With this dataset we aim to get a better understanding of the 

relevance of different predictors for modelling the distribution of marine species for 

a broad range of modelling setups. 

While the first three chapters concerned general marine species distributions, the 

next three chapters explore the specific case of introduced seaweeds in Europe. In 



 | 21 I n t r o d u c t i o n

 

Chapter 5 we aim to analyse and map the introduction history, origin and trends in 

introduced seaweeds in Europe. 

In Chapter 6 we evaluate the risk of aquaria and aquarium trade as a vector for 

future introductions of seaweeds in Europe. After assessing the seaweed diversity on 

e-commerce websites and in local aquaria we mapped the current and future 

ecoregions in Europe that are potentially suitable for non-native seaweeds available 

in aquaria based on thermal niche models. 

Chapter 7 aims to build species distribution models that are able to predict the 

future distribution of introduced seaweeds before and after their introduction in 

Europe. We additionally set out to elucidate differences in model performance for 

the modelled introduced seaweeds by measuring the niche expansion. Additionally, 

we propose a method for identifying candidate areas for further spreading under 

global climate change. 

Finally, in the general discussion we highlight common aspects of the different 

chapters in this thesis such as data and uncertainty. Furthermore, we discuss future 

research avenues. 
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Abstract 
Being able to assess the quality and level of completeness of data has become 

indispensable in marine biodiversity research, especially when dealing with large 

databases that typically compile data from a variety of sources. Very few integrated 

databases offer quality flags on the level of the individual record, making it hard for 

users to easily extract the data that are fit for their specific purposes. This article 

describes the different steps that were developed to analyse the quality and 

completeness of the distribution records within the European and international 

Ocean Biogeographic Information Systems (EurOBIS and OBIS). Records are checked 

on data format, completeness and validity of information, quality and detail of the 

used taxonomy and geographic indications and whether or not the record is an 

outlier. The corresponding quality control (QC) flags will not only help users with 

their data selection, they will also help the data management team and the data 

custodians to identify possible gaps and errors in the submitted data, providing 

scope to improve data quality. The results of these quality control procedures are as 

of now available on both the EurOBIS and OBIS databases. Through the Biology 

portal of the European Marine Observation and Data Network (EMODnet Biology), a 

subset of EurOBIS records—passing a specific combination of these QC steps—is 

offered to the users. In the future, EMODnet Biology will offer a wide range of filter 

options through its portal, allowing users to make specific selections themselves. 

Through LifeWatch, users can already upload their own data and check them against 

a selection of the here described quality control procedures. 

Database URL: http://www.eurobis.org (http://www.iobis.org; www.emodnet-

biology.eu) 
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Introduction 
Progress in information technology has resulted in an increasing flood of data and 

information. Efficiently mining this sea of data and determining the quality of the 

data and its fitness for use has become a major challenge of many disciplines. 

Evaluating and documenting the quality of data has already become a standard 

practice in several scientific disciplines over many years, e.g. in medicine (Congalton, 

1991; Sherwood, 1991; Lunetta & Lyon, 2004; Garaba et al., 2011), remote sensing 

(Beissbarth et al., 2000; Pruesse et al., 2007; Otto et al., 2008) and gene sequencing 

(Chapman, 2005; Hill et al., 2010; Vandepitte et al., 2011). It is however only in the 

last decade that its importance—in combination with the assessment of the fitness 

for use—has become evident for biological sciences, more specifically for 

biodiversity data and data related to species occurrences (Yesson et al., 2007; 

Robertson, 2008; Vandepitte et al., 2010; Appeltans et al., 2012; Candela et al., 

2015). 

Biodiversity is inextricably linked with biogeography (Ray, 1996), which is clear from 

the many papers that contain both biodiversity and biogeography in their titles, 

abstracts and keywords (e.g. Wulff et al. 2009, O’Dor et al. 2010, Obura 2012, 

Selama et al. 2013). And both concepts are not only essential in research 

hypotheses, but also in the field of conservation, management (Ray, 1996; 

Richardson & Whittaker, 2010; Chiarucci et al., 2011) and modelling (Woolley et al., 

2013; Bocedi et al., 2014; Convey et al., 2014). 

When looking at larger patterns—e.g. on a European or global scale—data are 

mostly aggregated from a variety of sources. For the marine environment, data on 

all living marine species from different regional data centres and nodes flow towards 

the international Ocean Biogeographic Information System (OBIS; www.iobis.org), 

making marine biogeographic data freely available online. A variety of data is 

captured, going from data collected during research and monitoring campaigns to 

data from museum collections or data derived from literature. Given this very 

diverse nature of data, there is a strong need to be able to assess the quality of 

these data and provide feedback to the data providers. In addition, a system to 

assess the completeness of the record needed to be developed, offering specific 

filters to the users to be able to e.g. only query species records where complete 

abundance information is available. 

Assessing the quality of a distribution record has thus become indispensable, as has 

the ability to give an indication of the completeness of that record, especially in 

database infrastructures such as e.g. EurOBIS, OBIS and the Global Biodiversity 
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Information Facility (GBIF; www.gbif.org) that provide access to data from a wide 

range of sources (e.g. Yesson et al. 2007, Robertson 2008). Several actions regarding 

quality control and data cleaning have already been undertaken on regional or 

group-specific databases such as SpeciesLink (http://splink.cria.org.br) for Brazilian 

data collections, Fauna Europaea (de Jong et al., 2014) for European land and 

freshwater animal species, fish collection databases in relation to FishBase (Froese 

et al., 1999) and the Atlas of Living Australia (ALA, http://www.ala.org.au/). 

However, efforts on quality control and fitness for use for marine biogeographic data 

were not yet globally organized, as is now presented here for OBIS. 

An indication of the completeness can help the user in evaluating whether a 

particular record is useful for their analysis or not. A distribution record without a 

timestamp can e.g. be used to get insights in the general distribution of a species but 

will not be useful for temporal analysis. This illustrates that distribution records, 

although they do not share the same level of completeness, can be used for a 

multitude of applications, depending on the user’s needs. 

Over the last year, quality control (QC) tools have been developed to be able to 

document both the quality and completeness of each distribution record within 

EurOBIS. After extensive testing, these QC tools have been implemented in OBIS and 

extended with extra quality control procedures. This article will elaborate on these 

recently developed automated quality control procedures and their relevance. In 

addition, we will demonstrate the importance and usability of these procedures with 

some use cases. The main goal of these QC steps is to provide a measure of fitness 

for use of marine biogeographic data both for the scientists and data managers, by 

offering several tools that help assessing the completeness and validity of 

distribution records. For a general description of the structure and content of the 

EurOBIS and OBIS database, we respectively refer to (Grassle, 2000; Zhang & Grassle, 

2002; Vandepitte et al., 2011). 

Data systems 
The quality control procedures were originally developed on EurOBIS, to add quality 

flags to the available data. Because these data are largely limited to European seas— 

and a number of QC steps only make sense on a global level (e.g. outlier 

detection)—the exercise was repeated on the OBIS database, with addition of a 

number of steps related to outlier analyses. 

http://www.gbif.org/
http://splink.cria.org.br/
http://www.ala.org.au/
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The QC procedures on EurOBIS were developed in two different ways: (1) as an 

automated process, to be able to assess the quality and completeness of the records 

already available within the database and (2) as online web services that can be used 

by potential data providers and researchers to assess the quality and completeness 

of their own data prior to use or submission. The former allows data managers to 

provide feedback to data providers and to check whether they can make their data 

more complete and correct gaps and putative errors. In addition, the results of the 

QC steps can be used for specific filtering on the data. The latter return a result 

report, listing all records that do not comply with a certain QC step. Users can 

immediately adapt their data and rerun the QC procedures online before analysing 

or submitting the data to EurOBIS. 

EurOBIS is one of the many regional nodes within OBIS and is committed to a 

continuous support of OBIS, translated in serving its distribution data to OBIS. As the 

QC procedures also run on OBIS, the results of this can provide a valuable feedback 

to the other involved nodes and will therefore improve the quality and 

completeness of the online available records. Both the data providers and the 

separate nodes would benefit from this. From OBIS, data are sent to the Global 

Biodiversity Information Facility (GBIF), which would thus imply that GBIF could also 

only offer marine data that comply with a certain quality standard. 

Quality control procedures 
The quality control procedures have been developed for two main reasons. First of 

all, the available tools offer scientists the opportunity to quality check their data, 

prior to planned analyses or publishing their data through (Eur)OBIS and they help 

the (Eur)OBIS data management team in assessing the completeness and quality of 

the data when making them available online. When incomplete or possibly incorrect 

data are sent to (Eur)OBIS, the data management team can easily communicate with 

the provider on the possibly incorrect records based on the assigned quality flags. 

Secondly, the assigned quality flags can (i) help users in selecting data that are fit for 

their specific use and purpose or (ii) make it possible to filter records that comply 

with a certain quality standard and send those to other data systems such as e.g. the 

European Marine Observation and Data Network (EMODnet). 

Each distribution record goes through a series of automated quality control steps, 

each generating a QC flag. Each QC step is a question that has a yes/no (= 1/0) 

answer and the result is stored as a bit-sequence (2(x-1)) where x represents the 

number of the QC flag. The results of all these QC steps are added up and stored in a 
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single QC field in the (Eur)OBIS database, generating a unique integer value for each 

possible combination of positively evaluated QC steps. An overview of all the QC 

steps and their corresponding bit-sequence is given in Table 1. Given the different 

structure and scope of EurOBIS and OBIS, a number of QC steps have been 

specifically developed for either EurOBIS or OBIS. The majority (17) of the QC steps 

are, however, available for both data systems. 

The strength of the quality control procedures is that they not only evaluate a 

dataset as a whole but also look at each record individually, giving a much more 

detailed view on the quality and completeness of the data and providing more 

opportunities to users in their data selection as one dataset may contain several 

useful records, which might have been rejected if the evaluation had been done 

solely on the dataset level. 

1. Data format checks 
Data made available through (Eur)OBIS need to be compliant with the OBIS Schema, 

used by OBIS. This OBIS Schema has 74 data and information fields, of which 7 are 

mandatory and 15 are highly recommended. The remaining fields are classified as 

optional. For a full overview of the OBIS Schema, we refer to the OBIS website 

(http://www.iobis.org/node/304). A lot of data providers are making use of the 

Integrated Publishing Toolkit (IPT) developed by GBIF (Robertson et al., 2014) to 

exchange their data. By doing so, their data follow the Darwin Core format 

(Wieczorek et al., 2012) which slightly differs from the OBIS Schema, which is based 

on an older version of the Darwin Core format. To avoid confusion, the EurOBIS 

website includes a mapping between the OBIS Schema field names and the currently 

used Darwin Core field names (http://www.eurobis.org/data_formats). 

The data format check compares the general format of a dataset with the 

requirements of the OBIS Schema. When any of the required fields is missing or 

original field names are not correctly mapped to the field names used within OBIS, 

then these records are negatively evaluated in the QC procedures and are thus in 

need of an additional check. Fields that are not part of the OBIS Schema can still be 

shared with EurOBIS—e.g. through the DarwinCore Archive format (GBIF, 2011)—

but the corresponding data will—at this time—not be shown through the data 

portal. If the OBIS Schema recommends the use of certain wording or codes—e.g. in 

the field ‘BasisOfRecord’—this is also checked. The ‘BasisOfRecord’ defines the kind 

of data: which can be actual observations (O), specimen information from museum 

collections (S) or distribution data derived from literature (L), which can already 

provide a first important data filter for the user. 

http://www.iobis.org/node/304
http://www.eurobis.org/data_formats
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Table 1. Overview of all the QC steps in the EurOBIS database, including the unique bit-sequence (2
(x-1)

 , with x  = number of the QC flag) when the QC step is 
evaluated positively. The second last column lists whether a QC step is also available to the users through the online web services. IQR = Interquartile range; 
MAD = Median absolute deviation; SSS = Sea surface salinity; SST = Sea surface temperature. 

QC Category Question Bit-sequence, 
if answer is yes 

Available as online data service Implemented in 

2 Taxonomy Is the taxon name matched to WoRMS? 2 Yes (taxon match) EurOBIS + OBIS 

3 Taxonomy Is the taxon level lower than family? 4 Yes (taxon match) EurOBIS + OBIS 

4 Geography: lat/lon Are the latitude/longitude values different from 
zero? 

8 Yes (check OBIS format) EurOBIS + OBIS 

5 Geography: lat/lon Are the latitude/longitude values within their 
possible boundaries? 

16 Yes (check OBIS format) EurOBIS + OBIS 

6 Geography: lat/lon Are the coordinates situated in sea or along the 
coastline (20 km buffer)? 

32 Yes (check OBIS format) EurOBIS + OBIS 

9 Geography: lat/lon Are the coordinates situated in the expected 
geographic area (compare metadata)? 

256 No, but visual check possible 
through separate data 
validation service 

EurOBIS 

18 Geography: depth Is minimum depth ≤ maximum depth? 131 072 Not yet available EurOBIS + OBIS 

19 Geography: depth Is the sampling depth possible when compared 
with GEBCO depth map (incl. margin)? 

262 144 No, but depths per lat-lon can 
be requested through 
geographic web services 

EurOBIS + OBIS 

7 Completeness: date/time Is the sampling year (start/end) completed and 
valid? 

64 Yes (check OBIS format) EurOBIS + OBIS 

11 Completeness: date/time Is the sampling date (year/month/day; start/end) 
valid? 

1 024 Yes (check OBIS format) EurOBIS + OBIS 

12 Completeness: date/time If a start and end date are given, is the start 
before the end? 

2 048 Yes (check OBIS format) EurOBIS + OBIS 

13 Completeness: date/time If a sampling time is given, is this valid and is the 
time zone completed? 

4 096 Not yet available EurOBIS + OBIS 

14 Completeness: 
presence/abundance/bio
mass 

Is the value of the field ‘ObservedIndividualCount’ 
empty or > 0? 

8 192 Not yet available EurOBIS + OBIS 

15 Completeness: Is the value of the field ‘Observedweight’ empty 16 384 Not yet available EurOBIS + OBIS 
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QC Category Question Bit-sequence, 
if answer is yes 

Available as online data service Implemented in 

presence/abundance/bio
mass 

or > 0? 

16 Completeness: 
presence/abundance/bio
mass 

Is the field ‘SampleSize’ completed if the field 
‘ObservedIndividualCount’ is > 0? 

32 768 Not yet available EurOBIS + OBIS 

1 (Eur)OBIS data format Are the required fields from the OBIS Schema 
completed? 

1 Yes (check OBIS format) EurOBIS + OBIS 

10 (Eur)OBIS data format Is the ‘Basis of Record' documented, and is an 
existing OBIS code used? 

512 Yes (check OBIS format) EurOBIS + OBIS 

17 (Eur)OBIS data format Is the value of the field ‘Sex’ empty or is an 
existing OBIS code used? 

65 536 Not yet available EurOBIS + OBIS 

21 Outliers:environment Is the observation within six MADs from the 
median depth of this taxon? 

1 048 576 Not yet available OBIS 

22 Outliers:environment Is the observation within three IQRs from the first 
& third quartile depth of this taxon? 

2 097 152 Not yet available OBIS 

23 Outliers:environment Is the observation within six MADs from the 
median SSS of this taxon? 

4 194 304 Not yet available OBIS 

24 Outliers:environment Is the observation within three IQRs from the first 
& third quartile SSS of this taxon? 

8 388 608 Not yet available OBIS 

25 Outliers:environment Is the observation within six MADs from the 
median SST of this taxon? 

16 777 216 Not yet available OBIS 

26 Outliers:environment Is the observation within three IQRs from the first 
& third quartile SST of this taxon? 

33 554 432 Not yet available OBIS 

27 Outliers:geography Is the observation within six MADs from the 
distance to the centroid of this taxon? 

67 108 864 Not yet available OBIS 

28 Outliers:geography Is the observation within three IQRs from the first 
& third quartile distance to the centroid of this 
taxon? 

134 217 728 Not yet available OBIS 

29 Outliers:geography Is the observation within six MADs from the 
distance to the centroid of this dataset? 

268 435 456 Not yet available OBIS 



Q u a l i t y  o f  p u b l i c  o c c u r r e n c e  d a t a  | 33 

 

2. Assessment of the completeness and validity of information 
Besides the basic information of a distribution record (what—where—by whom), the 

OBIS Schema can capture a lot of other species-related information. A number of the 

quality checks verify the completeness and soundness of different parts of 

information in a record. This includes traceability information—e.g. institution code 

and catalogue number—checking how detailed the date information is, verifying 

that a given date is possible and—if relevant—if the start date is always before the 

end date and the minimum depth is always smaller than or equal to the maximum 

depth. 

A number of QC steps make it possible to distinguish between records that can be 

used as ‘presence-only’ or where actual counts are available. When a count is given, 

it is checked whether an indication of the sample size is documented, allowing users 

to recalculate the given values to a chosen unit. These QC flags give users the 

opportunity to e.g. only select those distribution records that have complete 

abundance information available or where the life stage is documented. 

3. Taxonomic quality control 
One of the most important quality checks within OBIS and EurOBIS is related to the 

given taxon names within a dataset. To quality check these names, (Eur)OBIS makes 

use of the World Register of Marine Species (WoRMS, WoRMS Editorial Board 2016, 

http://www.marinespecies.org) as the taxonomic standard. WoRMS is the most 

authoritative and comprehensive list of names of marine organisms, including 

information on synonymy. The host institute for WoRMS is the Flanders Marine 

Institute (VLIZ) in Belgium and the content of WoRMS is updated and validated by a 

world-wide network of taxonomic experts. Only by linking the given taxon names to 

a widely accepted marine taxonomic standard, such as WoRMS is it possible to rule 

out spelling variations and link synonyms to their currently accepted names within 

(Eur)OBIS. A thorough taxonomic standardization allows the grouping of distribution 

records in a reliable way for further analysis (Vandepitte et al., 2010). 

4. Geographic quality control 
As EurOBIS and OBIS are biogeographic information systems, verifying the 

geographic content is as important as verifying the taxonomic data. The geographic 

checks do not only include a 2D check—latitude and longitude—but they also 

evaluate the third dimension— depth—if documented in the dataset. 

Several checks relate to the latitude–longitude fields within a given dataset (see 

Table 1). First of all, it is evaluated whether the coordinates are documented and if 

http://www.marinespecies.org/
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the provided values are possible, i.e. be different from zero, be expressed as decimal 

values in the WGS84 format and fall within the valid boundaries (-90≤latitude≤+90 

and -180≤longitude≤180). Although 0-0 is a marine position in the Gulf of Guinea 

(Atlantic Ocean), the odds of having sampled at that exact location is relatively small; 

All 0-0 cases in OBIS so far were referring to unknown positions, which have been 

auto-filled by zeros. As both data systems are marine, it is verified whether the 

sampling locations are located in the marine environment, being seas or oceans. 

Given the fact that they both receive coastal and estuarine datasets, a land mask 

accommodating for a 20 km buffer from the coastline (GSHHS, 

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html) is taken into account, hence 

also including most of the estuarine areas. Although some datasets document the 

coordinate uncertainty or precision, this information has thus far not been taken 

into account in any of the quality control steps. 

In nearly all cases, a dataset is accompanied by a detailed metadata description, 

including text information on the geographical range. Within the metadata 

information system used for EurOBIS, this geographical range information is coupled 

to Marine Regions (http://www.marineregions.org), a standard list of marine 

georeferenced place names and areas (Claus et al., 2014). Based on the available 

information and shape files within Marine Regions, a comparison is made between 

the location of the sampling points and the general geographical coverage 

mentioned in the metadata. If this does not correspond, the relevant sampling 

locations are flagged as possibly incorrect. When no metadata is available, this check 

cannot be performed and the record is evaluated as being correct. This check is not 

yet available on the OBIS database. 

Within the marine environment, the relevance of information on sampling depth 

cannot be underestimated. Based on depth, it is possible to distinguish between e.g. 

planktonic and benthic observations or coastal and deepsea observations. Given its 

importance, it is valuable to evaluate if the given depth-value related to the species 

observation is a possible value. This assessment combines the given depth-values 

with their geographic coordinates and compares this to the General Bathymetric 

Chart of the Oceans (Anon., 2010). As not all depth values are registered with the 

same precision—and fluctuations exist due to e.g. tidal differences—a 100 m margin 

is taken into account when assigning a quality flag for this check. This margin should 

also largely account for the fact that the mean depth within a grid can potentially 

differ from the actual sampling depth, especially in topographically complex areas. 

  

http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
http://www.marineregions.org/
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5. Outlier analysis 
Next to the earlier documented QC steps that run both on EurOBIS and OBIS, global 

geographic and environmental outlier analyses were developed specifically for OBIS, 

generating 10 more QC flags. These additional outlier analyses use external 

environmental and geographical (depth) data to assess the credibility of a certain 

distribution record, when compared with the available distribution records within 

the checked dataset or within OBIS as a whole. Given the non-normal distribution of 

the environmental, depth and distance values of the sampling points, the following 

two robust outlier detection methods are used: (i) the absolute deviation from the 

median, with a limit at six times the median absolute deviation (MAD) (Davies & 

Gather, 1993; Leys et al., 2013) and (ii) an approach based on the Tukey box plot 

method, with boundaries at three times the interquartile range (IQR) (Acuna & 

Rodriguez, 2004). Although a value of three times MAD is already considered as 

conservative (Miller, 1991), setting the values for the rejection criteria is by 

definition a subjective decision (Leys et al., 2013). The values used for the QC flags 

are based on visual analysis of a subset of the OBIS database and on the fact that a 

point lying at 6xMAD or 3xIQR from the first or third quartile is considered an 

extreme outlier (Acuna & Rodriguez, 2004). 

Six of the outlier checks are related to the environment: these checks compare the 

locality details of a record with depth, sea surface salinity (SSS) and sea surface 

temperature (SST) values extracted from the global grids of (1) GEBCO 

(www.gebco.net; The GEBCO_08 Grid, version 20100927), (2) ETOPO1 Global Relief 

Model (Amante & Eakins, 2009) and (3) MARSPEC (Ocean Climate Layers for Marine 

Spatial Ecology, Sbrocco & Barber, 2013), with the earlier explained decision criteria 

of 6xMAD and 3xIQR. The depth layers of these three global grids are combined and 

the average of the two most similar depth values is used to average out 

inconsistencies between the three bathymetric layers. It needs to be taken into 

account that due to the used resolution of these depth layers—30 arc-second for 

GEBCO_08 and MARSPEC and 1 arc-minute for ETOPO1 Global Relief Model—the 

calculated bathymetric values of the positions can significantly deviate from the 

values at the exact sampling position due to the resolution of the depth layers. 

These checks help identifying observations that (possibly) occur outside of their 

environmental range. The four geographic outlier procedures aim (i) to compare the 

orthodromic or great-circle distance between the actual sampling locations and the 

centroid of all sampling locations within a specific dataset and (ii) to compare the 

distance between the sampling location of a specific species record to the centroid 

of all the available sampling locations of that particular species within the OBIS 
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database. The quality flag is assigned taking into account the 3xIQR or 6xMAD 

boundaries. The centroid of a set of sampling points is defined as the point that 

minimizes the sum of squared geodesic distances between itself and each point in 

the set and it is calculated from all the initial records except those that have zero 

coordinates or coordinates that fall out of the valid boundaries for the coordinate 

reference system WGS84. 

The outlier analyses aim to identify species documented outside of their expected 

ranges and to reveal possible errors in the taxonomic identification or the assigned 

latitude and longitude which were not identified through the record-level 

geographic QC steps, e.g. a missing minus sign to indicate South or West or 

accidental switching of latitude and longitude values. 

Results 
All distribution records within EurOBIS and OBIS have gone through the earlier 

described quality control steps. Within the OBIS database, at least 60% of the 

distribution records pass each individual QC step. For some QC steps, >90% of the 

records pass the enforced criteria (Fig. 1). A detailed look shows that the scores of 

the different OBIS nodes vary greatly (Fig. 2), indicating that the results of these QC 

procedures can provide valuable feedback to the data providers—to double check 

their data and possibly make corrections and additions—and users, to select the 

desired data from the system. For an overview of all datasets available within the 

OBIS database, we refer to http://www.vliz.be/en/imis?module=dataset&dasid=68. 

The results show that 85% of the distribution records in OBIS can be used for species 

or genus specific analyses (Fig. 1). All nodes—and thus implicitly OBIS—seem to 

struggle with capturing the corresponding time zone of the given time at which the 

data were collected (QC13), which is valuable information when collating data from 

different time zones. Time and the corresponding time zone information is, e.g. 

highly relevant when comparing data from different regions and analysing the 

diurnal vertical migration patterns of, e.g. zooplankton species. 

http://www.vliz.be/en/imis?module=dataset&dasid=68
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Figure 1. Relative number of records (%) that pass the individual QC steps 
within the OBIS database. The QC steps are listed in Table 1. 

 

Figure 2. Box and whisker plot per QC step, showing the variability of 
quality and completeness (in percentage) of the distribution records 
within the 21 OBIS nodes. 
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When evaluating the records that contain actual counts (the number of observed 

individuals within each species) within the (Eur)OBIS database, it becomes clear that 

the most valuable piece of information—an indication of the sample size—is missing 

for a large number of records (QC16). As most counts are in essence meaningless 

without a sample size, this QC result shows that still a lot of work needs to be done 

to be able to use the count information. 

Although the results of the individual QC steps can already give a lot of information 

on the possible usefulness of a record, it becomes even more useful when several 

QC steps are combined (Table 2). A selection of relevant QC steps can be made on 

database level, giving an indication of the distribution records within OBIS that 

comply to these criteria. In biodiversity research, scientists are specifically interested 

in geo-referenced species and/or genus data. When combining these selection 

criteria, almost 85% of the records would be fit for this purpose. The more stringent 

the criteria become, the fewer records will suit the postulated conditions. The 

number of suitable records diminishes significantly if one wants to make use of 

counts or abundance information instead of just presence information (QC16), 

indicating that this information is rather hard to capture and document within large 

integrated databases, such as e.g. OBIS. 

Table 2. Overview of the number of records (absolute and relative) that pass specific combinations of 
QC steps, indicating their fitness for use in analysing research hypotheses. QC2: taxon name matched to 
the WoRMS; QC3: taxon level more detailed than family; QC4: coordinates different from zero; QC5: 
coordinates within possible boundaries; QC6: coordinates in sea or within 20 km coastline buffer; QC7: 
sampling year available and valid; QC16: count available, in combination with sample size information. 

Combined QC 
steps 

Positively evaluated OBIS 
records (#)  

Positively evaluated OBIS 
records (%) 

2-3-4-5 34 991 925  86.05  

2-3-4-5-6 32 216 817  79.22  

2-3-4-5-7 32 849 480  80.78  

2-3-4-5-6-7 30 311 653  74.54  

2-3-4-5-16 23 315 398  57.33  

2-3-4-5-6-16 19 189 668  47.19  

2-3-4-5-6-7-16 19 189 668  47.19  

Two different approaches are used within the outlier analyses: the IQR and the MAD 

methodology. These two have been selected as they are widely used in outlier 

analyses. In general, the results of both QC procedures are similar. When they differ, 

the user can combine the results of these QC steps with other QC steps to come to a 

consensus approach on how to evaluate a specific record. Figures 3 and 4 illustrates 
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that the MAD and IQR approaches can differ, but that these differences are generally 

relatively small. If a record gets flagged as a possible outlier, some caution is still 

needed. Figure 3 represents the sampling locations of the dataset ‘International 

Council for the Exploration of the Sea (ICES) Biological Community’ (ICES, 2010), 

where the core of the locations is in the Baltic Sea and the other locations are 

indicated as geographic outliers. After consultation with the data management team 

at ICES, it became clear that the records in the Antarctic region were the result of a 

reporting problem in an old format, where positive latitudes were reported as 

negative. These errors are currently being fixed, and the correct data should soon be 

available. Possible issues with the Mediterranean, African mainland and Greenland 

records are not obvious and are still under investigation by ICES. 

Fig. 4 shows all the distribution records of the Cirriped species Verruca stroemia 

available within OBIS and how they respond to the different geographic and 

environmental outlier analysis. The Supporting information gives an overview of the 

OBIS datasets containing Verruca stroemia distribution records. In the ‘distance 

outlier analysis’, all distribution records along the Norwegian coast, White Sea, 

Barents Sea and Mediterranean Sea are considered outliers, indicating the species 

would not occur there. Similar results come from the sea surface salinity (SSS) outlier 

analysis. Accepting these distribution records as true outliers should be backed up 

with expert knowledge, as these outliers might not be actual outliers, but e.g. the 

result of a skewed availability of data within the OBIS database or misidentifications 

in the field (see discussion). 

 

Figure 3. Results of the geographic outlier analysis on the dataset ‘ICES Biological Community’. The left 
figure (A) represents the IQR approach, the right figure (B) represents the MAD approach. Black 
diamonds indicate the centroid of the investigated data, green triangles have been evaluated as OK, 
orange squares have been evaluated as possible outliers. In this case both the IQR and MAD identified 
the same points as outliers. 

http://database.oxfordjournals.org/lookup/suppl/doi:10.1093/database/bau125/-/DC1
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Figure 4. Results of the geographic and environmental outlier analysis of the species Verruca stroemia 
(Crustacea, Cirripedia). The left column represents the IQR approach, the right column represents the 
MAD approach. The different outlier analyses are A: geography, B: bathymetry, C: sea surface salinity 
(SSS) and D: sea surface temperature (SST). Black diamonds indicate the centroid of the investigated 
data (only for the geographic outlier analysis), green triangles have been evaluated as OK, orange 
squares have been evaluated as possible outliers. 
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Discussion 
The quality flags assigned to each record provide an indication of the ‘fitness for 

purpose’ of a particular distribution record, helping both the user and the data 

provider in more objectively assessing the quality and completeness of a record and 

to draw conclusions from this. The majority of the quality flags do not have the 

intention to label a record as ‘good’ or ‘bad’, they just give an indication of the 

completeness and quality, helping the user in his or her decision to make use of a 

specific record or to reject it. 

Users need to be aware of the fact that the results of the outlier analyses only 

provide an indication of the possible outlier character of a distribution record. 

Records flagged as an outlier are not necessarily true outliers: the distribution of a 

species can e.g. be unrelated to bathymetry, but highly dependent on temperature 

or salinity. A single outlier check might thus not clearly identify an outlier (Fig. 4), but 

combining the results of the different outlier checks can indicate with more certainty 

that a species observation is outside its suspected range (Fig. 5). In addition, 

knowledge on the actual environmental boundaries of species can help in identifying 

true outliers and filtering of the data. False positives in the species-based outlier 

detection can be the result of extremely uneven sampling such as for example data 

from museum collections. Some true positives on the other hand might not be 

actual outliers, but could be the first observations for a specific species in a 

geographical area where it was unknown to appear before. The latter could be the 

case in first observations of alien species that moved to a new area, and these 

records should be approached with caution. As the dataset-based outlier detection 

aims to flag possible errors in the geographic coordinates, this will only work well 

when the dataset is spatially restricted, e.g. if all samples have been taken in the 

same region such as the North Sea. 

When wider geographical areas are covered within a dataset, this outlier detection is 

prone to giving false positives, e.g. due to a biased sampling effort in the available 

data. This is clearly the case for Verruca stroemia (Fig. 4): expert and literature 

consultation have confirmed that the Mediterranean outliers are true outliers, a 

consequence of misidentification (Young et al., 2003). In this case, the providers of 

these records will be contacted with the expert and literature information. The 

northern distribution records (Norwegian coast, White Sea, Barents Sea) are, 

however, validated by literature. In addition, the available depth values also 

confirmed the species occurs at a depth range from 0 to 548 m (43). Because 

different outlier analyses are available, it is recommended that users combine the 

results of these outlier QC checks with each other and with the results of the more 
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basic geography checks. All these combined will make the interpretation of the 

validity and fitness for use of the records. 

 

Figure 5. Synthesis map representing the combined results of the outlier analyses of Verruca stroemia 
from Figure 4. The scale represents the number of times a species distribution is seen as an outlier, 
when combining the eight outlier analyses—geography, bathymetry, Sea Surface Salinity (SSS) and Sea 
Surface Temperature (SST) SSS and SST according to the IQR and MAD approach—from Figure 4. The 
black diamond indicates the centroid of the investigated data. 

Use-case 1: Quality controlled data available through EMODnet 

As mentioned earlier, the results of the assigned quality control flags can be 

combined according to the required ‘fitness for use’ for the users, thereby 

generating the possibility to create specific filters on the available data within 

EurOBIS and OBIS. EMODnet Biology Portal (http://www.emodnet-biology.eu/) is 

already making use of such a filter, to offer a specific subset of EurOBIS data to its 

users. EurOBIS is the data engine behind the Biology Portal of EMODnet, meaning 

that the data part of the Biology Portal is driven by the EurOBIS data. It was, 

however, agreed that only those distribution data that comply with QC steps 2-3-4-

5—related to taxonomy and basic geography—are offered to the users, thereby 

making a useful ‘pre-selection’ of the data. Through the portal, users can still see 

how many distribution records are available in the original dataset and how many 

have passed the postulated QC steps and are thus available. As of November 2014, 

http://www.emodnet-biology.eu/
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86% or 15.9 million of all the distribution records available in EurOBIS can be 

consulted through the EMODnet Biology Portal. 

Use-case 2: Selection of QC steps available as web services through LifeWatch 

As of 2012, EurOBIS is part of the central taxonomic backbone of LifeWatch, an E-

Science European Infrastructure for Biodiversity and Ecosystem Research which aims 

at standardizing species data and integrating the distributed biodiversity repositories 

and operating facilities. Given the importance of standardization, interoperability 

and being able to assess the quality and completeness of the available data within 

LifeWatch, a number of the QC steps related to data format, taxonomy and 

geography that are currently running on the (Eur)OBIS database have been 

‘translated’ to interactive, user-friendly web services (http://www.lifewatch.be/ 

dataservices). By making use of these freely available data services, data providers, 

data managers and users are able to make a general assessment of the quality, 

completeness and fitness for use of their own biogeographic data by simply 

uploading them to the LifeWatch portal and selecting the QC steps they want to run 

on their data. 

Future plans and possibilities 
Currently, the QC steps are running automatically on both the EurOBIS and OBIS 

database. A selection of these QC steps is already available online through LifeWatch 

as a web service. The creation of a customized filter—a combination of several QC 

steps—is not yet available for the users. Customized filters on EurOBIS will become 

available through the EMODnet Data Portal, allowing users to define the necessary 

‘fitness for use’ of the required data and to refine their search results accordingly. In 

the future, similar filter options will be developed on the OBIS data. The data 

download will then also include the corresponding QC flags. The results of the QC 

procedures currently stored in the database will be used to communicate with the 

data providers to improve both the quality and completeness of the available data. 

Specifically the outlier analyses will provide valuable information to improve the 

correctness of the data. Currently, newly added datasets are thoroughly analysed 

before they go online, and possible issues are communicated with the data provider 

immediately. On the other hand, a lot of data have been uploaded to the database 

before these QC procedures came into place. For these datasets, a communication 

plan will need to be worked out to discuss the quality control results with the 

providers, aiming for the highest possible return and improvement of the data 

quality and completeness. It is important to realize that for some—mostly 

http://www.lifewatch.be/%0bdataservices
http://www.lifewatch.be/%0bdataservices
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historical—datasets, the quality status will remain ‘as is’, e.g. when no additional 

information is available anymore and the original data provider is no longer around 

to deal with the identified issues. 

Within WoRMS, the taxonomic information is currently being expanded with species 

attributes, such as whether a species belongs to the benthos or plankton, if a species 

is coastal or deep-sea, what the feeding method, average body size and life span is 

etc. Once these literature and expert-based traits have been sufficiently 

documented, they can be incorporated in the QC steps to offer an even higher 

quality standard to our users. For example, if WoRMS can distinguish between 

coastal and open ocean species, then this trait can be used as an additional check on 

the species distribution information: a coastal species (presumably) observed in the 

open ocean could then be flagged as a possibly incorrect record, drawing the 

attention of the users to this and letting them decide for themselves whether they 

want to include this record in their download or analysis or not. 

Conclusion 
The development and implementation of the described QC steps meets a need to be 

able to add quality flags to records and to filter out data based on user needs, taking 

into account the fitness for purpose of the available records. As an array of QC steps 

is available, users will be able to create specific filters on the data, answering to their 

specific data needs and requirements. 

Although a number of the discussed QC steps are specifically designed to check data 

meant for EurOBIS and OBIS, a number of other checks can be used widely by the 

scientific community to quality control their own data before analysis, publication 

and data sharing. Offering these QC tools as online, user-friendly data services 

through LifeWatch (http://www.lifewatch.be) greatly enhances their overall usability 

for scientists worldwide and meets the needs of the (marine) scientific community 

to be able to standardize and quality check their data themselves. 

Depending on user needs, more QC steps can be added in the future, or existing QC 

steps could be fine-tuned to better meet their requirements. The mining of a quality 

controlled, integrated database of different data sources can give insights in 

previously unexplored matters and offers the possibility to develop new or improved 

technologies related both to the quality of the data and the outcomes. It is, 

however, important to realize that the outlier QC results should be approached with 

due caution. Because the QC steps are automated, a critical analysis of these QC 

http://www.lifewatch.be/
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results might be needed to draw the right conclusions on exclusion or inclusion of 

these records in certain analyses. 
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Abstract 
sdmpredictors is an open source R package which allows the end user to download 

terrestrial and marine environmental layers for the past, current and future climates. 

sdmpredictors contains metadata, statistics and pairwise correlations for the 

available datasets and layers. These correlations between predictors can be 

subsequently grouped and plotted. Currently sdmpredictors contains geophysical, 

biotic and climate data from WorldClim, ENVIREM, Bio-ORACLE and MARSPEC at 5 

arcmin resolution and in the Behrmann equal area projection with a resolution of 7 

kilometres. 
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Introduction 
Species distribution modelling (SDM) is a commonly used tool in ecology and 

conservation biology. Correlative species distribution models relate species 

occurrences and (pseudo-)absence data to environmental predictor variables, based 

on statistically derived response surfaces (Guisan & Thuiller, 2005). Coinciding with 

the persistent interest in SDM, in the last 20 years numerous R packages related to 

SDM have been released. These include packages for downloading, checking and 

thinning occurrences (Aiello-Lammens et al., 2015; Chamberlain et al., 2016a; 

Provoost et al., 2016; Robertson et al., 2016), downloading the WorldClim 

environmental dataset (Hijmans et al., 2016; August et al., 2017), fitting models with 

various algorithms (Liaw & Wiener, 2002; Royle et al., 2012; Golding & Purse, 2016) 

and packages providing a fully integrated framework for SDM (Thuiller et al., 2009; 

Hijmans et al., 2016; Naimi & Araújo, 2016; August et al., 2017). With sdmpredictors 

we aim to complement these R packages by providing an easy to use interface for 

the acquisition of uniform and compatible terrestrial and marine predictors from 

different datasets for the past, current and future climate layers. It allows the end 

user to easily discover and use the different available layers from different predictor 

datasets. 

Package description 
sdmpredictors allows you to query the metadata for datasets (‘list_datasets’) and 

the environmental layers (‘list_layers’). After selecting the required current climate 

layers they can be downloaded and loaded into the R session using the ‘load_layers’ 

function by providing the layer codes. Once layers are loaded into R they can be 

passed to all functions expecting a RasterStack with environmental data such as 

‘extract’ from raster (Hijmans, 2016), ‘BIOMOD_FormatingData’ from biomod2 

(Thuiller et al., 2009), LocalRaster module in ZOON (August et al., 2017) and many 

more. 

In order to load paleoclimatic and future climate layers a set of functions links 

current climate layers to past and future climate layers (‘get_paleo_layers’ or 

‘get_future_layers’) or list out the available paleoclimatic and future climate layers 

(‘list_layers_paleo’ or ‘list_layers_future’). After which the same ‘load_layers’ 

function can be used to actually download the data. 

With the ‘layer_stats’ function various summarizing layer statistics like minimum, 

first quantile, median, third quantile, maximum, median absolute deviation, mean 

and standard deviation can be queried. The ‘layers_correlation’ function allows one 
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to query the Pearson correlation coefficient between two or more layers. Following 

the suggestion of Dormann et al. (2013), to avoid including heavily correlated 

predictors in one SDM, we provide the ‘correlation_groups’ function, which groups 

predictors based on their correlation. Correlations for cropped versions of the 

predictors or between externally sourced predictors can be calculated with the 

‘pearson_correlation_matrix’ function. 

Finally, citations for the used datasets and layers can be obtained with the 

‘dataset_citations’ and ‘layer_citations’ functions, respectively. 

Integrated datasets 
Currently data layers are available both as Behrmann equal area projected rasters 

with a 7 km resolution and as 5 arcminutes unprojected rasters. For the terrestrial 

environment we added the WorldClim (Hijmans et al., 2005) and ENVIREM (Title & 

Bemmels, 2017) datasets and for the marine environment we included Bio-ORACLE 

(Tyberghein et al., 2012) and MARSPEC (Sbrocco & Barber, 2013). An overview of 

these datasets can be found in Table 1. The included datasets all represent multiyear 

aggregated data from interpolated in situ data and satellite observations of the 

Earth’s surface. For all of datasets past and future climate data were added when 

available. This is by no means a fixed list and we encourage end users to suggest new 

datasets for inclusion in sdmpredictors. 

Usage 
In Supporting information we provide an example use case where sdmpredictors is 

used to provide environmental data for modelling the distribution of Dictyota 

diemensis Sonder ex Kützing, one of the species from the MarineSPEED benchmark 

dataset (Chapter 4). Additionally, the data provided by sdmpredictors can also be 

used for numerous other applications, including the generation of virtual species 

(Duan et al., 2015; Leroy et al., 2016), measuring niche overlap (Broennimann et al., 

2012), linking the environment with species richness and biogeographic structure 

(Tittensor et al., 2010; Belanger et al., 2012) and modelling species abundance and 

population dynamics (Pearce & Boyce, 2006; Pratheepa et al., 2016). In summary, 

this package provides users with a set of functions for obtaining and using 

environmental predictor datasets for the past, current and future climate within R. 
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Table 1. Overview of the datasets included in sdmpredictors. For an up to date list use the function 
‘list_datasets’. 

Dataset Description 

WorldClim WorldClim is a set of global terrestrial climate layers. It has average 
monthly climate data for minimum, mean, and maximum 
temperature and for precipitation for 1960-1990. Additionally it 
contains a set of bioclimatic variables that are derived from the 
monthly temperature and rainfall values. They represent annual 
trends, seasonality and extreme or limiting environmental factors. 

ENVIREM The ENVIREM dataset is a set of 16 climatic and 2 topographic 
variables that can be used in modelling species' distributions. The 
strengths of this dataset include their close ties to ecological 
processes, and their availability at a global scale, at several spatial 
resolutions, and for several time periods. The underlying 
temperature and precipitation data that went into their 
construction comes from the WorldClim dataset 
(www.worldclim.org), and the solar radiation data comes from the 
Consortium for Spatial Information (www.cgiar-csi.org). The data 
are compatible with and expand the set of variables from 
WorldClim v1.4 (www.worldclim.org). 

Bio-ORACLE Bio-ORACLE is a set of GIS rasters providing marine environmental 
information for global-scale applications. It offers an array of 
geophysical, biotic and climate surface data derived from satellite 
data or interpolated from in situ data. 

MARSPEC MARSPEC is a set of high resolution climatic and geophysical GIS 
data layers for the world ocean. Seven geophysical variables were 
derived from the SRTM30_PLUS high resolution bathymetry 
dataset.  These layers characterize the horizontal orientation 
(aspect), slope, and curvature of the seafloor and the distance from 
shore.  Ten “bioclimatic” variables were derived from NOAA's 
World Ocean Atlas and NASA's MODIS satellite imagery and 
characterize the inter-annual means, extremes, and variances in 
sea surface temperature and salinity. 

To cite sdmpredictors or acknowledge its use, cite this Software note as follows, 

substituting the version of the application that you used for ‘version 0’: 

Bosch S., Tyberghein, L. and De Clerck, O. 2017. sdmpredictors: an R package for 

species distribution modelling predictor datasets. Version 0.  
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Supporting information 
Here we detail a sample application where sdmpredictors is used to provide 

environmental data for modelling the distribution of Dictyota diemensis Sonder ex 

Kützing, one of the species from the MarineSPEED benchmark dataset (Chapter 4). 

The distribution of D. diemensis is restricted to Australia and New Zealand, but as 

only Australian distribution records are available we restricted ourselves for this use 

case to the Australian range (Womersley, 1987; Adams, 1994). We first start with 

exploring the available datasets and layers. Followed by the download of a set of 5 

marine layers (salinity, sea surface temperature mean and range, bathymetry and 

shore distance) from Bio-ORACLE and MARSPEC. These are subsequently clipped 

with the shape of the Australian Exclusive Economic Zone using the raster and 

mregions packages (Chamberlain et al., 2016b; Hijmans, 2016). Secondly statistics 

and correlations for both the global and Australian data are inspected and visualized. 

For the correlation plot we additionally used the ggplot2 and cowplot packages 

(Wickham et al., 2016; Wilke & Wickham, 2016). Since no predictors are grouped in 

a correlation group (Pearson correlation > 0.7) we used all predictors for building the 

SDM. We downloaded occurrences using marinespeed (Bosch et al., 2017), which are 

then used to create an SDM using ZOON (August et al., 2017). Finally the citations 

for the used layers are printed. For this application we used the Behrmann equal-

area projected layers which required the projection of extents and occurrence 

points, avoiding oversampling of higher latitudes (Elith et al., 2011). 

library(sdmpredictors) 

library(mregions) 

library(zoon) 

# Inspect the available marine datasets and layers 

datasets <- list_datasets(terrestrial = FALSE, marine = TRUE) 

View(datasets[,c("dataset_code", "description")]) 

dataset_code description 

Bio-ORACLE Bio-ORACLE is a set of GIS rasters providing marine environmental information for 
global-scale applications. It offers an array of geophysical, biotic and climate data at a 
spatial resolution 5 arcmin (9.2 km) in the ESRI ascii format. 

MARSPEC MARSPEC is a set of high resolution climatic and geophysical GIS data layers for the 
world ocean. Seven geophysical variables were derived from the SRTM30_PLUS high 
resolution bathymetry dataset. These layers characterize the horizontal orientation 
(aspect), slope, and curvature of the seafloor and the distance from shore. Ten 
"bioclimatic" variables were derived from NOAA's World Ocean Atlas and NASA's 
MODIS satellite imagery and characterize the inter-annual means, extremes, and 
variances in sea surface temperature and salinity. These variables will be useful to 
those interested in the spatial ecology of marine shallow-water and surface-associated 
pelagic organisms across the globe. Note that, in contrary to the original MARSPEC, all 
layers have unscaled values. 



56 | C h a p t e r  3  

 

layers <- list_layers(datasets) 

View(layers[1:2,c("dataset_code", "name", "description",  

                  "primary_type")]) 

dataset_code name description primary_type 

Bio-ORACLE Calcite 
(mean) 

Calcite concentration indicates the mean 
concentration of calcite (CaCO3) in oceans. 

Satellite (Aqua-
MODIS), seasonal 
climatologies 

Bio-ORACLE Chlorophyll A 
(maximum) 

Chlorophyll A concentration indicates the 
concentration of photosynthetic pigment 
chlorophyll A (the most common "green" 
chlorophyll) in oceans. Please note that in 
shallow water these values may reflect any kind 
of autotrophic biomass. 

Satellite (Aqua-
MODIS), monthly 
climatologies 

# Load equal area rasters, crop with the shape of the Australia EEZ 

layercodes <- c("MS_biogeo05_dist_shore_5m", "MS_bathy_5m",  

                "BO_sstrange", "BO_sstmean", "BO_salinity") 

env <- load_layers(layercodes, equalarea = TRUE) 

eez <- mregions::mr_shp("MarineRegions:eez", maxFeatures = NULL,  

              filter = "Australian Exclusive Economic Zone") 

eez <- sp::spTransform(eez, equalareaproj) 

australia <- raster::crop(env, extent(eez)) 

australia <- raster::mask(australia, eez) 

plot(australia) 
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# Compare statistics between original and Australian bathymetry 

rbind(layer_stats("MS_bathy_5m"), 

      calculate_statistics("Bathymetry Australia",  

                           raster(australia, layer = 2))) 

 layer_cod

e 

minim

um q1 

medi

an q3 

maxim

um mad mean sd moran geary 

17

1 

MS_bathy

_5m 

-10493 -

48

65 

-

4082 

-

29

84 

-1 1313.5

84 

-

3661.0

49 

1644.8

69 

0.9728

919 

0.0096

978 

0

% 

Bathymetr

y Australia 

-6163 -

43

77 

-

1868 

-85 -1 2682.0

23 

-

2222.5

55 

1987.3

91 

0.9736

722 

0.0053

917 

# Compare correlations between predictors, globally and for Australia 

prettynames <- list(BO_salinity="Salinity",  

                    BO_sstmean="SST (mean)",  

                    BO_sstrange="SST (range)",  

                    MS_bathy_5m="Bathymetry", 

                    MS_biogeo05_dist_shore_5m = "Shore distance") 

p1 <- plot_correlation(layers_correlation(layercodes), prettynames) 

australian_correlations <- pearson_correlation_matrix(australia) 

p2 <- plot_correlation(australian_correlations, prettynames) 

cowplot::plot_grid(p1, p2, labels=c("A", "B"), ncol = 2, nrow = 1) 

 

correlation_groups(australian_correlations, max_correlation = 0.7) 

## [[1]] 
##   MS_biogeo05_dist_shore_5m  
## "MS_biogeo05_dist_shore_5m"  
##  
## [[2]] 
##   MS_bathy_5m  
## "MS_bathy_5m"  
##  
## [[3]] 
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##   BO_sstrange  
## "BO_sstrange"  
##  
## [[4]] 
##   BO_sstmean  
## "BO_sstmean"  
##  
## [[5]] 
##   BO_salinity  
## "BO_salinity" 

# Fetch occurrences and prepare for ZOON 

occ <- marinespeed::get_occurrences("Dictyota diemensis") 

points <- SpatialPoints(occ[,c("longitude", "latitude")], 

                        lonlatproj) 

points <- spTransform(points, equalareaproj) 

occfile <- tempfile(fileext = ".csv") 

write.csv(cbind(coordinates(points), value=1), occfile) 

# Create SDM with ZOON 

wf <- workflow( 

  occurrence = LocalOccurrenceData( 

    occfile, occurrenceType="presence", 

    columns = c("longitude", "latitude", "value")),  

  covariate = LocalRaster(stack(australia)), 

  process = OneHundredBackground(seed = 42), 

  model = LogisticRegression, 

  output = PrintMap) 

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred 
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# Layer citations 

citations <- layer_citations(layercodes, astext=FALSE) 

for(citation in citations) { 

  print(citation, style="Bibtex") 

} 

## @Article{Bio-ORACLE, 
##   author = {Lennert Tyberghein and Verbruggen Heroen and Klaas Pauly and 
Charles Troupin and Frederic Mineur and Olivier {De Clerck}}, 
##   title = {Bio-ORACLE: a global environmental dataset for marine species 
distribution modelling}, 
##   journal = {Global Ecology and Biogeography}, 
##   year = {2012}, 
##   volume = {21}, 
##   number = {2}, 
##   pages = {272-281}, 
##   doi = {10.1111/j.1466-8238.2011.00656.x}, 
## } 
## @Article{MARSPEC, 
##   author = {Elizabeth J. Sbrocco and Paul H. Barber}, 
##   title = {MARSPEC: ocean climate layers for marine spatial ecology}, 
##   year = {2013}, 
##   volume = {94}, 
##   number = {4}, 
##   pages = {979}, 
##   journal = {Ecology}, 
##   doi = {10.1890/12-1358.1}, 
## } 
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Abstract 

Aim 
Ideally, datasets for species distribution modelling (SDM) contain evenly sampled 

records covering the entire distribution of the species, confirmed absences and 

auxiliary ecophysiological data allowing informed decisions on relevant predictors. 

Unfortunately, these criteria are rarely met for marine organisms for which 

distributions are too often only scantly characterized and absences generally not 

recorded. Here, we investigate predictor relevance as a function of modelling 

algorithms and settings for a global dataset of marine species. Furthermore, we 

promote the usage of a standardized benchmark dataset (MarineSPEED) for 

methodological SDM studies. 

Location 
Global marine. 

Methods 
We selected well studied and identifiable species from all major marine taxonomic 

groups. Distribution records were compiled from public sources (e.g. OBIS, GBIF, 

Reef Life Survey) and linked to environmental data from Bio-ORACLE and MARSPEC. 

Using this dataset, predictor relevance was analysed under different variations of 

modelling algorithms, numbers of predictor variables, cross-validation strategies, 

sampling bias mitigation methods, evaluation methods and ranking methods. SDMs 

for all combinations of predictors from 8 correlation groups were fitted and ranked, 

from which the top five predictors were selected as the most relevant. 

Results 
We collected two million distribution records from 514 species across 18 phyla and 

made them available with associated environmental data and cross-validation splits 

through the R package marinespeed and at http://marinespeed.org. Mean sea 

surface temperature and calcite are respectively the most relevant and irrelevant 

predictors. A less clear pattern was derived from the other predictors. The biggest 

differences in predictor relevance were induced by varying the number of 

predictors, the modelling algorithm and the sample selection bias correction. 

Main conclusions 
While temperature is a relevant predictor of global marine species distributions, 

considerable variation in predictor relevance is linked to the SDM setup. Future 

methodological SDM studies should consider the use of a benchmark dataset.  

http://marinespeed.org/


M a r i n e S P E E D  | 63 

 

Introduction 
Species distributions are increasingly modelled for conservation and ecological 

purposes. A better understanding of the mechanisms shaping species distributions 

allows for more accurate predictions of the future distribution of species in a rapidly 

changing world (Franklin, 2009). Climatological conditions are currently changing at 

an unprecedented rate and anthropogenic activities displace species out of their 

native area across the globe resulting in biological invasions (Walther et al., 2009). 

A mechanistic link between the abiotic factors and the species distributions is 

traditionally gleaned from physiological studies subjecting individuals to various 

environmental conditions and assessing their reaction norms. However, not all 

species lend themselves equally well to ex situ experiments. Also, the experimental 

setup may only approximate realistic environmental conditions to a limited degree. 

Furthermore, such physiological studies typically require prior knowledge on the 

ecological factors governing the distribution ranges (Kearney & Porter, 2009). Given 

these difficulties, species distribution modelling (SDM), alternatively known as 

Ecological Niche Modelling (ENM), offers an attractive alternative (Elith et al., 2010). 

SDM correlates species occurrences, and optionally absences, with environmental 

data to create an estimation of the ecological niche and a projection in geographic 

space of this niche (Austin, 2002). The obvious advantage of correlative SDMs is that 

they require little knowledge of the mechanistic links between organisms and their 

environments. Thanks to the availability of an increasing number of online 

distribution records (e.g. OBIS, GBIF), pre-processed environmental data layers (e.g. 

Worldclim, Climond, Bio-ORACLE, MARSPEC) and modelling algorithms accessible 

through various statistical packages, SDM has become a widely applied technique in 

ecology and conservation biology (Pacifici et al., 2017). 

Despite this, studies on general SDM theory and methodology mostly focus on the 

terrestrial environment (reviewed in Franklin 2009; Elith & Leathwick 2009; Peterson 

et al. 2011). A minority of papers specifically address distribution modelling methods 

in the marine environment: presence-only algorithms (Cheung et al., 2008; Ready et 

al., 2010; Beaugrand et al., 2011), algorithm comparisons (MacLeod et al., 2008; 

Palialexis et al., 2011; Šiaulys & Bučas, 2012), 3D modelling (Bentlage et al., 2013), 

rare species (Stirling et al., 2016), joint SDMs (Torres et al., 2008), ensemble 

modelling (Downie et al., 2013), scale effects (Pittman & Brown, 2011; Nyström 

Sandman et al., 2013), null models (Merckx et al., 2011), model selection 

(Verbruggen et al., 2013), pseudo-absence generation (Huang et al., 2011; Coro et 

al., 2016) and predictor datasets (Tyberghein et al., 2012; Sbrocco & Barber, 2013). 
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Although the importance of selecting biologically relevant predictors, and its impact 

on model uncertainty and transferability has been highlighted by several studies 

(Araújo & Guisan, 2006; Barry & Elith, 2006; Synes & Osborne, 2011; Braunisch et al., 

2013; Verbruggen et al., 2013; Petitpierre et al., 2017) to date no comprehensive 

study on the relevance of the predictors of marine species distributions across taxa 

has been performed. But, note that Bradie & Leung (2016), in their meta-analysis on 

variable importance from MaxEnt SDMs, included a limited set of marine species. 

Bradie & Leung (2016) found that temperature and to a smaller extent bathymetry 

and salinity contributed the most to marine species distribution models. While the 

impact of geographic scale, algorithm and pseudo-absence selection on the 

importance of predictors have been addressed to some degree (VanDerWal et al., 

2009; Elith et al., 2010; Nyström Sandman et al., 2013; Bucklin et al., 2015) the 

impact of these and other aspects of SDM have not been studied on a global scale. 

In this study, we created the Marine SPEcies with Environmental Data 

(MarineSPEED) dataset. This benchmark dataset, containing distribution records 

belonging to 514 well-studied taxa with a broad taxonomic, climatologic and 

geographic diversity, is used to investigate marine predictor relevance under an 

array of modelling parameters and algorithms. With this, we aim to answer two 

questions: (1) what are the most relevant predictors of marine species distributions 

and (2) which part of the SDM process impacts the relevance of predictors the most. 

Additionally, this study aims to promote the usage of benchmark datasets in 

methodological SDM studies as this allows for reproducible and comparable results. 

Methods 

Species data 
For the marine species benchmark dataset we selected species from an array of 

taxonomic groups, climatological preferences and distribution patterns. We aimed 

to include species that are well-studied in terms of their distribution and that often 

would classify as iconic species. For a species to be considered we required the 

availability of at least 100 distribution records in public databases. 

Species distribution records were collected from the Ocean Biogeographic 

Information System (OBIS; iobis.org, accessed February 2016), from the Global 

Biodiversity Information Facility (GBIF; gbif.org, accessed January 2016), the Reef 

Life Survey (RLS; reeflifesurvey.com, accessed February 2016) and for a few species 

via personal communications. For downloading the records from OBIS and GBIF the 

R (R Core Team, 2016) clients robis (Provoost et al., 2016) and rgbif (Chamberlain et 

http://iobis.org/
http://gbif.org/
http://reeflifesurvey.com/
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al., 2016a) were used, respectively. A list of data sources is found in Appendix S1 in 

Supporting information. The distribution records were subsequently filtered until 

only one record remained in each cell of an equal-area grid with a per cell area of 25 

square kilometres. This step eliminates duplicated records from different data 

sources and limits the number of records from repeated sampling events in the 

same area. We also removed records located within the land mask of the 

environmental data. Finally the distributions for all species were visually inspected 

and cross-checked with available distribution information in order to eliminate 

erroneous records. The amount of sample selection bias was assessed by visually 

comparing the spread of the occurrence records with the distribution range of the 

species and attributing a score ranging from 1 (low bias) to 5 (high bias). 

We collected for each species taxonomic and functional group information from the 

World Register of Marine Species (WoRMS Editorial Board, 2016). The ‘functional 

group’ trait divides species into three groups reflecting their habitat: benthos, 

nekton and plankton (zooplankton and phytoplankton). For species lacking trait data 

in WoRMS, this information was derived from FishBase (Froese et al., 2017) and 

SeaLifeBase (Palomares et al., 2017) whereby all seafloor associated species were 

classified as benthos (i.e. sessile, reef-associated or demersal species), other free 

swimming species as nekton and drifting species as plankton. Additionally, we 

identified the latitudinal zones (‘polar’, ‘temperate’, ‘tropical’) for each distribution 

range. To do this, we checked for the presence of at least five per cent of all 

occurrence records of a species in each latitudinal zone of the marine ecoregions 

classification by Spalding et al. (2007). Lastly, species were categorized as oceanic if 

more than five per cent of their records are located outside the marine ecoregions. 

Else, species were considered as neritic. 

Environmental data 
The distribution records in the MarineSPEED dataset were linked to all 71 monthly 

and annual environmental variables for the current climate available from Bio-

ORACLE (Tyberghein et al., 2012) and MARSPEC (Sbrocco & Barber, 2013) with a 

spatial resolution of 5 arcmin using the R package sdmpredictors (Bosch et al., 2016). 

This environmental data includes variations of sea surface temperature, salinity, 

bathymetry, nutrients and other predictors of marine species distributions. 

Background data 
Most presence-only SDM methods use background or pseudo-absence points for 

building models (Franklin, 2009). In order to facilitate the reproducibility of different 

studies using MarineSPEED we included a set of 20.000 randomly sampled 

background points in the benchmark dataset. We also created a second set of 

target-group background points by randomly sampling 20.000 points from the full 
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set of distribution records. The latter show the same bias as the occurrence records 

and therefore can be used to mitigate the effect of sample selection bias on 

presence-only species distribution models (Phillips et al., 2009; Kramer-Schadt et al., 

2013; Syfert et al., 2013). 

Cross-validation splits 
Cross-validation (CV) is a widespread strategy used to perform model selection while 

avoiding under- and overfitting models (Arlot & Celisse, 2010). We prepared CV folds 

for the species and background data using three different strategies. As a first 

strategy we partitioned the data randomly in five folds (random CV). This strategy is 

easy to perform but has as disadvantage that it results in an overestimated 

performance of the model because training and validation points selected from 

nearby locations will be dependent due to the effect of spatial autocorrelation (Bahn 

& McGill, 2007; Hijmans, 2012; Roberts et al., 2016). As CV only avoids overfitting 

when training samples are independent from the validation samples this generally 

leads to the selection of complex models with poor transferability (Arlot & Celisse, 

2010; Verbruggen et al., 2013; Petitpierre et al., 2017). The second (disc-based CV) 

and third (grid-based CV) splitting strategies take into account the spatial nature of 

the data. The 5-fold disc-based strategy randomly samples a starting point and 

subsequently selects the nearest one fifth of all distribution records to get the first 

fold. Then the distribution record furthest away from the starting point is used as a 

new starting point and the nearest one fifth of the distribution records are included 

to create the second fold. This process is repeated five times until all records are 

assigned to a fold. For the 4-fold grid-based strategy records are split into two sets 

based on their longitude using a random meridian as a dividing line. Then these two 

halves are separately split in two equal parts using parallels. Additionally, 9-fold grid-

based sets were created by using two meridians and parallels for splitting instead of 

one. By combining the disc- or grid-based CV strategies with the pairwise distance 

sampling method proposed by Hijmans (2012) to select the pseudo-absence points 

for the test set spatial sorting bias was eliminated and thus the effect of spatial 

autocorrelation on the performance evaluation supressed (Bahn & McGill, 2007; 

Roberts et al., 2016). In order to remove false negatives in the training sets of the 

spatial cross-validation sets we excluded background points from the training sets 

that are within 200 km of test occurrences. 

Predictor relevance 
In order to find out which predictors are most relevant for the set of species in 

MarineSPEED we ranked distribution models fitted for all combinations of predictors 

from multiple correlation groups. In addition, we added variation at the different 

steps of the model creation to assess the variability in predictor relevance under 

different model setups (Fig. 1). 
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Following the methodology from Barbet-Massin & Jetz (2014), who identified 

relevant predictors of bird distributions, distributions were modelled for all 

combinations of three, four and seven environmental predictors selected from eight 

correlation groups. After filtering the initial set of 68 predictors down to 19 

predictors based on a Pearson product moment correlation coefficient larger than 

0.95 we created correlation groups with the R package sdmpredictors by grouping all 

predictors for which some or all of the predictors have an absolute Pearson product 

moment correlation coefficient larger than 0.7 (Dormann et al., 2013; Barbet-Massin 

& Jetz, 2014). This resulted in 8 correlation groups of which 6 predictors form a 

group on their own (shore distance, bathymetry, SST (range), calcite, salinity, pH), 7 

predictors belong to the “Chlorophyll a group”, grouping chlorophyll a and diffuse 

attenuation (mean, minimum, maximum and/or range) related variables. The last 6 

predictors form the “SST group” with variations of sea surface temperature (SST), 

photosynthetically active radiation (PAR), phosphate, nitrate and silicate. For a full 

overview of the different environmental predictors used and the correlation group 

they belong to we refer to Fig. 2 and to Table S1 in Appendix S3. 

 
Figure 1. Overview of the predictor selection analysis and the different steps where variations were 

introduced. Starting from 19 environmental predictors, from Bio-ORACLE and MARSPEC, correlation 

groups where created. From this all possible predictor combinations were generated for models with 

three, four and seven predictors. After optional sample selection bias mitigation, occurrence records 

and background points were split in random or spatial cross-validation folds. SDMs were build using 

four algorithms (random forests, MaxEnt, generalized linear models and Bioclim) and evaluated using 

the area under the curve of the receiver operating characteristic (AUC) and the point-biserial 

correlation (COR). Predictors were ranked based on the performance of the models they were included 

in. 
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Figure 2. Correlation matrix for all environmental predictors considered for the predictor selection 

analysis, sorted by correlation group. Note that for creating the correlation groups, predictors are 

grouped when the absolute correlations between two or more members of a correlation group is more 

than 0.70. Red indicates a high positive correlation, yellow no correlation and blue a high negative 

correlation. 

SDMs were fitted using four commonly used algorithms: Bioclim (Booth et al., 2014), 

Generalized Linear Model (GLM), Maximum Entropy modelling (Maxent, Phillips et 

al. 2004) and Random Forests (RF, Breiman 2001). We used the dismo package 

(Hijmans et al., 2016) in R for fitting Bioclim and MaxEnt models and the R package 

randomForest (Liaw & Wiener, 2002). For all algorithms the default settings were 

used and GLMs were run with only linear features. 

Three variations of sample selection bias correction were performed: 1) no 

correction, 2) spatial thinning (50 km) with the R package spThin (Aiello-Lammens et 

al., 2015) and a target-group background (Phillips et al., 2009). Performance of the 

models was evaluated using random as well as spatial disc-based cross-validation. In 

total six million models were fitted and evaluated using the area under the receiver 

operating characteristics (ROC) curve (AUC) (Hanley & McNeil, 1982), and the point-

biserial correlation (COR) (Zheng & Agresti, 2000; Elith et al., 2006) on the UGent 

High Performance Cluster. 

Predictors where ranked for each model setup, evaluation metric and species 

combination by ranking the mean or median performance of all models a predictor 

was used in and by using the Rank Centrality algorithm (Negahban et al., 2017). Rank 
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Centrality is an iterative algorithm for rank aggregation using pairwise-wise 

comparisons. 

Results 

Benchmark data set 
The MarineSPEED benchmark dataset is composed of 514 species with an original 

total of two million distribution records which have been filtered down on a 25 km² 

grid to nearly nine hundred thousand records. On a species level the median number 

of filtered distribution records is 506 with a minimum of 52 and a maximum of 

45,469. An overview of the information on the species is available in Appendix S2. 

A total of 18 different phyla are included in MarineSPEED (Fig. 3), with as most 

represented phyla: Chordata (245 species), Mollusca (62 species), Echinodermata 

(38 species), Arthropoda (36 species) and Annelida (32 species). The phylum 

Chordata is mostly represented by the class Actinopterygii (184 species), and to a 

lesser extent Elasmobranchii (20 species) and Mammalia (18 species). Marine 

primary producers, various groups of algae and seagrasses, are represented by 49 

species from 5 phyla. When classifying species into functional groups we see that 

395 species are associated with the seafloor (benthos), while 87 species are free 

swimming (nekton) and 32 species are planktonic. While we aimed to select species 

from different parts of the world a bias towards a few well-researched areas (e.g. 

the North-Atlantic and Australia) was unavoidable (Fig. 4). Likewise, coastal areas 

(442 species) are overrepresented compared to open ocean habitats (72 species). 

On a latitudinal scale, temperate regions are the most represented with 173 species. 

91 species only occur in the tropics and 11 species in the polar regions. When 

considering the sample selection bias criterion we see that 59 species have a very 

low degree of sample selection bias (value 1), that most species have value 2 (103 

species), 3 (156 species) or 4 (178). Only 18 species were assessed as having a very 

high degree of sample selection bias. 

The predefined spatial cross-validation splits all considerably increase the distance 

between test points and their nearest training point as compared to random splits 

(Fig. S1 in Appendix S3). Examples of the various cross-validation strategies are 

visualised for Didemnum maculosum Milne Edwards and Polycarpa aurata Quoy & 

Gaimard in Fig. S2 and S3, respectively in Appendix S3. 
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Figure 3. Taxonomic composition of the MarineSPEED dataset on level kingdom, phylum or class. For 

the kingdom Animalia the most abundant phylum Chordata was split up into the Actinopterygii and 

other Chordata, the kingdom Plantae was left as one whole and labelled as algae and seagrasses. 

Numbers represent the number of species in each taxonomic group. 

 

Figure 4. Map of the number of species occurring in each cell of an equal-area grid with a per cell area 
of 25 km² (Behrmann cylindrical equal-area projection). 

Predictor relevance 
A first set of analyses exploring the selection of relevant predictors (Fig. 5), highlights 

the importance of mean sea surface temperature (SST (mean)) as the most relevant 

predictor of the species distributions in the MarineSPEED benchmark dataset. This 

result appears robust regardless of modelling algorithms, sample selection bias 

correction, cross-validation, number of predictors, evaluation metrics and ranking 
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methods. At the other end of the spectrum, calcite is apparently irrelevant as a 

predictor for most of the species distributions. As for the other predictors, however, 

there is substantial variation across species and modelling parameters. 

Among the different algorithms, GLMs with linear features caused the most 

variation in the predictor top 5 rankings with a particularly strong effect on SST 

(mean) with a minimal decrease of 28% in the median percentage of species with 

SST (mean) in the top 5 ranking (Table 1). Conversely in GLMs bathymetry was 

selected at least 26% more. The difference between the two evaluation metrics AUC 

and COR on the other hand was fairly limited with salinity displaying the largest 

difference. Finally the ranking method showed very small differences between the 

mean and median ranking algorithm. The rank centrality algorithm consistently 

ranked the predictors from the “Chlorophyll a group” as less relevant, while 

increasing the ranking of salinity (+16%) bathymetry (+15%), pH (+13%) and shore 

distance (+13%). 

 
Figure 5. Percentage of species a predictor has a top 5 ranking in the different model setups. In grey are 
the predictors that form a correlation group on their own, in green the predictors from the “Chlorophyll 
a group” and in red the predictors from the “SST group”. The results are aggregated from all possible 
variations. For a detailed view on the different dimensions of the variations we refer to tables 1 to 3, 
and to the following plots in Appendix S3: modelling algorithms (Fig. S4), evaluation metrics (Fig. S5), 
ranking methods (Fig. S6), cross-validation strategies (Fig. S7), predictor counts (Fig. S8), sampling bias 
mitigation methods (Fig. S9), cross-validation folds (Fig. S10) and taxonomic groups (Fig. S11). 
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When comparing the results of CV splitting strategies, number of predictors, 

sampling bias mitigation and fold number (Table 2), we can conclude that the 

number of predictors allowed in the model has the largest effect. Increasing the 

number of allowed predictors from 3 to 7 causes a decline in the relevance of 

bathymetry (-31%) and shore distance (-26%) while increasing the relevance of PAR 

(max) (+17%), diffuse attenuation (max) (+14%) and chlorophyll a (max and range) 

(+13%). The second largest effect is caused by using a target-group background in 

order to mitigate the effect of sampling bias on SDMs with a decrease of 25% for 

bathymetry and 15% for shore distance and an increase of 12% for nitrate. When 

using the disc-based CV strategy the relevance of SST (mean) and salinity decreased 

with 19 and 10%, respectively. Using the second fold instead of the first fold, which 

was only performed for the random CV strategy, only yielded small differences in the 

top 5 predictors of the species. 

While the relevance of most predictors, is similar across taxonomic groups, some 

predictors exhibit large differences (Table 3). This is especially the case for shore 

distance, bathymetry and SST (range) with differences between the minimum and 

maximum of 55, 40 and 33%, respectively. Despite these overall patterns in the 

median ranking values we see that the spread of the predictor relevance within 

taxonomic groups is large (Fig. S11). 

Table 4 presents the results related to the different traits of the species: functional 

group, neritic versus oceanic zone, ecoregion and sampling bias. Regarding the 

functional group some clear trends are visible whereby shore distance, bathymetry 

and to a lesser extent PAR (mean) are comparatively more relevant predictors for 

benthic species distributions, less relevant for nekton and least relevant for 

plankton. For mean and minimum diffuse attenuation we notice an inverse trend 

with a higher relevance for plankton in comparison to nekton and benthos. With 

respect to the zone trait we see that shore distance (-21%) and bathymetry (-14%) 

are less relevant for oceanic species, while phosphate (+15%), nitrate (+13%) and 

silicate (+15%) are more relevant. The results from the ecoregion trait show clear 

differences in predictor relevance for multiple predictors. For some predictors such 

as SST (range), nitrate and phosphate the relevance for temperate species clearly 

deviates from that for polar and tropical species. The predictor relevance for the 

different levels of sampling bias are all very similar. For boxplots of the relevance of 

the predictors for the different variations in model setup, taxonomic groups and 

traits we refer to Figs. S4 to S15 in Appendix S3. 
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Table 1. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for all models. First 
column shows the results for all models, the next four columns show the results for the different modelling algorithms, the next two columns show the breakdown 
for the evaluation metrics used. The last three columns show the results for the ranking methods. 

 
  

Algorithm Metric Ranking method 

Group Predictor All Bioclim GLM MaxEnt RF AUC COR Centrality Mean Median 

  Shore distance 35 29 22 39 40 36 34 44 31 27 

  Bathymetry 39 45 71 36 19 40 37 52 37 33 

  SST (range) 19 14 24 19 18 18 19 26 16 16 

  Salinity 23 16 15 25 37 18 26 33 17 16 

  Calcite 4 4 5 3 3 3 4 6 2 3 

  pH 18 8 24 14 23 17 18 26 12 13 

Chlorophyll a 

group 

Chlorophyll a (mean) 14 18 8 14 17 15 13 9 16 18 

Chlorophyll a (min) 18 22 4 21 21 17 18 6 22 22 

Chlorophyll a (max) 9 15 6 11 15 10 9 5 17 19 

Chlorophyll a (range) 8 11 7 9 13 8 9 3 13 15 

Diffuse attenuation (mean) 25 21 44 24 24 23 26 10 27 27 

Diffuse attenuation (min) 24 22 30 22 21 22 23 9 25 25 

Diffuse attenuation (max) 19 12 37 10 16 18 19 7 23 23 

SST Group 

SST (mean) 80 79 51 89 86 79 78 79 79 78 

PAR (mean) 48 53 49 48 41 46 49 51 46 46 

PAR (max) 23 22 30 20 15 20 24 26 17 22 

Phosphate 28 32 23 27 32 29 27 33 26 26 

Nitrate 39 41 31 41 44 41 33 41 38 37 

Silicate 32 27 29 32 36 32 31 36 29 31 
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Table 2. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for a subset of the 
models. In this table only results from setups that have been done for both options are shown. First column shows the results for all models, followed by the 
results for the 5-fold random and disc-based spatial cross-validation splitting strategies, the breakdown for the number of predictors used in the models, the 
impact of sampling bias mitigation techniques and the results for the first and the second fold. 

 
 

  CV splitting strategy Predictor count Sampling bias mitigation Fold number 

Group Predictor All Disc Random 3 4 7 None spThin Target-group 1 2 

  Shore distance 35 35 30 56 55 30 30 27 12 30 35 

  Bathymetry 39 42 34 65 62 34 34 33 8 34 37 

  SST (range) 19 15 21 19 24 21 21 18 18 21 11 

  Salinity 23 13 23 22 28 23 23 23 28 23 20 

  Calcite 4 9 3 3 3 3 3 3 2 3 3 

  pH 18 11 17 17 17 17 17 16 27 17 16 

Chlorophyll a group 

Chlorophyll a (mean) 14 15 18 12 12 18 18 15 22 18 19 

Chlorophyll a (min) 18 21 17 18 15 17 17 19 16 17 17 

Chlorophyll a (max) 9 16 16 3 4 16 16 17 19 16 14 

Chlorophyll a (range) 8 17 15 2 4 15 15 15 14 15 12 

Diffuse attenuation (mean) 25 18 26 24 24 26 26 26 28 26 27 

Diffuse attenuation (min) 24 24 24 25 21 24 24 25 19 24 24 

Diffuse attenuation (max) 19 18 20 6 8 20 20 21 25 20 22 

SST Group 

SST (mean) 80 59 78 85 84 78 78 80 85 78 76 

PAR (mean) 48 46 50 37 47 50 50 51 59 50 49 

PAR (max) 23 34 25 8 12 25 25 25 25 25 23 

Phosphate 28 32 26 28 27 26 26 27 28 26 30 

Nitrate 39 36 33 42 38 33 33 34 46 33 44 

Silicate 32 36 35 29 29 35 35 32 29 35 29 
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Table 3. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for all models and for 
some taxonomic groups. Within the class Chordata and within the kingdom Animalia taxonomic groups with few species were left out of this comparison. 

   
Chordata Other Animalia Plantae 

Group Predictor All Actinopterygii Annelida Arthropoda Cnidaria Echinodermata Mollusca Algae and seagrasses 

  Shore distance 35 42 16 11 66 32 29 44 

  Bathymetry 39 49 42 33 54 51 31 14 

  SST (range) 19 14 42 36 9 13 19 14 

  Salinity 23 18 16 19 11 21 25 31 

  Calcite 4 2 3 6 3 8 3 4 

  pH 18 19 6 11 11 13 21 18 

Chlorophyll 

a group 

Chlorophyll a (mean) 14 11 9 17 9 16 15 18 

Chlorophyll a (min) 18 15 16 19 9 16 15 20 

Chlorophyll a (max) 9 9 5 11 6 13 10 10 

Chlorophyll a (range) 8 8 3 8 6 11 10 8 

Diffuse attenuation (mean) 25 17 31 33 11 18 27 35 

Diffuse attenuation (min) 24 17 31 25 9 21 23 29 

Diffuse attenuation (max) 19 19 9 17 14 21 18 18 

SST Group 

SST (mean) 80 81 81 72 83 71 69 76 

PAR (mean) 48 52 41 42 57 45 47 33 

PAR (max) 23 18 28 33 9 21 24 18 

Phosphate 28 29 19 33 29 26 26 23 

Nitrate 39 43 22 36 47 34 35 24 

Silicate 32 25 41 36 14 29 35 39 
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Table 4. Median percentage of species for which a predictor has a top 5 ranking for the different setup variations that have been calculated for all 
models and traits. For the functional group trait, benthos includes all seafloor associated species, including demersal and reef-associated species; 
nekton includes all actively swimming pelagic species and plankton are all species unable to swim against a current. The neritic and oceanic zones 
were defined based on the ecoregion classification by Spalding (2007) whereby species having 5% or more of their distribution records outside of 
ecoregions are classified as oceanic. Species are a member of an ecoregion when at least 5% of its distribution records are situated in a polar, 
temperate or tropical ecoregion. Sampling bias was visually assessed from 1 (low bias) to 5 (high bias). 
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  Shore distance 35 39 24 13 38 17 13 25 49 29 28 42 35 28 

  Bathymetry 39 44 26 13 40 26 39 25 60 22 30 47 44 22 

  SST (range) 19 17 22 28 19 19 13 28 5 19 28 15 18 17 

  Salinity 23 20 24 22 22 18 26 27 14 31 28 17 17 28 

  Calcite 4 3 2 3 3 1 0 3 2 5 4 3 3 6 

  pH 18 17 17 6 19 7 4 18 14 26 22 13 13 14 

Chlorophyll a group 

Chlorophyll (mean) 14 12 16 19 13 17 17 17 10 14 14 13 13 17 

Chlorophyll (min) 18 16 19 17 17 17 13 20 11 20 20 14 15 22 

Chlorophyll (max) 9 8 11 9 9 10 4 10 8 12 9 8 10 11 

Chlorophyll (range) 8 8 8 9 8 10 4 8 8 10 8 7 8 11 

Diffuse attenuation (mean) 25 22 30 44 24 25 30 33 12 24 28 21 24 28 

Diffuse attenuation (min) 24 21 27 34 23 24 22 31 10 24 24 21 22 22 

Diffuse attenuation (max) 19 18 16 16 19 15 13 16 20 17 15 19 19 22 

SST Group 

SST (mean) 80 79 77 78 79 77 74 74 86 63 74 85 81 72 

PAR (mean) 48 49 45 34 48 44 26 42 56 42 46 53 46 42 

PAR (max) 23 21 29 19 22 19 17 25 14 25 26 19 20 22 

Phosphate 28 27 25 34 25 40 48 21 34 25 22 29 29 33 

Nitrate 39 39 33 31 36 49 57 27 49 30 28 41 43 28 

Silicate 32 28 39 41 28 43 52 38 16 37 36 23 31 33 
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Data access 
While distribution maps for all species can be consulted and all data is downloadable 

in an R Shiny interface (Chang et al., 2016) at <http://marinespeed.org>, we opted to 

also create the marinespeed R package allowing for an easy usage of the data (Table 

4). The first step, after installation from CRAN and loading the library, is to run the 

function ‘list_species’ which returns the scientific names and WoRMS identifiers for 

all species. Additional information on the taxonomy, sampling bias estimate and 

latitudinal zones can be viewed using the ‘species_info’ function. In order to run a 

function for all species either the ‘lapply_species’ or the ‘lapply_species_kfold’ 

function can be used. Alternatively, if you only need data for specific species, the 

‘get_occurrences’ and ‘get_fold_data’ methods can be used. On top of this other 

lower level functions for loading background data and creating cross-validation splits 

are also available. 

Table 4. Overview of the most important functions in the marinespeed R package. Lower level functions 
for accessing occurrences, background data and creating cross-validation folds are also available. 

Function Description 

list_species Get the list of scientific names and WoRMS identifiers for all 

species. 

species_info Additional species information. 

lapply_species Execute a function for all distribution records for multiple 

species. 

lapply_kfold_species Execute a function for one or more pre-made CV folds for 

multiple species. 

Discussion 
Species distribution modelling is widely used to identify areas that are ecologically 

suitable for the presence of species under past, current and future climates. Most 

studies concentrate, however, on terrestrial environments, while marine species 

distribution modelling kicked off comparatively late (Robinson et al., 2011). A direct 

consequence of the relative scarcity of marine SDM studies is that most of the 

methodological progress in SDM is biased towards terrestrial studies, despite marine 

environments being significantly different with respect to the ecological factors that 

control distributions and their spatio-temporal variation. These differences raise 

questions with respect to the environmental predictor relevance and the effects of 

model algorithms and settings on predictor relevance. By fitting presence-only SDMs 

for all combinations of predictors from different correlation groups, we assessed the 

http://marinespeed.org/
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predictor relevance and the variation therein for marine species distributions. To this 

end, we created a benchmark dataset (MarineSPEED) which bundles marine species 

distributions of 514 taxa and associated environmental variables. 

Relevant predictors 
SST (mean) is the most relevant predictor of global marine species distributions, 

regardless of model algorithms and parameter settings. This result confirms the 

importance of temperature for species distributions identified in the meta-analysis 

by Bradie & Leung (2016) and its importance for the distribution of birds (Barbet-

Massin & Jetz, 2014). Moreover the importance of SST as a predictor in marine 

ecology was previously confirmed for marine species richness (Tittensor et al., 2010) 

and biogeographic structure of marine benthic fauna (Belanger et al., 2012). While 

bathymetry and shore distance also appear to be very relevant, there is considerable 

variance in the results, which might be because they are distal environmental 

predictors (Austin, 2002). In contrast to previous results (Nyström Sandman et al., 

2013; Bradie & Leung, 2016) bathymetry was not the most important predictor, 

which can be explained by the global scale of our study. The importance of 

bathymetry has been shown to decrease with increased geographical scale (Nyström 

Sandman et al., 2013). Moreover the relevance of bathymetry is strongly linked to 

the species taxonomy (see Table 3 and 4 and Fig. S11-S14). At the other end of the 

spectrum, calcite is rarely selected as a meaningful predictor. The irrelevance of 

calcite is consistent with the fact that only one study in the meta-analysis by Bradie 

& Leung (2016) used calcite as a predictor. The remaining predictors are on average 

less part of the best scoring models, reflecting an overall reduced relevance toward 

predicting species distributions. 

Despite this general trend the variance in predictor relevance is relatively high across 

model algorithms and settings. 

The high variance when using different modelling algorithms is consistent with the 

results by Bucklin et al. (2015) who also demonstrated a significant interaction 

between predictor set and modelling algorithm. Especially predictor selection under 

GLM deviates from the other algorithms. Linear GLM-based models do not capture 

the relevance of SST (mean) very well. The lower relevance of SST in GLM models 

indicates that the global distribution of marine species is inadequately modelled by a 

linear relationship. Potentially, this effect can be mitigated by including polynomial 

features, an option which was not explored in the current analyses. In MaxEnt, with 

automatic selection of feature complexity and therefore yielding complex models, 

the relevance of SST (mean) is consistently high and displaying hardly any variation. 
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We expect that decreasing the complexity of the features fitted by MaxEnt will result 

in models more similar to GLM-based models. As for the other three algorithms, 

predictor selection seems to be largely consistent, echoing results of Barbet-Massin 

& Jetz (2014). 

We also compared the predictor relevance under two different evaluation measures, 

AUC and COR, respectively. Although AUC, as an absolute measure for model 

performance, has been criticized earlier (Lobo et al., 2010) its use is warranted here 

as we only compared relative AUC values and only modelled in a fixed geographical 

extent. Both AUC, which measures the ability to discern presences from background 

data, and COR, which provides a measure for the calibration of the model showed 

very similar predictor rankings. This similarity is indicative for the generalizability of 

the results across model evaluation metrics. 

Likewise, for most predictors the ranking method used did not affect the predictor 

relevance. The rank centrality method consistently gave a lower ranking to all 

predictors from the “Chlorophyll a group”. As ranking from pairwise comparisons is 

an active research field, a future study comparing the rank centrality algorithm with 

other recent ranking methods such as spectral ranking (Fogel et al., 2016), sync rank 

(Cucuringu, 2016) and Microsoft’s TrueSkill method (Herbrich et al., 2006) could lead 

to additional insights on the impact of the ranking algorithm on the predictor 

relevance. 

The impact of cross-validation strategies was assessed by using spatial disc-based 

and random sampling of training and testing sets. Using a spatial instead of a 

random data splitting strategy in combination with the removal of spatial sorting 

bias resulted in a lower relevance of SST (mean). This can be attributed to two 

different factors: (1) extrapolation and (2) scale effects. Firstly, the spatial data splits 

sometimes causes a restriction in the predictor space, which leads to extrapolation 

(Roberts et al., 2016). With SST being in general the most relevant, extrapolation 

outside of its range will lead to low evaluation scores and therefore a lower ranking. 

On the other hand, due to the pairwise selection of test pseudo-absences at a similar 

distance to the test points as the distance between the test points and their nearest 

training point, the mean distance to evaluation background points decreases causing 

a scale effect. These results confirm that SST is especially relevant on a global scale 

but less so on a smaller scale (Nyström Sandman et al., 2013). 

Restricting the number of predictors included in a model directly influences the 

relevance of the predictors. For most marine species the relevance of bathymetry 

and shore distance diminishes when more predictors are included in the model. 
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These predictors are only distally related to the suitability of an environment for 

species distributions and therefore the potential choice of more proximate 

predictors will result in their lower relevance in predictor-rich models. Inversely 

predictors from the “Chlorophyll a group” are selected more, suggesting that if 

combined with some of the predictors from the other correlation groups they 

provide a better explanation of the species distribution then bathymetry and shore 

distance do. 

Unlike the effect of spatial thinning, using a target-group background resulted in 

large differences in predictor relevance. As most of the species occurrence records 

are located along the coast, the target-group background, which is a subsample of it, 

is expected to have the same bias resulting in a lower relevance of shore distance 

and bathymetry. These results confirm the importance of background selection on 

SDMs (Chefaoui & Lobo 2008; Phillips et al. 2009; VanDerWal et al. 2009; Barbet-

Massin et al. 2012; Acevedo et al. 2012; Smith 2013; Senay et al. 2013). It is 

therefore recommended to investigate the impact of alternative pseudo-absence 

selection methods in future studies. Note that in general it is advised to create a 

species specific target-group with occurrence records from the same sampling 

campaign(s) and/or from similar species, reflecting the sampling bias of the species 

modelled (Phillips et al., 2009). 

In this study we explored the impact of several parameter settings on predictor 

selection, however the potential analyses are by no means exhaustive. For example 

the regularisation parameter and the complexity of the features in MaxEnt, the 

number of trees fitted in random forests and the usage of polynomial features in 

GLM were kept constant or were not explored. It is likely that applying species-

specific tuning of the algorithms will not only impact model performance but also 

affect the predictor selection (Anderson & Gonzalez, 2011; Merow et al., 2014). 

From a species perspective we noted that the taxonomy and the traits of a species 

have an influence on the relevance of predictors. The overarching pattern of 

predictor relevance holds up across traits, but some marked differences in predictor 

relevance were found for shore distance and bathymetry and to a lesser extent for 

diffuse attenuation, phosphate, nitrate and silicate. To some extent these 

differences are intuitive. For example, subdividing the taxa between oceanic and 

neritic species results in a higher relevance of shore distance for neritic species. 

Likewise, SST range is less relevant for tropical and polar species, because low and 

high latitudes typically exhibit very little annual sea surface temperature fluctuations 
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compared to mid-latitudes. Despite some pronounced differences across traits, 

trends for inorganic nutrients (nitrate, phosphate, silicate) are less easily explained. 

Benchmark dataset 
Inspired by the widespread use of benchmark datasets in machine learning and 

other computational fields we set out to create MarineSPEED. Although a series of 

papers was published using the same set of 226 terrestrial species (e.g. Elith et al. 

2006; Guisan et al. 2007; Phillips et al. 2009; Hijmans 2012) most studies discussing 

new methods related to SDM use a small set of different species. Moreover while 

the resulting algorithm and methods are regularly made available through ready to 

use R packages or desktop programs, the species distribution records used in these 

studies often are not. With the release of MarineSPEED and its associated R package 

researchers can download all occurrences, background records and cross-validation 

data sets. 

The marine character of the dataset is ideally suited for the study of methodological 

issues and parameterizations for distribution modelling of non-terrestrial species. 

This is necessary as the marine environment poses its own challenges for SDM 

(Kaschner et al., 2006; MacLeod et al., 2008; Dambach & Rödder, 2011; Robinson et 

al., 2011; Bentlage et al., 2013). Species distribution records from public databases 

contain a combination of opportunistic records and systematic sampling campaigns. 

They show large biases in amount and location of occurrences where the coastal 

areas are often more intensely sampled than offshore areas. The lower detectability 

of marine species in combination with the wide extent of the marine environment 

leads to false absences and a general lack of distribution records in comparison to 

the real world range extent of marine species. MacLeod et al. (2008) found that in 

contrast to the terrestrial environment, presence-absence methods don't perform 

better than presence-only methods in the marine environment. Although absences 

are rarely reported for marine species and not included in MarineSPEED, this study 

could be confirmed by using estimated absence data for species included in 

systematic surveys in OBIS (Coro et al. 2016). 

Applications 
Combining the marinespeed R package with one of the numerous SDM packages like 

BIOMOD2, dismo, sdm or zoon, other machine learning packages like caret, gbm, 

randomForest or xgboost and the general R ecosystem allows for numerous 

applications. 
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While several papers have compared the performance of SDM algorithms (e.g. Elith 

et al. 2006; Tsoar et al. 2007; Meynard & Quinn 2007; Liu et al. 2011; Lorena et al. 

2011), new SDM modelling algorithms are regularly released (e.g. MaxLike (Royle et 

al., 2012), Plateau (Brewer et al., 2016), GRaF (Golding & Purse, 2016)). Consistent 

usage of MarineSPEED to explore the performance of modelling algorithms would 

allow for a direct comparison of the strengths and weaknesses of them. On top of 

this, SDM algorithms benefit from species-specific parameter settings (Anderson & 

Gonzalez, 2011; Merow et al., 2013; Shcheglovitova & Anderson, 2013) but useful 

ranges for the different parameters are unknown for these newer modelling 

algorithms. 

Over the years, numerous studies have been published on methods for correcting 

sample selection bias (e.g. Dudík et al. 2005; Phillips et al. 2009; Boria et al. 2014; 

Varela et al. 2014; Barnes et al. 2014; Fernández & Nakamura 2015; Aiello-Lammens 

et al. 2015; Ranc et al. 2016) and selecting pseudo-absence records (e.g. Wisz & 

Guisan 2009; Lobo & Tognelli 2011; Barbet-Massin et al. 2012; Acevedo et al. 2012; 

Senay et al. 2013; Assis et al. 2015). Comparing these techniques with MarineSPEED 

can result in guidelines for sampling bias mitigation and pseudo-absence selection in 

the marine environment. 

Next to the availability of marine species with environmental data and traits we 

expect that the marinespeed R package, with its implementation of cross-validation 

methods, to be a useful tool for SDM. Installation instructions, data downloads and 

species information can be found at <http://marinespeed.org/>. 
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Supporting information 

Appendix S1 
List of OBIS and GBIF datasets used for compiling MarineSPEED. Available at: 

http://www.phycology.ugent.be/research/marinespeed/MS_AppendixS1.docx. 

Appendix S2 
List of species included in MarineSPEED with their taxonomy, sampling bias, 

ecoregions and SST statistics. Available at: 

http://www.phycology.ugent.be/research/marinespeed/MS_AppendixS2.xlsx. 

Appendix S3 

Setup 
Table S1. Overview of the different predictors used in the predictor selection analysis. The first column 
is the layer code used by the sdmpredictors R package to identify a predictor, the second column is the 
dataset the predictor was found in, the description column gives a short description of the predictor 
and the correlation groups column gives an indication of the correlation group a predictor belongs to. 

Layer code Dataset Description Correlation group 

BO_chlomax Bio-ORACLE Chlorophyll a (maximum) Chlorophyll a group 
BO_chlomean Bio-ORACLE Chlorophyll a (mean) Chlorophyll a group 
BO_chlomin Bio-ORACLE Chlorophyll a (minimum) Chlorophyll a group 
BO_chlorange Bio-ORACLE Chlorophyll a (range) Chlorophyll a group 
BO_damax Bio-ORACLE Diffuse attenuation coefficient at 490 

nm (maximum) 
Chlorophyll a group 

BO_damean Bio-ORACLE Diffuse attenuation coefficient at 490 
nm (mean) 

Chlorophyll a group 

BO_damin Bio-ORACLE Diffuse attenuation coefficient at 490 
nm (minimum) 

Chlorophyll a group 

BO_nitrate Bio-ORACLE Nitrate SST group 
BO_parmax Bio-ORACLE Photosynthetically available radiation 

(maximum) 
SST group 

BO_parmean Bio-ORACLE Photosynthetically available radiation 
(mean) 

SST group 

BO_phosphate Bio-ORACLE Phosphate SST group 
BO_silicate Bio-ORACLE Silicate SST group 
BO_sstmean Bio-ORACLE Sea surface temperature (mean) SST group 
BO_calcite Bio-ORACLE Calcite Calcite 
BO_ph Bio-ORACLE pH pH 
BO_salinity Bio-ORACLE Salinity Salinity 
BO_sstrange Bio-ORACLE Sea surface temperature (range) SST range 
MS_bathy_5m MARSPEC Bathymetry Bathymetry group 
MS_biogeo05_dist_ 
shore_5m 

MARSPEC Distance to the shoreline Shore distance 
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Table S2. Overview of all different setups for which models have been fitted for all combinations of 
predictors. Models for all species where build for all combinations of 3, 4 or 7 predictors using the 
random or disc-based splitting strategy to create the cross-validation (CV) data and the first or second 
fold from the 5-fold random cross-validation dataset. The last variation in setups is whether any and 
which sample selection bias correction method is used. For each predictor count we get a different 
total number of predictor combinations resulting in the calculation of a different number of models as 
models where fitted for all 514 species using 4 different SDM algorithms (bioclim, GLM, MaxEnt and 
random forests). 

Predictor 
count 

CV splitting 
strategy 

Fold 
number 

Sampling bias 
mitigation 

Number of 
combinations 

Number of 
models 

3 Random 1 None 467 960,152 

4 Random 1 None 905 1860,680 

7 Disc-based 1 None 265 544,840 

7 Random 1 None 265 544,840 

7 Random 2 None 265 544,840 

7 Random 1 spThin 265 544,840 

7 Random 1 Targetgroup 265 544,840 

Cross-validation splits 

 

Figure S1. Density plot for the distance, on a log scale, between each test point and the nearest training 
occurrence for all folds of the four cross-validation splitting strategies with the 5-fold disc-based 
strategy in orange, the 4-fold grid-based strategy in green, the 9-fold grid-based strategy in blue and 
the 5-fold random strategy in purple.  
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Figure S2. The cross-validation (CV) splits for the species Didemnum maculosum Milne Edwards using 
different methods: 5-fold random (A), 5-fold disc-based (B), 4-fold grid-based (C) and 9-fold grid-based 
(D). The different folds are numbered and coloured in the map (red=1, blue=2, brown=3, purple=4, 
green=5, grey=6, orange=7, yellow=8 and pink=9).  
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Figure S3. The cross-validation (CV) splits for the species Polycarpa aurata Quoy & Gaimard using 
different methods: 5-fold random (A), 5-fold disc-based (B), 4-fold grid-based (C) and 9-fold grid-based 
(D). The different folds are numbered and coloured in the map (red=1, blue=2, brown=3, purple=4, 
green=5, grey=6, orange=7, yellow=8 and pink=9).  
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Predictor relevance boxplots 

 
Figure S4. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different algorithms: bioclim (red), GLM (green), MaxEnt (blue) and random forests (purple). 

 
Figure S5. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
two evaluation metrics: area under the receiver operating characteristic curve (AUC, red) and the point-
biserial correlation (COR, blue). 
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Figure S6. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
three ranking methods: rank centrality (red), rank mean (green) and rank median (blue). 

 
Figure S7. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
two cross-validation (CV) strategies: disc-based CV (red) and random CV (blue). Note that only results 
for model setups that were run for both CV strategies are shown here. 
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Figure S8. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different number of predictor counts: 3 (red), 4 (green), 7 (blue). Note that only results for model 
setups that were run for all three predictor counts are shown here. 

 
Figure S9. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different sampling bias mitigation methods: nothing (red), spatial thinning (spThin, green) and 
targetgroup background (blue). Note that only results for model setups that were run for all sampling 
bias mitigation methods are shown here. 
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Figure S10. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
two explored folds: 1 (red) and 2 (blue). Note that only results for model setups that were run for both 
folds are shown here. 
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Figure S11. Percentage of species a predictor has a top 5 ranking in the different model setups for a selection of common taxonomic groups: Actinopterygii (red), 

algae and seagrasses (brown), Annelida (green), Arthropoda (cyan), Cnidaria (blue), Echinodermata (purple) and Mollusca (pink). 
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Figure S12. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different functional groups: benthos (red), nekton (green) and plankton (blue). 

 

Figure S13. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different zones: neritic (red) and oceanic (blue). 
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Figure S14. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different ecoregions: polar (red), temperate (green) and tropical (blue). 

 

Figure S15. Percentage of species a predictor has a top 5 ranking in the different model setups for the 
different levels of sampling bias: 1 (low bias, red), 2 (brown), 3 (green), 4 (blue) and 5 (high bias, 
purple). 
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Abstract 
Introductions of non-native species are a serious source of concern. A study on 

human-mediated transport of species demonstrated that rates of introductions have 

increased globally over the past centuries and averaged out over taxonomic groups 

there is no sign of saturation. Using seaweeds as a model group for the marine 

environment, a quantitative assessment of the temporal dynamics of primary and 

secondary introductions of seaweeds show that the rate of nonindigenous species 

being reported for the first time in European waters started declining since the 

beginning of the 1990’s. To investigate whether this trend reflects a decline in the 

number of species being introduced or whether the discovery rate has declined 

because of factors other than the introduction rate, we analyzed trends in the 

literature of introduced seaweed species. Contrary to the rate of newly introduced 

species, the rate of the total number of records remained constant since 1990, with 

115-120 records being recorded annually. The number of papers and authors 

increased spectacularly from 1970 to 2000 but shows a decrease from then onward. 

The combination of trends is interpreted as a decline in the rate new are yearly being 

introduced. Classifying introduced species according to geographical origin, the 

decline is mainly attributable to lower numbers of nonindigenous species with a NW 

Pacific origin being recorded from Europe, while the discovery rates of Lessepsian 

species or species native to Australasia has remained constant over the years. Given 

that livestock transfer of shellfish is the principal vector for the introduction of NW 

Pacific species, it appears that the increased awareness of authorities and 

stakeholders, and the implementation of policies dedicated to the prevention of 

introductions, reduce, but not prevent, the introduction of nonindigenous species. 
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Introduction 
Over the last centuries thousands of species have dispersed outward from their native 

regions through human-mediated transport and have established populations in 

distant parts of the globe (Williams & Smith, 2007; Molnar et al., 2008). Many of 

these organisms have profoundly affected the abundance and diversity of native biota 

in the regions they have invaded (Vilà et al., 2010; Gallardo et al., 2016a), and in some 

cases they have had substantial economic impacts (Lovell et al., 2006; Holmes et al., 

2009). A global analysis of temporal dynamics of species introductions by Seebens et 

al. (2017) demonstrated that the rate of introductions has significantly increased over 

the past centuries. Furthermore, over all taxonomic groups there are no signs of 

saturation and for most taxa the rate of introductions is still increasing. This trend has 

been linked to intensified global trade and transport (Seebens et al., 2013). 

Because of differences in relative importance of the vectors for different groups of 

organisms in marine and terrestrial ecosystems, examining spatial and temporal 

patterns of specific taxonomic groups can inform policy makers about the 

effectiveness of targeted measures taken to mitigate the influx of nonindigenous 

species. 

Here we present data on the patterns of marine species introductions and their 

spread at a European scale, using seaweeds as a model group for this assessment on 

marine environment. Representing one of the largest groups of marine aliens, 

constituting between 20 and 29% of all marine introduced species in Europe 

(Schaffelke et al., 2006), seaweeds are particularly fit for the purpose. Furthermore, 

they are attached and non-motile, reducing sampling errors caused by individual 

movement of target organisms. In addition, they comprise representatives of three 

major phyla, which, though widely divergent phylogenetically, have a series of 

convergent functional forms. In coastal systems, particularly on rocky shores, 

seaweeds are the dominant primary producers, playing a central structural and 

functional role in several habitats ranging from turfs to kelp forests (Mineur et al. 

2015). Large-scale substitution of dominant native seaweeds with alien species may 

alter coastal productivity and food web structure, and therefore impact ecosystem 

services. Impact studies on invasive seaweeds have been carried out worldwide, and 

these have detected a range of ecological effects, mostly highlighting reduction in 

abundance of native biota (Williams & Smith, 2007). Maritime traffic and livestock 

transfer in aquaculture, in particular oyster cultivation, are usually regarded as the 

main vectors for primary introductions of alien seaweeds to Europe (Wallentinus, 

2002; Mineur et al., 2012, 2015). A fragmented and to some extent incoherent policy 
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set up at EU and national levels, should prevent or limit introductions of marine 

organisms in European waters (Mineur et al. 2014). Directly relevant, although 

originally implemented only to mitigate the spread of diseases, are regulations of 

shellfish transfer within Europe and restrictions on the import of livestock from 

outside of Europe (Mineur et al., 2014). Although posing a reduced risk toward the 

introduction of nonindigenous seaweed species, similar measures have been taken to 

reduce the risk of introductions by hull fouling or ballast water discharge (Flagella et 

al., 2007; Mineur et al., 2008). Despite the environmental risk imposed by 

nonindigenous seaweeds, a comprehensive overview of the spatial and temporal 

dynamics of introductions in Europe is lacking. Overall scarcity of baseline data, which 

species have been introduced, the rates of introductions versus the rates of discovery 

and regional patterns of introduced species, fall short to test the effectiveness of 

prevention policies and therefore limit prevention of further introductions. 

To address this knowledge-gap we compiled a database of nonindigenous seaweed 

species and distribution records in Europe, their likely origin and introduction vectors. 

These data are used to provide a quantitative assessment of the spatio-temporal 

dynamics of primary and secondary introductions in Europe. A comparison of 

discovery rates with statistics of the number of papers and the size of the 

phycological community that reports on nonindigenous seaweeds is used to infer 

conclusions on the introduction rates.  

Materials and methods 

Data compilation 
We compiled a database of non-native marine seaweed species records reported 

from the Northeast Atlantic, Mediterranean and Macaronesian coasts (the Azores, 

Canary Islands, Cape Verdes, and Madeira). We report the year of the first report of 

the nonindigenous species in these three regions. Where possible this date refers to 

the year the species was first observed. In the absence of such information the date 

refers to the year the first record was published. If unclear when the species was 

introduced a question mark is added. The dataset, which includes published and 

unpublished records produced by various local and European research projects, builds 

on previous lists by Mineur et al. (2010) and Verlaque et al. (2015). Data from 

Macaronesia are based on Gil-Rodríguez et al. (2003) and Gallardo et al. (2016). 

Refinements to previous lists were needed because in the past the term introduced 

species has likely been used too liberally. The introduced nature of certain species 
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was sometimes based on scanty evidence. In the present database we hope to 

remedy this by critically revising the list of nonindigenous seaweeds and by explicitly 

expressing confidence in the taxonomy and introduced nature of the species. First, 

species are considered nonindigenous when their presence in a given region is the 

result of a displacement linked to human activities either through a transport vector, 

or through the removal of a physical barrier, e.g. between the Red Sea and the 

Mediterranean Sea through the opening of the Suez Canal. The dataset also includes 

indigenous European species that have demonstrably become displaced within 

Europe as a result of human-mediated exchanges. Examples include exchanges of 

species between Atlantic and Mediterranean shores. However, true cosmopolitan 

species, whose current distribution may have been shaped by human transport, were 

omitted. Second, given widespread taxonomic uncertainty that surrounds many algal 

names we assigned an index of taxonomic accuracy for every species. We assigned a 

‘high’ score to accepted nominal species that were not shown to be a species complex 

based on molecular studies in their European introduced or native ranges. A high 

score was also assigned to species for which, so far, there is sufficient confidence in 

unambiguous identification based on morphology. Conversely, species that belong to 

an understudied complex of cryptic species are assigned a low score. Related to, but 

not necessarily equivalent to taxonomic uncertainty, is the confidence that a species 

is indeed nonindigenous in European waters. To this end, we introduced a separate 

category, ‘xenoticity’. In addition, we indicate the introduction status on an ordinal 

scale, ranging from not recorded, to recorded but not known to be established, likely 

established with recurrent observations or abundant in restricted areas, to 

widespread and abundant. If doubt exists regarding the introduced nature of a 

species in any of the three regions, this is indicated as ‘potentially native’. Third, for 

each species an estimate is provided for their native biogeographical range. To do 

this, global distribution data were obtained from Algaebase (Guiry & Guiry, 2017). 

Indices of confidence of native ranges were assigned to each marine biogeographic 

region. Null values correspond to absence of records, medium indices to the presence 

of the species without a high confidence in stating if this biogeographic realm is the 

native range, while high indices are given to biogeographic regions that can be 

unambiguously determined as the origin, in the native range, of the populations 

present in Europe. We note that European populations may however have transited 

through other marine realms by secondary introductions.  

Statistical analyses 
Distribution data were gridded on raster cells of 100 km x 100 km (10,000 km²). The 

statistical analysis of spatio-temporal patterns was restricted to records until the year 
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2010, to avoid a potential bias due to lags in the reporting of nonindigenous seaweed 

species. We fitted three functions (linear, power and logistic) to the cumulative plots 

of the number of introduced species and the number of distribution records with the 

R package minpack.lm. The distribution of the AIC values and the midpoint of the 

logistic curve have been estimated from 1000 bootstrap samples. Additionally we 

fitted a local regression (LOESS) to these same cumulative plots and calculated the 

yearly rate of change in the number of introduced species and distribution. The span 

was calculated automatically by minimizing the AICc of the LOESS curve using the R 

package fANCOVA. Visualisation of hotspots of introductions is based on binned 

kernel density maps for the first record of every introduced species and for all 

distribution records with the R package KernSmooth. 

Results 

List introduced seaweeds: uncertainty in the numbers 
In total 153 seaweed species have been listed as introduced in Europe, of which 104 

species are red algae (Rhodophyta), 29 brown algal species (Phaeophyceae) and 20 

belonging to the green lineage (Chlorophyta, Charophyta) (Fig. 1A; Table 1). However, 

an unequivocal link between specimens found in Europe with specimens in the native 

range has only been established for about half of these species. Given the widespread 

nature of cryptic and pseudocryptic diversity in algae in general it should come as no 

surprise that molecular studies have been substantially revising our view on many 

introduced species. For example, several species have been described from Europe 

which later turned out to represent introduced species. For example, Dictyota 

cyanoloma was described as a new species from the Mediterranean Sea and 

Macaronesia as recently as 2010 (Tronholm et al., 2010), but subsequent collecting 

efforts in Australia revealed that the species actually represent a cryptic introduction 

(Aragay et al., 2016; Steen et al., 2017). Similarly, Porphyra olivii described by Brodie 

et al. (2007) from the Mediterranean belongs to the same species as Pyropia koreana 

(Vergés et al., 2013). Obviously determining the nonindigenous nature of a species 

becomes much more difficult if introductions took place long ago as is the case for 

Codium fragile subsp. fragile and Neosiphonia harveyi which were established in 

Europe already by the mid-19th century as evidenced by herbarium records (McIvor et 

al., 2001; Provan et al., 2008). A puzzling case is formed by several taxa with clear 

Indo-Pacific affinities which appeared in the Mediterranean Sea prior to the opening 

of the Suez Canal in 1869, Acanthophora nayadiformis, Asparagopsis taxiformis and 

Ganonema farinosum. At least for A. taxiformis, such a counterintuitive temporal 

pattern can be explained by the presence of two cryptic lineages, which include a 
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native strain present in the Mediterranean Sea prior to the opening of the Suez canal 

and a more recent introduction of an invasive strain (Chualáin et al., 2004; Andreakis 

et al., 2007). Such cases highlight the difficulty in establishing whether a species is 

introduced in Europe. Overall, only for about half of the species (54%) listed in Table 

1, there is strong evidence that they are nonindigenous in Europe. For the remaining 

half the evidence is mediocre (35%) to weak (11%) at least. It should be noted that 

taxonomic uncertainty does not per se correlate with xenoticity. For several species 

there is good evidence that they are indeed nonindigenous, however, the taxonomy 

of the group is still not sufficiently established to be certain regarding the correct 

name of the species. Taxonomic uncertainty is not necessarily restricted to diminutive 

species which have been observed sporadically. Agardhiella subulata is a good 

example, its nonindigenous nature is not questioned, however, according to some 

authors the species should be identified as Sarcodiotheca gaudichaudii (Montagne) 

P.W.Gabrielson (Stegenga & Karremans, 2015). Likewise the correct taxonomic status 

of many of the introduced Caulerpa species found in the Eastern Mediterranean Sea 

(e.g. C. lamourouxii, C. mexicana, C. scalpelliformis) needs further study (Verlaque et 

al., 2000, 2015; Belton et al., 2014). 

Taxonomic uncertainty and uncertainty regarding the introduced nature of seaweed 

species is most prevalent in the Macaronesian region. Out of 57 species present in 

Macaronesia no less than 27 have been given a low taxonomic accuracy score. 

Although several factors likely contribute to this uncertainty, the geographical 

location of the region, bordering the tropical Atlantic, contributes significantly to the 

difficulty in interpretation of the nonindigenous nature of species. Many tropical and 

subtropical taxa are reported from all major ocean basins. Very often these taxa 

represent (pseudo-)cryptic species complexes with the individual species being either 

range-restricted or widespread themselves. The lack of accurate baseline data 

regarding species boundaries and distributions makes it particularly hard to 

distinguish native from introduced seaweeds. Examples include Caulerpa spp., 

Hypnea spp., Galaxaura rugosa, Ganonema farinosum. 
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Table 1. Overview of the nonindigenous seaweeds in Europa, with indication of their presence in the NE 
Atlantic, Mediterranean Sea and Macaronesia (numbers = year of the first record, NA = not recorded, NT 
= Native, ? = uncertain | color codes:  green = recorded but not known to be established, orange = likely 
established, recurrent observation to abundant in restricted areas, red = widespread and abundant, 
invasive, blue = (potentially) native). Taxonomic uncertainty is indicated in white = low, green = high. 
Xenoticity expresses the certainty that the species is indeed introduced (white = low, pale green = 
medium, dark green = high). Displacement (R = from remote geographical area; L = Erythrean migrant; M 
= NE Atlantic to Mediterranean , A = range extension in the NE Atlantic; U = unknown or ambiguous). 
Origin denotes the most likely native area (white  = unlikely, pale green = potential, dark green = high 
likelihood). 
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Phaeophyta 1762             
Acrothrix gracilis 1 NT 1998 NA 0 0 R 1 1 0 1 1 0 
Ascophyllum nodosum 2 NT 2009 NA 1 2 R 0 0 0 0 2 0 
Botrytella parva 2 NA 1996 NA 0 0 R 1 0 0 0 1 0 
Chorda filum 3 NT 1981 NA 1 2 M 0 0 0 0 2 0 
Cladosiphon zosterae 1 NT 1998 NT 1 1 M 0 0 0 0 1 0 
Colpomenia peregrine 172 1905 1918 1965 1 2 R 2 0 0 0 0 0 
Corynophlaea verruculiformis 6 1994 NA NA 0 1 R 2 0 0 0 0 0 
Corynophlaea cystophorae 0 NA NA 1993 0 1 R 2 0 0 0 0 0 
Desmarestia viridis 6 NT 1947 NA 1 1 U 1 0 0 0 1 0 
Dictyota cyanoloma 286 2008 1935 2007 1 2 R 0 0 2 0 0 0 
Ectocarpus siliculosus var. hiemalis 1 NA 1998 NA 0 1 M 0 0 0 0 2 0 
Fucus evanescens 33 1883 NA NA 1 2 U 1 0 0 2 0 0 
Fucus serratus [Iceland and Faroes] 58 1897 NA NA 1 2 A 0 0 0 0 2 0 
Fucus spiralis 1 NT 1987 NA 1 2 M 0 0 0 0 2 0 
Halothrix lumbricalis 4 NT 1978 NA 0 1 U 1 0 0 0 1 0 
Leathesia marina 3 NT 1905 NA 1 2 M 0 0 0 0 2 0 
Padina boergesenii 20 NA 1965 NA 1 1 L 0 1 1 1 0 1 
Padina boryana  1 NA 1993 NA 1 1 L 0 1 1 0 0 1 
Petalonia binghamiae  20 NA NA 1980 0 1 U 1 0 1 1 0 1 
Punctaria tenuissima  6 NT 1957 NA 0 2 U 0 0 0 1 2 0 
Pylaiella littoralis 1 NT 1960 NA 1 2 M 0 0 0 0 2 0 
Rugulopteryx okamurae  1 NA 2002 NA 1 2 R 2 0 0 0 0 0 
Saccharina japonica  2 NA 1976 NA 1 2 R 2 0 0 0 0 0 
Sargassum muticum  924 1972 1981 NA 1 2 R 2 0 0 0 0 0 
Scytosiphon dotyi  12 1987 1977 1993 0 1 R 1 0 0 1 0 0 
Spatoglossum variabile 2 NA 1944 NA 0 1 L 0 2 0 0 0 1 
Sphaerotrichia firma  1 NA 1970 NA 1 2 R 2 0 0 0 0 0 
Stypopodium schimperi 22 NA 1973 1997 1 2 L 0 2 0 0 0 0 
Undaria pinnatifida  171 1982 1971 NA 1 2 R 2 0 0 0 0 0 
              
Chlorophyta 721 

            
Caulerpa chemnitzia  14 NA 1926 NT? 0 1 L 0 2 0 0 0 1 
Caulerpa cylindracea  106 NA 1990 2002 1 2 R 0 0 2 0 0 0 
Caulerpa lamourouxii  12 NA 1951 NA 1 2 L 0 2 0 0 0 1 
Caulerpa mexicana  14 NA 1941 NT? 0 2 L 0 2 0 0 0 1 
Caulerpa scalpelliformis 14 NA 1929 NA 0 2 L 0 2 0 0 0 1 
Caulerpa taxifolia 87 NA 1984 NA 1 2 R 0 0 2 0 0 0 
Caulerpa taxifolia var. distichophylla 17 NA 2006 NA 1 2 R 0 0 2 0 0 0 
Cladophora herpestica 10 NA 1948 NA 0 0 L 1 2 1 0 0 1 
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Cladophora patentiramea 1 NA 1991 NA 0 1 L 0 1 1 0 0 1 
Codium arabicum 5 2003 2007 NA 1 2 L 1 2 0 0 0 1 
Codium fragile subsp. fragile 397 1845 1950 1990 1 2 R 2 0 0 0 0 0 
Codium parvulum 2 NA 2004 NA 1 2 L 0 2 0 0 0 1 
Codium taylorii 23 2004 1955 ? 0 1 R 0 1 0 1 0 1 
Derbesia boergesenii 1 NA 1972 NA 0 1 L 0 2 0 0 0 1 
Derbesia rhizophora 2 NA 1984 NA 0 2 R 2 0 0 0 0 0 
Halimeda incrassate 3 NA 2011 2005 1 2 R 0 0 0 2 0 0 
Neomeris annulata 1 NA 2003 NA 1 2 L 1 2 1 1 0 1 
Ulva pertusa / U. australis 10 1993 1984 ? 1 1 R 2 0 1 1 1 0 
Ulvaria obscura (Kützing) 2 NT 1985 NA 0 1 U 1 0 0 0 1 0 
              
Charophyta 17 

            
Chara connivens 17 1979 NA 1975 0 1 A 0 0 0 0 0 0 
              
Rhodophyta 2340 

            
Acanthophora nayadiformis 56 NA 1808 NA 1 1 L 0 2 0 0 0 1 
Acrochaetium balticum 1 1998 NA NA 0 0 A 0 0 0 0 2 0 
Acrochaetium robustum 1 NA 1944 NA 0 0 L 0 2 1 0 0 0 
Acrochaetium spathoglossi 3 NA 1944 NA 0 0 L 0 2 1 0 0 0 
Acrochaetium subseriatum 3 NA 1944 NA 0 0 L 0 2 1 0 0 0 
Acrothamnion preissii 62 NA 1969 NA 1 2 R 1 0 2 0 0 0 
Agardhiella subulata 1 1973 1984 NA 0 1 R 1 0 0 1 0 0 
Aglaothamnion feldmanniae 3 NT 1975 NA 0 1 M 0 0 0 0 1 0 
Aglaothamnion halliae 24 1960 NA NA 0 1 R 0 0 0 1 0 0 
Ahnfeltiopsis flabelliformis 3 NA 1994 NA 0 2 R 2 0 0 0 0 0 
Anotrichium furcellatum 39 1922 1939 1930 0 0 U 1 0 0 0 0 0 
Antithamnion amphigeneum 38 1995 1989 NA 1 2 R 0 0 2 0 0 0 
Antithamnion densum 21 1992 NA 1990 0 0 R? 1 0 0 1 1 0 
Antithamnion diminuatum 2 NA NA 1988 1 0 R 0 0 2 0 0 0 
Antithamnion nipponicum / A. hubbsii 10 2003 1988 NA 0 1 R 2 0 1 0 0 0 
Antithamnionella boergesenii 14 2004 1937 1921 1 1 R 0 0 0 2 1 0 
Antithamnionella elegans 85 1961 1882 NA 0 1 R 2 0 0 0 0 0 
Antithamnionella spirographidis 79 1927 1911 1974 0 0 R 2 0 0 0 0 0 
Antithamnionella sublittoralis 5 NA 1980 NA 0 1 R 1 0 0 0 0 0 
Antithamnionella ternifolia 113 1906 1926 NA 0 1 R 0 0 2 0 0 0 
Apoglossum gregarium 11 NA 1992 NA 1 2 R 1 0 0 1 0 0 
Asparagopsis armata 386 1923 1923 1965 1 2 R 0 0 2 0 0 0 
Asparagopsis taxiformis [invasive strain] 39 2004 ? NT? 1 2 R 0 1 2 0 0 1 
Bonnemaisonia hamifera 281 1893 1909 1930 1 2 R 2 0 0 0 0 0 
Botryocladia madagascariensis 19 NA 1991 1988 0 2 R 0 0 0 0 0 1 
Caulacanthus okamurae 23 1986 2004 NA 1 2 R 2 0 0 0 0 0 
Ceramium bisporum 4 NA 2001 NA 0 1 R 0 0 0 2 0 0 
Ceramium strobiliforme 15 NA 1991 1992 0 0 R 0 0 0 0 0 0 
Chondracanthus chamissoi 1 2009 NA NA 1 2 R 2 0 0 0 0 0 
Chondria curvilineata 5 NA 1981 NA 0 1 R 0 0 0 2 0 1 
Chondria polyrhiza 2 NA 1982 NA 0 0 R 0 0 0 2 0 1 
Chondria pygmaea 14 NA 1974 NA 0 2 R 0 2 0 0 0 1 
Chondrus giganteus 2 NA 1994 NA 1 2 R 2 0 0 0 0 0 
Chrysymenia wrightii 15 2005 1978 NA 1 2 R 2 0 0 0 0 0 
Colaconema codicola 7 1957 1952 NT 0 1 U 0 0 0 1 1 0 
Colaconema dasyae 2 1983 NA NA 1 1 R 0 0 0 0 0 0 
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Cryptonemia hibernica 30 1971 NA NA 1 1 R 0 0 0 0 1 0 
Dasya baillouviana 21 1950 NT NT 0 1 U 0 0 1 1 1 1 
Dasya sessilis 43 1989 1984 NA 1 2 R 2 0 0 0 0 0 
Dasysiphonia japonica 61 1994 1998 NA 1 2 R 2 0 0 0 0 0 
Devaleraea ramentacea 1 1975 NA NA 1 2 A 0 0 0 0 1 0 
Ezo epiyessoense 1 1983 NA NA 1 1 R 2 0 0 0 0 0 
Fredericqia deveauniensis 4 1850 NA NA 1 2 R 0 0 0 2 0 0 
Galaxaura rugosa 3 NA 1990 NT 1 2 L 0 2 1 1 0 1 
Ganonema farinosum 10 NA 1808 NT 0 0 L 0 2 1 1 0 1 
Gelidium vagum 4 2010 NA NA 1 2 R 2 0 0 0 0 0 
Goniotrichopsis sublittoralis 11 1975 1989 NA 0 1 R 0 0 0 0 0 0 
Gracilaria arcuata 9 NA 1931 NA 0 1 L 1 2 1 0 0 1 
Gracilaria disticha 2 NA 1924 NA 0 2 L 0 2 0 0 0 1 
Gracilaria vermiculophylla 80 1997 2008 NA 1 2 R 2 0 0 0 0 0 
Gracilariopsis chorda 1 2010 NA NA 1 2 R 2 0 0 0 0 0 
Grateloupia asiatica 11 2010 1984 NA 1 2 R 2 0 0 0 0 0 
Grateloupia imbricate 5 2014 NA 2006 1 2 R 2 0 0 0 0 0 
Grateloupia patens 3 NA 1994 NA 1 2 R 2 0 0 0 0 0 
Grateloupia subpectinata 20 1947 1990 1983 1 2 R 2 0 0 0 0 0 
Grateloupia turuturu 85 1969 1982 1983 1 2 R 2 0 0 0 0 0 
Griffithsia corallinoides 9 NT 1964 NA 0 1 U 1 0 0 0 2 0 
Gymnophycus hapsiphorus 7 NA NA 1989 0 1 R 0 0 1 0 0 0 
Herposiphonia parca 2 2005 1991 NA 0 1 R 2 0 0 1 0 1 
Hypnea anastomosans 2 NA 2008 NA 1 1 L 0 2 0 0 0 1 
Hypnea cornuta 6 NA 1896 NA 1 2 ? 1 2 0 0 0 1 
Hypnea flagelliformis 1 NA 1956 ? 0 2 U 1 2 0 0 0 1 
Hypnea flexicaulis 3 NA 2009 NT 1 2 L 2 0 0 0 0 0 
Hypnea musciformis 11 2003 NT NT 0 0 U 0 1 1 1 0 1 
Hypnea spinella 20 NA 1926 NT 0 1 ? 1 1 1 1 0 1 
Hypnea valentiae 3 NA 1996 NT 0 2 R 1 1 0 0 0 1 
Laurencia brongniartii 1 1989 NA NT 0 2 R 1 0 1 0 0 1 
Laurencia caduciramulosa 11 NA 1991 NT 0 1 R 1 0 0 1 0 1 
Laurencia okamurae 2 NA 1984 NA 1 2 R 2 0 0 0 0 0 
Lithophyllum yessoense 1 NA 1994 NA 1 2 R 2 0 0 0 0 0 
Lomentaria hakodatensis 26 1984 1978 NA 1 2 R 2 0 0 0 0 0 
Lophocladia lallemandii 52 NA 1908 NA 1 2 L 1 2 1 0 0 1 
Mastocarpus stellatus [Helgoland] 1 1983 NA NT 1 1 A 0 0 0 0 2 0 
Monosporus indicus 5 NA 2015 NA 0 1 L 0 2 0 0 0 0 
Neosiphonia harveyi 109 1832 1958 1990 1 2 R 2 0 0 0 0 0 
Nitophyllum stellatocorticatum 2 NA 1984 NA 1 2 R 2 0 0 0 0 0 
Pachymeniopsis gargiuli 6 NA 2000 2007 1 2 R 2 0 0 0 0 0 
Pachymeniopsis lanceolata 11 NA 1982 NA 1 2 R 2 0 0 0 0 0 
Palisada maris-rubri 2 NA 1990 NA 0 0 L 0 2 0 0 0 1 
Pikea californica 22 1967 NA NA 1 2 R 0 0 0 0 0 0 
Plocamium secundatum 4 NA 1976 NA 0 0 U 0 0 0 0 0 0 
Polyopes lancifolius 2 2008 NA NA 1 1 R 0 0 0 0 0 0 
Polysiphonia atlantica 1 NT 1972 NT 1 1 M 1 0 1 1 2 0 
Polysiphonia morrowii 23 1993 1997 NA 1 2 R 2 0 0 0 0 0 
Polysiphonia paniculata 10 NA 1967 NA 0 1 R 0 0 0 0 0 0 
Polysiphonia schneideri 2 2010 NA NA 1 2 R 0 0 0 2 0 0 
Predaea huismanii 1 NA NA 1990 0 1 U 0 0 1 0 0 1 
Pterosiphonia pinnulata 2 1990 NT NA 0 2 U 1 0 0 0 0 0 
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Pterosiphonia tanakae 2 2005 1998 NA 1 2 R 2 0 0 0 0 0 
Pyropia koreana 6 NA 2007 NA 1 2 R 2 0 0 0 0 0 
Pyropia suborbiculata 12 2010 2010 1993 1 2 R 2 0 0 0 0 0 
Pyropia yezoensis 2 1984 1976 NA 0 2 R 2 0 0 0 0 0 
Rhodophysema georgei 1 NT 1978 NA 0 1 M 1 0 0 0 2 0 
Rhodymenia erythraea 1 NA 1948 NA 0 2 L 0 2 0 0 0 0 
Sarconema filiforme 11 NA 1945 NA 0 2 L 0 2 1 0 0 1 
Sarconema scinaioides 2 NA 1945 NA 0 2 R 0 2 1 0 0 1 
Scageliopsis patens 12 2004 NA 1989 0 2 R 0 0 2 0 0 0 
Solieria dura 3 NA 1944 NA 0 1 L 0 2 0 0 0 1 
Solieria filiformis 4 1980 1988 2002 0 1 R 0 1 1 1 0 1 
Solieria sp. [non described] 5 2005 2011 NA 0 2 R 1 0 1 1 0 0 
Spongoclonium caribaeum  21 1973 1974 1980 0 1 U 1 1 1 1 0 1 
Symphyocladia marchantioides  10 2004 1984 1971 0 1 R 1 0 1 0 0 0 
Vertebrata fucoides 2 NT 1988 NT 1 1 M 0 0 0 1 2 0 
Womersleyella setacea 92 NA 1986 1983 0 2 R 0 0 2 0 0 1 

Records – temporal trends 
A total of 4900 distribution records from published and non-published sources were 

compiled for this study. Nearly half of the distribution records (47%) concern the five 

most represented species: Sargassum muticum (925 records), Codium fragile subsp. 

fragile (397 records), Asparagopsis armata (386 records), Bonnemaisonia hamifera 

(279 records) and Dictyota cyanoloma (286 records) (Fig.1). These species have been 

the focus of dedicated research projects, are usually large in size, easy to identify on 

the field, and often have considerable population sizes. At the other end of the 

spectrum, there are 73 species with less than 5 distribution records of which 27 

species have only been recorded once. 

Breaking down the number of introduced species into the Mediterranean Sea, 

Atlantic shores and Macaronesia reveals that 63% of the introduced species have 

been reported for the first time in the Mediterranean Sea, 27% in the NE Atlantic and 

10% in Macaronesia (Fig. 2A). Twelve introduced species are shared among the three 

regions, while one third of the species occurs nowadays in 2 regions (Fig. 2B). Most 

species are shared between the Mediterranean and the NE Atlantic (30 species), while 

a surprisingly low 5 species are shared between the Mediterranean and Macaronesia. 

The ratio of species belonging to red, green and brown lineages is approximately the 

same for the three regions but the Atlantic area has less introduced green and brown 

species than the Mediterranean area. 
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Figure 1. Number of introduced species and records through time in the whole study area. The left plot 
(A) shows the number of seaweeds introduced since 1800 for the red, brown and green classes. The right 
plot (B) shows the number of distribution records since 1800 of particularly well-studied introduced 
species in Europe: Sargassum muticum , Codium fragile subsp. fragile , Asparagopsis armata , 
Bonnemaisonia hamifera , Dictyota cyanoloma . In pink are the number of records for the remaining 
species. All curves are cumulative and superimposed. 

A.       B. 
       

 

Region Total First Red Green Brown  

Mediterranean Sea 121 97 77 20 24  

NE Atlantic 66 41 53 5 8  

Macaronesia 31 15 21 4 6  

       

Figure 2. The left table (A) shows the total number of species reported in each European area; the 
number of species that has been reported for the first time in each European area, and the breakdown 
by red, green and brown algae of the total number of introduced species. The figure on the right (B) 
shows a Venn diagram of the number of the introduced species in the different areas. 

The number of introduced species from 1950 to 2010, as represented by the date of 

the first record in Europe, was best fitted with a logistic curve (Fig. 3A). Likewise the 

total number of records of introduced species were also best presented by a logistic 

curve (Fig. 3B). For the bootstrapped AIC values of the different fitted curves we refer 

to Fig. S1 in Supporting information. The logistic curve implies that the number of new 

introduced species which are discovered is declining. Likewise, the accumulation rate 

of the number of distribution records of introduced species is also declining, albeit 

that the trend is less pronounced compared to the first record curve. These 

observations are confirmed by the rate of introduced species (Fig. 3C) which peaked 

in 1991, the sampling rate (Fig. 3D) which peaked in 1997 and by the midpoints of the 

logistic curves: 1986 for the number of introduced species and 1996 for the number 

of distribution records (Fig. S2 in Supporting information). The decrease in 

accumulation rate of nonindiginous seaweed species in Europe is at odds with general 
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trends as reported by Seebens et al. (2017) who observed a continuous rise in first 

record rates since 1800 for all groups of organisms except mammals and fishes. 

Because the rate of discoveries of species are influenced by factors other than 

introductions (Costello & Sollow 2003), we also quantified the seaweed sampling 

effort along European coasts. We used the number of papers and number of unique 

authors reporting introduced seaweed species as a proxy for sampling effort (Fig. 4). 

These graphs disprove the idea that a decline in collecting or reporting effort 

underlies the slowdown in the number of first records. 

 

Figure 3. LOESS (blue) and logistic (black) curve fitting of the cumulative number of introduced 
species reported for the first time in Europe between 1950 and 2010 (A) and for the number 
of reported distribution records over all introduced species in the same area and period (B). 
The introduction rate (C) and the sampling rate (D) were calculated based on the fitted LOESS 
curves. 
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Figure 4. Number of unique authors per decade (A) and number of publications (B) reporting introduced 
species as a proxy for European sampling effort of introduced macroalgae. 

The fact that such a decline in the introduction rate of non-indingenous species is 

apparently not shared with the majority of taxa or across geographic regions (Seebens 

et al. 2017), may reflect the somewhat atypical case of seaweed introductions and the 

success of measures aimed at mitigating new introductions. Contrary to most marine 

taxa, hull fouling and ballast water seem to play a relatively minor role only in the 

displacement of seaweeds across the globe. A disproportionate number of non-

indigenous seaweed species appears to have been introduced through import of 

oyster stocks (Verlaque et al., 2007). In the late 1960s and early 1970s, disease 

outbreaks in Europe affecting oyster populations caused a major disruption of 

production. Mitigation procedures involved massive imports of oyster stock from the 

species’ native range in the northwestern Pacific in the 1970s (Mineur et al., 2014). 

Alongside such stock imports non-native marine species were imported in great 

numbers from the northwestern Pacific to Europe. The accumulation curves of first 

records, which keep rising until the mid 1980s, mimick these imports. However it 

appears that European directives which authorizes all movements inside Europe and 

restrict shellfish stock imports from outside Europe reduce, but not prevent, the 

introduction of additional seaweed species. 

Introduction hotspots 
The importance of aquaculture toward introductions of seaweeds is reflected in the 

distributions of the first record of each species in Europe. A kernel density map (Fig. 

5A) clearly shows the Thau lagoon, with 30 reports of first introductions in Europe 

(25%), as one of the major introduction hotspots in Europe. In total 58 species, 32% of 

the total seaweed diversity or 48-99% of the biomass, have been introduced in the 

Thau Lagoon (Boudouresque et al., 2010). The Thau lagoon is the epicentrum of 

oyster cultivation in the Mediterranean Sea. However, the oyster farmers rely entirely 
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on the import of juvenile oysters from other regions, European or non-European, 

because the lagoon is not suitable for oyster breeding. These continuous transfers 

result in astonishingly high numbers of introduced species. Upon closer examination, 

the Thau lagoon as well as other Mediterranean lagoons (Mar Piccolo, Venice lagoon), 

stand out with respect to introduction of native Atlantic species in the Mediterranean 

Sea (e.g. Ascophyllum nodosum, Chorda filum, Cladosiphon zosterae, Pylaiella 

littoralis, Vertebrata fucoides). A low native diversity due to the low occurrence of 

natural hard substrata in lagoons, and relatively recent construction of hard substrata 

for aquaculture purposes, concomitant with transfers of lifestock which seed the new 

substrata, makes these habitats hotspots for nonindigenous species (Mineur et al. 

2015). Most of these species actually fail to establish viable populations, and if 

persisting, their range in the Mediterranean Sea remains mostly restricted to the 

lagoon system. Differences in the abiotic physico-chemical environment between the 

Atlantic and Mediterranean likely underlie the failure of these species to spread 

widely in the Mediterranean. Nevertheless, repeated observations of Atlantic species 

in Mediterranean lagoons are evidence for continuous transfers of aquaculture 

livestock. 

The Southeast Mediterranean accounts for 24 first reports, 58% between 1940 and 

1960, and a total of 32 introduced species. The construction of the Suez canal in 1896 

resulted in an open connection, between the northern Red Sea and the Eastern 

Mediterranean. As a result, 493 marine species are believed to have invaded the 

Mediterranean Sea through the Suez canal, so-called Lessepsian or Erythrean 

migrants (Zenetos et al., 2012). With respect to nonindigenous seaweeds many 

species were first reported in a series of papers by the Egyptian phycologist Anwar 

Aleem (1948, 1950). Recent efforts by Greek, Israeli and Turkish phycologists have 

expanded the list of Lessepsian seaweeds considerably and importantly have 

confirmed the identity of many species with molecular markers. Nevertheless, a 

paucity of baseline data makes it often difficult to establish the Lessepsian origin of 

many species or to point to the exact date of introduction. As outlined above reports 

of species with clear Indo-Pacific affinities which predate the opening of the Suez 

canal still puzzle phycologists. In addition the identity of many species reported for 

the first time by Aleem (e.g. Gracilaria arcuata, G. disticha, Hypnea flagelliformis, 

Solieria dura, Spatoglossum variabile) has never been confirmed using molecular 

markers and is highly uncertain. In general, the lack of solid baseline data hamper a 

detailed understanding of past and contemporary temporal dynamics of seaweed 

introductions in the Eastern Mediterranean Sea. More than in any other European 

region it remains difficult to link the observation of a new seaweed species with the 
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introduction date. This uncertainty bears down on the monitoring of migration 

through the Suez canal which is regarded as an ongoing process until present 

(Boudouresque, 1999). The current construction of the new Suez canal, doubling the 

capacity of the current corridor, is expected to increase the influx of Red Sea species 

(Galil et al., 2015) and contribute to the further tropicalization in the Mediterranean 

Sea (Bianchi, Carlo & Morri, 2003; Coll et al., 2010). 

  

Figure 5. Binned kernel density maps of first introduction events (A) and of the distribution records of 

introduced species in our database. 

Compared to the two Mediterranean hotspots, first reports appear less localized in 

the NE Atlantic. The Channel (Brittany, southern English coast) and the Scheldt 

estuary (the Netherlands) are most prominent as introduction hotspots. There is a 

high correlation between the introduction hotspots and the density map of all records 

of introduced species, indicative for high monitoring activities in areas where a lot of 

nonindigenous species are found (Fig. 5B). To some extent this spatial pattern may be 

influenced by the distribution of phycologists and research institutes. However, there 

is definitely not a one-on-one relationship between the density map of first reports 

and the map of all distribution records. Most strikingly, the Eastern Mediterranean 

Sea (Egypt, Israel) is a clear hotspot for first reports due to their proximity to the Suez 

Canal, but the total number of records from that region is rather low compared to 

Atlantic European coasts. On the opposite end of the spectrum, the southern 

Norwegian coast is particularly well-monitored even though no first records from that 

area have been reported.  

Origin and spread 
We mapped the distribution records of introduced seaweed species according to their 

presumed geographic origin or native range. Distribution records were gridded on a 
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100 x 100 km raster. Maps depict the number of species per grid cell for species of 

Northwest Pacific origin (Fig. 6A), Lessepsian migrants (Fig. 6B), Australasian origin 

(Fig. 6C) and the Northeast and Western Atlantic origin (Fig. 6D). The NW Pacific 

origin of 45 species is well established (Table 1). An additional 31 species are possibly 

native to the NW Pacific but there is no strong evidence at present (e.g. molecular 

sequence data) which support such a claim. Restricting analyses to species for which a 

NW Pacific origin is not contested, these are predominantly present in the NE Atlantic, 

with the notable but not surprising exception of the Mediterranean lagoon system 

(Thau, Venice), and spread relatively little in the Mediterranean. Furthermore, most 

cells in the Mediterranean Sea, for which species native to NW Pacific have been 

reported, only contain one species with that origin. 

 

Figure 6. Number of species found in 100 km² grid cells split up by species origin: Northwest Pacific (A), 
Lessepsian (B), Australasia (C) and Northeast and Western Atlantic (D). Cells containing the first record of 
one or more species are outlined in black. 
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In contrast, 34 species with a Lessepsian origin are predominantly distributed in the 

Eastern Mediterranean Sea with a minority permeating into the Western 

Mediterranean Sea (Fig. 6B). In contrast 11 species with presumed Australasian origin 

are predominantly restricted to the Western Mediterranean Sea, Macaronesia and 

the Atlantic coasts of the Iberian peninsula. Species with Australasian origin appear 

virtually absent north of Brittany, France. Despite this pattern the introduction 

vectors for this category of species remains the most elusive. For Acrothamnion 

preissii and Womersleyella setacea ship traffic has been suggested as vector based on 

their first observation close to a major harbour (Livorno, Italy), but accidental release 

from aquaria is also a possibility (Verlaque et al. 2015). Complicating identification of 

vectors even further, molecular studies on several nonindigenous species have 

unveiled multiple independent introductions possibly involving different vectors 

(McIvor et al., 2001; Provan et al., 2004). 

Based on the cumulative plots of the number of species for the most prevalent origins 

(Fig. 7), we see different patterns depending on the origin of the species. For the NW 

Pacific we see a sharp increase in the number of first reports around 1970 which 

slows down after the 1990’s. After a big jump in the introduction of species with a 

Lessepsian origin around 1950, the number of newly reported introduced species has 

slowly but steadily increased. For the species with an Australasian origin we see that a 

smaller number of species is being introduced. 

 

Figure 7. Superimposed cumulative plot of the number of introduced species through time for the most 
prevalent origins: Northwest Pacific (red), Lessepsian (blue) and Australasia (purple). Only species with a 
high degree of confidence in their origin are included in this plot. 
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Conclusion 
Detailed analyses of spatial and temporal trends of nonindigenous seaweeds in 

Europe reveal a complex pattern which can be best understood in terms of the native 

regions of the species and associated vectors. We identified three different native 

regions which are responsible for the majority of the nonindigenous species in 

Europe, the NW Pacific, Australasia and the tropical Indo-Pacific Ocean. Distribution 

maps of first introductions reveal a non-random pattern with NW Pacific species 

predominantly introduced in the NE Atlantic region and in lagoon systems in the 

Mediterranean Sea (Thau and Venice lagoon). Analyses of all distribution records 

reveal that these species generally do not spread widely in the Mediterranean Sea, 

but secondary introductions, aided by shellfish transfers from the Atlantic to the 

Mediterranean lagoon systems and vice versa, are commonly observed. Tropical Indo-

Pacific species, predominantly introduced in the Eastern Mediterranean Sea through 

the Suez Canal remain largely restricted to the latter region with a minority of species 

spreading to the Western Mediterranean Sea. These species are virtually absent from 

the Atlantic coasts. The distribution of Lessepsian species likely reflects the 

environmental tolerance of species with tropical affinities, although one cannot rule 

out that their current ranges may still expand westward in the Western 

Mediterranean basin or even Atlantic coasts. Regardless, the distribution of 

Lessepsian species contrasts to species with Australasian origin who are much more 

scattered over the entire Mediterranean Sea. Interestingly, Australasian species 

cannot be easily linked to a specific vector. Fouling, ballast waters and aquarium 

escapees have all been suggested as vectors (Verlaque et al., 2015). Perhaps the 

possibility that multiple vectors are involved in the introduction of Australasian 

species results in the erratic pattern of first reports. 

Trends of first reports since 1950 demonstrate that the overall rate of introductions 

of nonindigenous species is slowing down in Europe. Here we discuss the plausibility 

of several non-mutually exclusive explanations that could account for the observed 

decrease in the rate of seaweed introduction in Europe. The most intuitive and 

optimistic explanation would be that indeed less species have become introduced in 

Europe during the last two decades. In other words, the measures taken by local and 

European governments to reduce the influx of nonindigenous species prove effective. 

The fact that the decline can be attributed primarily to NW Pacific algae (Fig. 7), 

would corroborate this hypothesis. Livestock transfer of shellfish, the primary vector 

of algae with a NW Pacific origin, is in principle easier to control compared Lessepsian 

migration. However, a decline in the rate of reported nonindigenous species doesn’t 

necessarily imply a decrease in introduction rate. Relationships between 
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introductions and reports of introductions are unfortunately more complicated 

(Costello & Solow 2003). From the data at hand we can rule out that less attention by 

the scientific community underlies the decrease in first reports. At least up to the year 

2000 the number of records, publication and individual authors showed no sign of 

decline, while the rate of first reports dropped since 1990. However, it remains 

possible that a lack of attention in the early second half of the 20th century resulted in 

a large pool of nonindigenous species waiting to be discovered. If so, the high rates of 

reports from 1970-1990 could reflect increased scientific interest more than they 

would reflect introduction rates. The base rate of introductions may have remained 

constant since 1950, and the pattern of first reports simply reflect a combination of 

the ease to recognize them and the incentive to report them. A lack of systematic 

surveys across Europe precludes one from ruling out this scenario. However, there are 

some indirect indications that introductions rates have not remained constant over 

the last 50-70 years. Most convincingly, Mineur et al. (2014) correlated Japanese 

oyster production and disease outbreaks to reports of introduced species in Europe. 

In addition the difference between Lessepsian and Australasian species which display 

more constant rates of first reports compared to NW Pacific species is difficult to 

explain under a constant introduction rate. There is no reason why NW Pacific species 

would be easier to detect or vice versa. 

The observation that at least one source of introductions of marine species in Europe 

can be controlled, contrasts to the global pattern reported by Seebens et al. (2017) 

who report an increase across taxonomic groups and geographic regions. Given that 

livestock transfer of shellfish is the principal vector for the introduction NW Pacific 

species, it appears that European directives which authorize all movements inside 

Europe and restrict shellfish stock imports from outside Europe successfully mitigate 

the influx of nonindigenous species. 

While compiling the list of nonindigenous species in Europe, it was quite surprising to 

encounter so much uncertainty in the primary data at several levels. First, there is 

taxonomic uncertainty which is rife across the entire geographic region but perhaps 

even more common in the Mediterranean Sea and Macaronesia. Second, there is also 

uncertainty as to whether a species is native or introduced in Europe. Both types of 

uncertainty can be linked but this is not necessarily the case. It is for example possible 

that a certain species is introduced beyond reasonable doubt, but that the taxonomy 

is not developed enough to attach a species name. Vice versa, there can be 

uncertainty on the introduced nature of certain species, despite stable taxonomy. 

Given this, our final nonindigenous species list should be interpreted with care and we 

acknowledge that several aspects of the data (e.g. xenoticity) are subjective to some 
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extent and open for interpretation. Future efforts should be directed toward 

establishing a DNA-based reference system including European species as well as 

species from the NW Pacific, Red Sea and other likely donor regions. Reducing the 

uncertainty in the primary data will be beneficial towards future management of 

introduced species. 
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Supporting information 

 

Figure S1. Boxplot of bootstrapped AIC values for curve fitting of the number of introduced species 
reported for the first time in Europe between 1950 and 2010 (left) and for the number of reported 
distribution records over all introduced species in the same area and period (right). The fitted curves are 
a linear curve, a power curve and a logistic curve. 

 

Figure S2. Histograms of the midpoint of the logistic model from 1000 bootstrap samples for the number 
of introduced species reported for the first time in Europe between 1950 and 2010 (left) and for the 
number of reported distribution records over all introduced species in the same area and period (right). 
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Abstract 
Aquaculture and maritime traffic have been identified as the main vectors for 

introductions of alien marine species. Except for one notorious case of Caulerpa 

taxifolia, the role of aquarium trade towards the introduction of alien seaweeds has 

been largely unassessed. Here, we address the risk of accidental release of seaweed 

species from the aquarium trade market in European waters. We assessed the 

importance and diversity of seaweed species in the European online aquarium retail 

circuit. Our web survey revealed more than 30 genera available for online sale into 

Europe, including known introduced and invasive species. A second aspect of the 

study consisted in sampling the algal diversity found in various aquaria. While 

allowing direct and accurate identification of the specimens, this approach was 

targeting not only ornamental species, but also seaweeds that may be accidentally 

present in the aquarium circuit. By DNA-barcoding we identified no less than 135 

species, of which 7 species are flagged as introduced in Europe with 5 of them 

reported as invasive. Thermal niche models show that at least 23 aquarium species 

have the potential to thrive in European waters. As expected by the tropical 

conditions in most aquaria, southern Atlantic regions of Europe and the 

Mediterranean are the most vulnerable towards new introductions. Further 

predictions show that this risk will increase and shift northwards as global warming 

proceeds. Overall our data indicates that aquarium trade poses a potential but 

limited risk of new introductions. However, the large reservoir of macroalgal species 

in aquaria calls for a cautious approach with the highest risk coming from aquaria on 

in coastal cities and on board of mega yachts.  
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Introduction 
Macroalgae represent one of the largest groups of marine aliens, which may account 

for 10 to 30% of all marine introduced species in Europe (Schaffelke et al., 2006; 

Williams & Smith, 2007; Zenetos et al., 2012; Katsanevakis et al., 2013). In areas such 

as the Thau Lagoon on the French Mediterranean coast, aliens may account for up to 

one third of the seaweed diversity and up to 100% of the local biomass on hard 

substrates (Boudouresque et al., 2010). Invasive marine macroalgae may 

outcompete native biodiversity and affect the functioning of coastal ecosystems 

(Hammann et al., 2013). For example, Codium fragile one of the most hazardous 

invasive marine macroalgae in temperate regions, is known to outcompete native 

kelp species (Levin et al., 2002; Scheibling & Gagnon, 2006). Invasions of alien 

seaweeds do not only pose biodiversity and ecological threats. From an economic 

perspective, invasive seaweed species may disturb aquaculture and tourism, and 

eradication and control effort can easily rise to a few million dollars (Neill et al., 

2006; Schaffelke & Hewitt, 2007; Irigoyen et al., 2011). 

The most important vector for alien seaweeds in Europe appears to be aquaculture 

and shell fish trade (Zenetos et al., 2012). Indirect evidence, such as the 

northwestern Pacific origin, time and location of first records, as well as 

experimental evidence demonstrate the role of oyster transfers as a vector of many 

seaweed introductions (Mineur et al., 2007a, 2014, 2015). The importance of 

shellfish transfer as a vector, however, does not imply that other potential pathways 

are by definition ineffective. Hull fouling or transport by ballast water have been 

suggested as vectors of invasive species (Hay, 1990; Flagella et al., 2007) but 

compared to other marine species, these maritime vectors are deemed less 

important since they exert strong selective pressures. These pressures include the 

presence of antifouling coatings on ship hulls and the absence of light in non-coated 

area such as sea chests where heterotrophic fouling organisms can thrive. Moreover, 

macroalgal propagules do not usually go through a resistant phase that would allow 

survival or prevent sedimentation in the ballast tanks. As a result, only cosmopolitan 

opportunistic species are found in standard maritime vectors (Mineur et al., 2007b). 

Another putative vector is presented by aquarium trade (Padilla & Williams, 2004). 

Even though only one introduction, of Caulerpa taxifolia, can be ascribed with 

certainty to aquarium trade (Jousson et al., 1998; Wiedenmann et al., 2001), several 

other species, including the lionfish Pterois volitans, are suspected to have been 

introduced by accidental releases from aquaria (Whitfield et al., 2002; Zenetos et al., 

2012). Some introductions of marine species (Zebrasoma xanthurum & Caulerpa 

taxifolia) are even assumed to be caused by accidental release from aquaria on 
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board mega yachts that travel the world (Meinesz, 1999; Guidetti et al., 2015; 

Verlaque et al., 2015). Aquarium trade as a pathway for the introduction of marine 

alien species is, however, still largely unexplored. Moreover, during the last 15 years, 

the internet has revolutionised how consumers purchase commodities. Trade in 

living organisms, terrestrial as well as aquatic, forms no exception to this trend. 

Aquarium hobbyists can obtain assorted living organisms from a wide variety of 

online sources, ranging from unofficial amateurs to established international 

suppliers. Recent studies start to point out the importance of biological invasions in 

aquatic environments associated with online trade (Padilla & Williams, 2004; 

Walters et al., 2006; Mazza et al., 2015). Most research focuses on freshwater fishes 

(Rixon et al., 2005; Strecker et al., 2011; Mendoza et al., 2015), the marine seaweed 

Caulerpa (Wiedenmann et al., 2001; Stam et al., 2006; Walters et al., 2006), or on 

aquarium e-commerce in the USA which is one of the major importers of aquarium 

species (Padilla & Williams, 2004; Stam et al., 2006; Odom & Walters, 2014). For 

many other taxa and geographic regions the risk of introducing alien species by 

aquarium trade remains hitherto unexplored. 

The risk of accidental release encompasses not only ornamental species that are 

directly sold through online or conventional commerce, but also non-target species 

(i.e. hitchhikers) that can end up in aquarium tanks. One potentially important 

source for non-target organisms can be found in live rock. Those porous 

cobbles/boulders are usually pieces of natural reefs (dead scleractininan corals) that 

have been naturally colonized by a wide range of organisms as coralline and other 

macro- and microalgae, invertebrates, and bacteria. Such living assemblages not 

only give the natural look to aquarium reefs that aquarists aspire, but it also serves 

as a shelter for fishes and invertebrates, as a substrate to sessile organisms, and as 

biological filtration mechanisms. The popularity of live rock by marine aquarists has 

been constantly growing since the 1970’s (Falls et al., 2008). Unfortunately, live rock 

also increases the odds of a successful invasion of a wide diversity of species if the 

aquaria contents are accidentally discharged into the wild. For example, live rock has 

been reported as a successful vector for jellyfish (Bolton & Graham, 2006). 

The present study aims to assess the seaweed diversity currently present in the 

European aquarium network. To this end, we used two approaches: 1) a surveillance 

of the online aquarium market for seaweeds that are subject to direct trade, and 2) 

sampling of aquarium tanks (private, retail shops and wholesalers, and public 

aquaria) coupled with a DNA barcoding approach, aiming at assessing the total 

diversity of both traded and accidentally introduced seaweeds. In order to identify 

the vulnerability of the European regions toward introductions of aquarium-



S e a w e e d  a q u a r i u m  t r a d e  i n  E u r o p e  | 123 

 

associated seaweeds, we performed a thermal niche modelling analysis. Since rising 

temperatures due to climate change are also considered amongst the main threats 

to biodiversity, these analyses were performed for present and future climate 

scenarios. To our knowledge, this is the first study that systematically examines the 

risk of seaweed introductions by aquarium trade extended to total seaweed 

diversity. 

Material and methods 

E-trade survey 
We monitored the diversity of seaweeds available through e-commerce from August 

1 to September 30, 2014. Thereto, we screened online retail and auction sites. 

Private forums were not monitored because of access restrictions. As similarly done 

for Caulerpa in the US by Walters et al. (2006), a database containing every unique 

item advertised for sale was compiled, recording the search terms used, vernacular 

and scientific names mentioned in the advertisement, URL of the commercial site, 

geographic location of the site, origin of the seaweed, price, availability of 

information regarding invasive potential, and possibility to ship to Europe. Every 

online advertisement was saved as a pdf file. 

Based on the pictures in the advertisements, we identified all records with best 

accuracy possible. Every taxon was labelled as ‘introduced’ or ‘not introduced’ based 

on the introduced seaweed distribution maps available on the Seas-era EUPF7ERA-

NET INVASIVES projects website (INVASIVES, 2016). ‘Introduced’ refers to alien 

species that are directly or indirectly transferred through human activities beyond 

their natural range of occurrence (Lucy et al., 2016). 

Again, We estimated the number of species offered for sale with the incidence-

based coverage estimator (ICE), considering every online vendor as a unique sample 

and the algal species as the diversity. ICE estimates the total species richness by 

estimating the proportion of the total richness covered by the samples in a set of 

replicated incidence samples (Gotelli & Colwell, 2010). All calculations were 

conducted with the program EstimateS 9.1.0 (Colwell & Elsensohn, 2014). 

Additionally, species accumulation curves were calculated using the R package vegan 

(Oksanen et al., 2017). 

Aquarium sampling survey 
In order to obtain specimens we contacted associations of aquarists in order to 

locate owners of ornamental seaweeds and live rocks (i.e. pieces of rock harbouring 
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a rich variety of microorganisms, invertebrates, and algae collected from tropical 

reefs), public aquaria, and retail shops. We sampled seaweeds in 5 private aquaria, 4 

public aquaria, and 3 retail shops. The identity of the above is not disclosed but can 

be obtained upon request. We also purchased about 15 live rocks assumed to be 

originating from Indonesia. We distributed the live rocks in three temperature and 

light controlled saltwater aquaria and surveyed them for several months. As similarly 

done with a focus on Caulerpa by Walter et al. (2006), we sampled the first 

seaweeds 4 weeks after the setup, the last after 8 weeks. We preliminarily assigned 

all the samples to the lowest taxonomic rank possible based on morphology. This 

resulted in most of cases in an identification to the genus level. We photographed 

every sample and preserved it in silica gel. Voucher specimens (herbarium and/or 

formalin preserved) are deposited in the Ghent University Herbarium (GENT). To 

increase the accuracy of the identifications, we identified the samples by DNA-

barcoding. We extracted DNA from silica gel dried specimens with the DNeasy Blood 

& Tissue kit of Qiagen (Qiagen, Valencia, California, USA) following the 

manufacturer’s instructions. For DNA amplification we followed previously published 

protocols (McDevit & Saunders, 2009; Saunders & Kucera, 2010; Saunders & Moore, 

2013). A complete overview of primers and references is given in Table S1 in 

Supporting Information. We submitted all the newly generated sequences to 

Genbank. A complete list of samples and corresponding GenBank accession numbers 

is provided in Table S2 in Supporting information. PCR products were sequenced by 

Macrogen. The obtained sequences were aligned with reference sequences from our 

personal library (Phycology Group, Ghent University) and GenBank with MEGA 

version 6 (Tamura et al., 2013). We aligned sequences and assigned them to the 

least inclusive taxonomic rank possible using phylogenetic trees or BLAST searches. 

Every taxon was again labelled as ‘introduced’ or ‘not introduced’ according to the 

rules described above. Species phylogenetically related to a known introduced 

species, i.e. belonging to the same genus, were flagged as a ‘related’.  Asymptotic 

species richness was estimated with the incidence-based coverage estimator (ICE) 

using EstimateS 9.1.0 (Chazdon et al., 1998; Colwell & Elsensohn, 2014) and a 

species accumulation curve was calculated using the R package vegan (Oksanen et 

al., 2017). 

Thermal niche 
For every unambiguously identified seaweed species, we determined the thermal 

distribution (i.e. the climatic niche). We used geo-referenced occurrences of the 

Global Biodiversity Information Facility (GBIF 2016), the OBIS database (OBIS 2016), 

and published literature sources. To limit the redundancy of neighbouring 

http://www.iobis.org/


S e a w e e d  a q u a r i u m  t r a d e  i n  E u r o p e  | 125 

 

occurrence records, we used the Behrmann cylindrical equal-area projection and 

maintained 1 record per 25 km² grid cell. Secondly, we matched these occurrences 

to the long-term mean monthly sea surface temperature (SST) values from MARSPEC 

(Sbrocco & Barber, 2013). After excluding species occurring in less than 30 grid cells, 

we obtained a data set of 39 species. For each species we calculated the thermal 

range as the 5th percentile of the SST of the three coldest months and the 95th 

percentile of the SST of the three warmest months. By using these percentiles as 

endpoints instead of the minimum and maximum values, we exclude rarities and 

consider as such the non-static range boundaries of marine species ranges (Bates et 

al., 2015). 

To assess the possible risk of aquarium species to European ecoregions, we tested if 

the mean SST values of the three coldest and warmest months for a certain 

European ecoregion were within the thermal range of every aquarium species. If 

positive, we considered this species as a potential threat for this particular 

ecoregion. This approximation of habitat suitability was carried out for the current 

and future (2055) climate. We used the climate model CMIIP5, scenario RCP4.5 

(increase of 1.4°C by 2055) of Combal (2014) for vulnerability predictions. The  

vulnerability of each ecoregion towards new introductions of alien species is 

estimated as the amount of species that meet the latter rules in that region. The 

assessed European ecoregions are all ecoregions within the provinces: Northern 

European Seas, Mediterranean Sea, Black Sea and Lusitanian (Spalding et al., 2007). 

Results 

E-trade survey 
Using 14 different search terms in Google, we identified 39 unique online vendors. 

The three most successful search terms were ‘Caulerpa for sale uk’, ‘Marine life 

aquaria’, and ‘Macroalgae aquarium store’. Together, they accounted for more than 

50% of the positive hits.  

Approximately half of the vendors were professional online retail shops, while the 

remaining half were online auction pages of hobbyists. Only 1 vendor gave 

information about the invasive potential of the traded species. The majority of the 

vendors (27) was situated in the USA. Only one of the US vendors exported to 

Europe, 16 did not ship to Europe, and 10 did not specify the countries shipped to. 

Other vendors were located in France, Germany, Malaysia, Poland, Thailand, and the 



126 | C h a p t e r  6  

 

United Kingdom. These vendors all shipped to or within Europe. Only one vendor 

gave information on the origin or the invasive potential of species.  

In total we estimated the seaweed diversity distributed by the 39 online vendors at 

75 species belonging to minimum 53 genera, based on a total of 236 unique sale 

items (Table 1). The number of species should be considered an underestimation of 

the true diversity since identification to species level was often not possible based 

on the limited information provided in the advertisements. Genus-level diversity is 

therefore more accurate and will be used primarily in the subsequent analyses. The 

ICE diversity coverage estimator resulted in a total estimated diversity of 123 species 

and 100 genera based on 39 vendors (Fig. 1). This large number is confirmed by the 

non-asymptotic nature of the species accumulation curve created for 39 online 

vendors (Fig. S1 in Supporting information). For three quarter of all online records, 

species (30%) or genus names (46%) were provided by the vendors, while the 

remainder did not bear a scientific name. Obvious misidentifications by the vendors 

at species and genus level occurred, respectively, in 3 and 5% of the cases. 

Vernacular names ranged from commonly used names like ‘sea lettuce’ (Ulva sp.) to 

less obvious names like ‘dragon’s breath’ (Halymenia sp.) and ‘tang heaven’ 

(Gracilaria sp.). 60% of the seaweeds available through global e-commerce belonged 

to the green algae (Chlorophyta), 36% to the red algae (Rhodophyta), and 4% to the 

brown algae (Phaeophyceae). Caulerpa, Chaetomorpha, and Halimeda, accounted 

for half the records of Chlorophyta. Within the Rhodophyta, most of the records 

belonged to Gracilaria and Botryocladia. Phaeophyceae were hardly offered for sale, 

and only occasionally Lobophora, Padina or Sargassum was encountered. For 71% of 

the advertisements it was not possible to ship to Europe, or shipping details were 

not provided. Only one third of the seaweeds could be purchased in Europe. 

Biodiversity trends were similar for the European as for the global aquarium trade 

network with the majority of seaweeds belonging to the Chlorophyta. We found 30 

available genera on the European online trade market (Table 1). More than half of 

the records found on the European e-market belong to genera that include species 

introduced in Europe. Moreover, several species flagged as invasive, or species 

closely related to invasive species are offered for sale. On a genus-level 26% of the 

specimens offered for sale can be classified as invasive or potentially invasive. 

Invasive species found were Caulerpa taxifolia and C. cylindracea (often under the 

name C. racemosa). Other species of Caulerpa, Codium, and Sargassum were 

considered as potentially invasive (Boudouresque & Verlaque, 2002; Streftaris & 

Zenetos, 2006; Provan et al., 2008). 
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Table 1. Genera found on the online trade market with their status of introduction in Europe and the 
number of record available in and outside the European online market. ‘introduced’ (INT) represents 
genera that include species introduced in Europe, ‘not introduced’ (NI) genera that do not include 
species introduced in Europe, when unclear or unknown the status is represented by ’uncertain’ (UNC). 

Genus Status 
Number of records 
(European market) 

Number of records 
(non-European market) 

Total 

Chlorophyta 
 

   
   Acetabularia NI 

 
1 1 

   Boergesenia NI 1 
 

1 

   Bornetella NI 1 
 

1 

   Caulerpa INT 20 32 52 

   Chaetomorpha UNC 4 17 21 

   Chlorodesmis NI 2 3 5 

   Cladophora INT 6 3 9 

   Codium INT 1 6 7 

   Cymopolia NI 
 

4 4 

   Enteromorpha NI 
 

1 1 

   Halimeda NI 6 9 15 

   Neomeris INT 1 2 3 

   Penicillus NI 
 

3 3 

   Rhipocephalus NI 
 

2 2 

   Udotea NI 1 3 4 

   Ulva INT 1 9 10 

   unknown UNC 
 

1 1 

   Valonia NI 2 
 

2 

Rhodophyta 
 

   
   Acanthophora INT 

 
3 3 

   Actinotrichia NI 1 
 

1 

   Agardhiella INT 
 

1 1 

   Amansia NI 1 
 

1 

   Amphiroa  NI 2 
 

2 

   Amphiroa  INT 
 

3 3 

   Botryocladia INT 3 7 10 

   Bryothamnion NI 
 

1 1 

   Carpopeltis NI 
 

4 4 

   Ceramium INT 1 
 

1 

   Cryptomenia INT 
 

1 1 

   Dichotomaria NI 3 
 

3 

   Eucheuma NI 
 

2 2 

   Fauchea NI 
 

1 1 

   Galaxaura INT 1 4 5 

   Gracilaria INT 
 

17 17 

   Haliptilon NI 1 
 

1 

   Halymenia NI 1 4 5 

   Heterosiphonia NI 
 

2 2 

   Hypnea INT 
 

1 1 

   Jania NI 1 
 

1 

   Kappaphycus NI 1 
 

1 

   Liagora NI 
 

1 1 

   Lithothamnion NI 1 
 

1 

   Mastophora NI 1 
 

1 
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Genus Status 
Number of records 
(European market) 

Number of records 
(non-European market) 

Total 

   Osmundaria NI 
 

1 1 

   Peyssonnelia NI 1 
 

1 

   Portieria NI 
 

4 4 

   Ptilophora NI 
 

2 2 

   Scinaia NI 
 

1 1 

Phaeophyceae 
 

   
   Canistrocarpus NI 

 
1 1 

   Dictyota INT 1 
 

1 

   Lobophora NI 
 

2 2 

   Padina NI 1 1 2 

   Sargassum INT 1 1 2 

   Turbinaria NI 1 
 

1 

   unknown UNC 
 

6 6 

Total 
 

69 167 236 

 

Figure 1. Incidence-based Coverage Estimator (ICE) for species and genera found on the global e-
market (mean ± SE). 

Aquarium sampling survey 
We identified 217 specimens from almost 50 aquarium tanks from private aquaria, 

public aquaria, and retail shops. Identifications were based on a combination of 

morphology and DNA barcoding (Table 2). 29 samples were identified to genus level 

and 189 specimens to species level, of which more than half were assigned to 

named species. Half of the species not assigned to a named species belonged to the 

coralline algae (Corallinales). In total, we found 135 unique seaweed taxa (Table 2), 
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of which almost half belonged to either the Chlorophyta or the Rhodophyta. Only a 

minority of the samples (4%) belonged to the Phaeophyceae. The Chlorophyta and 

Rhodophyta were equally sampled in aquarium tanks but the diversity of the 

Rhodophyta was significantly higher. Especially coralline red algae (subclass 

Corallinophycidae) were highly divers and abundant; they accounted for 57% of total 

seaweed diversity found and for 26% of the samples collected. Within the 

Rhodophyta, the following most abundant genera were Botryocladia, 

Haraldiophyllum and Polysiphonia. Caulerpa, Chaetomorpha and Cladophora were 

the most abundant green algae, and Dictyota the most abundant brown alga. The 

ICE diversity coverage estimator estimates the total diversity on 370 species and 128 

genera (Fig. 2). Similar to e-commerce websites, this large number is confirmed by 

the clearly non-asymptotic nature of the species accumulation curve for the 

aquarium samples (Fig. S2 in Supporting information). We found 6 species that are 

known to be introduced in Europe of which 5 species are reported as invasive: 

Caulerpa taxifolia, Asparagopsis taxiformis, Hypnea valentiae, Womersleyella 

setaceae and Sargassum muticum (Table 2) (Boudouresque & Verlaque, 2002; 

Chualáin et al., 2004; Streftaris & Zenetos, 2006; Provan et al., 2008; Nikolić et al., 

2010). Another 40 species were closely related to introduced species. These account 

for 30% of all specimens sampled in the European aquaria. 

 

Figure 2. Incidence-based Coverage Estimator (ICE) for species and genera found in the European 
aquarium trade market (mean ± SE). 
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Table 2. Seaweed diversity found in the European aquarium network and their status of introduction in Europe. ‘not introduced’ (NI) indicates species not 
known to be introduces in Europe, ‘introduced’ (INT) indicates species reported as introduced in Europe, ’uncertain’ (UNC) indicates that the status of 
introduction is unclear or unknown, ‘related’ (REL) indicates that a congeneric species is reported as introduced in Europe. 

Chlorophyta   Rhodophyta   Phaeophyceae   
Species Status Nr of  

Records 
Species Status Nr of  

Records 
Species Status Nr of  

Records 

Caulerpa parvifolia NI, REL 9 Mesophyllum sp1 NI 5 Dictyota friabilis1 NI, REL 4 

Chaetomorpha vieillardii NI 7 Haraldiophyllum sp1 NI 4 Dictyota ceylanica4 NI, REL 1 

Caulerpa racemosa UNC 6 Sporolithon sp1 NI 3 Dictyota implexa NI, REL 1 

Caulerpa constricta NI, REL 5 Titanophora sp1 NI 3 Halopteris filicina NI, REL 1 

Caulerpa taxifolia INT 5 Acanthophora spicifera NI, REL 2 Sargassum muticum INT 1 

Cladophora REL 4 Acrosymphyton sp1 NI 2 Sargassum sp1 REL 1 

Chaetomorpha UNC 3 Antithamnion REL 2    

Cladophora albida/sericea NI, REL 3 Asparagopsis taxiformis INT 2    

Derbesia REL 3 Botryocladia sp1 NI, REL 2    

Halimeda gigas NI 3 Cryptonemia sp1 NI, REL 2    

Valonia macrophysa NI 3 Gracilaria vieillardii NI, REL 2    

Bryopsis NI 2 Harveylithon sp1  NI 2    

Bryopsis sp1 NI 2 Lithophyllum sp2 REL 2    

Bryopsis sp3 NI 2 Melobesioideae sp2 NI 2    

Caulerpa cupressoides NI, REL 2 Peyssonnelia japonica NI 2    

Caulerpa prolifera NI, REL 2 Peyssonnelia sp3 NI 2    

Caulerpa sertularioides NI, REL 2 Polysiphonia REL 2    

Cladophora herpestica INT 2 Polysiphonia sp1 NI, REL 2    

Cladophora pellucida NI, REL 2 Ramicrusta sp1 NI 2    

Cladophora prolifera NI, REL 2 Sporolithon sp3 NI 2    

Derbesia sp3 NI, REL 2 Yonagunia zollingeri NI 2    

Halimeda minima NI 2 Amphiroa NI 1    

Valonia utricularis NI 2 Asparagopsis REL 1    

Boergesenia forbesii NI 1 Botryocladia REL 1    

Boodlea sp1 NI 1 Botryocladia sp2 NI, REL 1    

Boodlea sp13 NI 1 Ceramium codii NI, REL 1    
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Chlorophyta   Rhodophyta   Phaeophyceae   
Species Status Nr of  

Records 
Species Status Nr of  

Records 
Species Status Nr of  

Records 

Boodlea sp2 NI 1 Ceratodictyon repens NI 1    

Bryopsis sp2 NI 1 Chondracanthus saundersii NI, REL 1    

Caulerpa chemnitzia NI, REL 1 Coelarthrum NI 1    

Caulerpa flexilis NI, REL 1 Crouania attenuata NI 1    

Caulerpa lentillifera NI, REL 1 Cryptonemia lomation NI, REL 1    

Caulerpa oligophylla NI, REL 1 Erythrotrichia carnosa NI 1    

Caulerpa serrulata NI, REL 1 Griffithsia sp1 NI, REL 1    

Chaetomorpha sp1 UNC 1 Halymenia durvillei1 NI 1    

Chaetomorpha sp2 UNC 1 Halymenia durvillei2 NI 1    

Chaetomorpha sp3 UNC 1 Hydrolithon sp1 NI 1    

Chlorodesmis NI 1 Hydrolithon sp2 NI 1    

Cladophoropsis REL 1 Hydrolithon sp3 NI 1    

Codium REL 1 Hypnea sp1 NI, REL 1    

Codium arenicola NI, REL 1 Hypnea valentiae INT 1    

Codium dwarkense NI, REL 1 Incendia sp1 NI 1    

Derbesia sp1 NI, REL 1 Laurencia sp1 NI, REL 1    

Derbesia sp4 NI, REL 1 Lithophyllum sp1 REL 1    

Halimeda disoidea NI 1 Lithophyllum sp3 REL 1    

Halimeda opuntia NI 1 Lithophyllum sp4 REL 1    

Parvocaulis parvula NI 1 Lithophyllum sp5 REL 1    

Ulva REL 1 Mastophoroideae sp1 NI 1    

Ulva laetevirens NI, REL 1 Mastophoroideae sp2 NI 1    

Ulva sp1 NI, REL 1 Melobesioideae sp1 NI 1    

Ulva sp2 NI, REL 1 Meredithia sp1 NI 1    

Ulvella NI 1 Mesophyllum sp2 NI 1    

Ulvella leptochaete NI 1 Mesophyllum sp3 NI 1    

   Mesophyllum sp4 NI 1    

   Neosiphonia sp1 NI, REL 1    

   Palisada sp1 NI 1    

   Peyssonnelia sp1 NI 1    
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Chlorophyta   Rhodophyta   Phaeophyceae   
Species Status Nr of  

Records 
Species Status Nr of  

Records 
Species Status Nr of  

Records 

   Peyssonnelia sp2 NI 1    

   Peyssonnelia sp4 NI 1    

   Peyssonnelia sp5 NI 1    

   Peyssonnelia sp6 NI 1    

   Peyssonnelia sp7 NI 1    

   Phymatolithon sp1 NI 1    

   Plocamium sp1 NI, REL 1    

   Pneophyllum NI 1    

   Polystrata sp1 NI 1    

   Porolithon sp NI 1    

   Pterocladiella caerulescens NI 1    

   Pterocladiella sp1 NI 1    

   Ptilophora scalaramosa NI 1    

   Rhodymenia ardissonei NI, REL 1    

   Rhodymeniaceae NI 1    

   Sarconema filiforme INT 1    

   Sarconema sp1 NI, REL 1    

   Sporolithon sp2 NI 1    

   Titanoderma sp1 NI 1    

   Womersleyella setacea INT 1    

   Yonagunia sp1 NI 1    

Total  104 Total  105 Total  9 
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Thermal niche 
Comparison of the thermal distribution of the aquarium species with the current 

temperature conditions demonstrated that at least 23 of these species could 

possibly thrive in European seas under current climate conditions. This number 

increases to minimum 26 species in 2055 under future climate change scenario 

CMIIP5, RCP4.5. The majority of these species is already present in Europe and not 

known to be invasive (Table 3). Following our predictions, the number of aquarium 

seaweed species that is able to survive in the European waters is higher for the 

warmer southern European regions than for the northern, cooler ecoregions. The 

Aegean Sea, the Levantine Sea and the Saharan Upwelling were suitable for at least 

12 more species than presently reported (Fig. 3A). When only species known to be 

introduced are considered, 4 more introduced species could thrive in the ecoregions 

Azores Canaries Madeira, Ionian Sea and Saharan Upwelling under the current 

climate (Table 3). Extrapolating predictions to the climate predicted in 2055 under 

CMIIP5, RCP4.5 reflects a northward trend in invasion risk (Fig. 3B). All species 

considered are estimated to be able to thrive in more ecoregions under future 

climate conditions (2055) then under actual and estimated current (2010) conditions 

(Table S3 in Supporting Information). The Adriatic Sea (+7 species), the Baltic Sea (+4 

species), the Black Sea (+4 species) and the South-European Atlantic Shelf (+4 

species) had the biggest increase in invasion risk (Fig. 3B). 

 

Figure 3. The risk of new introductions by aquarium seaweed species in Europe estimated by the 
number of species with a thermal distribution falling within the mean maximum and minimum SST for 
each ecoregion under current (A, 2010) and future (B, 2055) climate conditions (model CMIIP5 scenario 
RCP4.5). 
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Table 3. Number of aquarium species found (actual records) and estimated under current and 
future (2055) climatic conditions for all European ecoregions. Between brackets are the number of 
species that are known to be introduced in Europe or (/) in another part of the world. 

Ecoregion Actual records Current climate Future (2055) 

Adriatic Sea 4 (1/1) 9 (0/1) 16 (4/1) 

Aegean Sea 4 (2/0) 16 (4/1) 16 (5/1) 

Alboran Sea 11 (2/1) 17 (5/1) 19 (5/2) 

Azores Canaries Madeira 13 (2/1) 20 (6/2) 21 (6/2) 

Baltic Sea 2 (0/1) 0 (0/0) 4 (1/1) 

Black Sea 2 (0/0) 4 (0/0) 8 (0/1) 

Celtic Seas 9 (1/2) 10 (1/2) 10 (1/2) 

Faroe Plateau 2 (0/1) 5 (1/1) 7 (1/1) 

Ionian Sea 3 (1/0) 14 (5/1) 15 (5/2) 

Levantine Sea 4 (4/0) 16 (5/2) 17 (6/2) 

North Sea 7 (1/1) 5 (1/1) 7 (1/1) 

Northern Norway and Finnmark 0 (0/0) 2 (0/1) 4 (1/1) 

Saharan Upwelling 6 (2/1) 22 (6/3) 23 (6/3) 

South and West Iceland 2 (0/1) 6 (1/1) 5 (1/1) 

South European Atlantic Shelf 10 (2/1) 14 (3/2) 18 (5/2) 

Southern Norway 4 (1/1) 5 (1/1) 6 (1/1) 

Tunisian Plateau/Gulf of Sidra 5 (3/1) 14 (4/2) 17 (6/2) 

Western Mediterranean 16 (4/1) 15 (4/1) 17 (5/1) 

Europe 21 (7/2) 23 (7/3) 26 (7/4) 

Discussion 
The risk posed by aquarium trade as a vector for introductions of alien aquatic taxa 

has relatively recently been raised and demonstrated by several studies (Padilla & 

Williams, 2004; Rixon et al., 2005; Walters et al., 2006; Mazza et al., 2015; Howeth et 

al., 2016). The vast majority of these studies focus on freshwater species and the 

USA which is considered as one of the major importers of aquarium species of the 

world (Padilla & Williams, 2004). Our survey confirms that online aquarium trade in 

marine macroalgae is best established in the USA. Only a minority of the online 

vendors ship to or in Europe, which limits the possible risk of introductions of 

aquarium associated introductions in Europe substantially. Despite the smaller 

market share, the seaweed diversity offered on the European e-market is, 

nevertheless, almost as high as the diversity on the non-European market. We found 

75 species available online of which 30 could be shipped in or to Europe. Only one 

third of the species is advertised on both the European and the non-European e-

market. 
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Aquarists often purchase or exchange organisms informally, in aquarist clubs, or 

through internet forums (personal communication aquarists). Since these purchasing 

alternatives are very hard to monitor and not considered in this study, the marine 

aquarium related diversity remains partly unexplored. Furthermore, these informal 

pathways will be very hard to regulate with respect to management strategies. 

Important is that 26% of the macroalgae offered for sale online are flagged as 

potentially invasive which creates a realistic risk for possible new hazardous 

introductions. Previous research has proven that Caulerpa is an important player of 

the aquarium trade in the United States (Stam et al., 2006; Walters et al., 2006). But 

invasive Caulerpa strains are rarely encountered on the American e-market, most 

likely due to awareness campaigns and legal regulation on trade of C. taxifolia (Stam 

et al., 2006; Walters et al., 2006). These authors recommend, however, a full ban of 

the Caulerpa genus due to the poor identification of traded algae (which is 

confirmed by our results), the need of molecular tools to identify invasive strains, 

and the lack of understanding of the potential invasive capacity of other Caulerpa 

species (Stam et al., 2006; Walters et al., 2006). Our survey indicates that also in 

Europe Caulerpa is by far the most common genus offered for sale online (Table 1). 

Corresponding to Mazza et al. (2015) we also found Caulerpa taxifolia online, 

confirming the potential dispersal of this invasive species through aquarium e-

commerce and illustrating the need of legal restrictions regarding online aquarium 

trade of macroalgae in Europe. A few cases were identified where tropical seaweeds 

collected in their natural environment (Malaysia and Thailand) are offered for sale 

online, thereby increasing the risk of introducing new potentially invasive species. 

We found no information about the treatment of the shipped seaweed material. 

Therefore, also inconspicuous organisms attached to the shipped seaweed material 

or present in the shipping water may be transported. Furthermore, this trade of 

newly collected specimens would also increase the genetic diversity within aquarium 

traded and potentially introduced seaweed species and other organisms. 

We identified minimum 135 taxa in the private and public aquaria, and retail shops. 

The number of estimated taxa reached a plateau (Fig. 2), which is indicative for a 

representative sampling. Identification of seaweed species based on morphological 

features is not straightforward, and therefore DNA sequence data are used to guide 

species identification (DNA barcoding) (Saunders, 2005; Leliaert et al., 2014). 

Although DNA barcoding has proven effective for rapid species identification in 

algae, an important limitation is the lack of a comprehensive DNA-based reference 

framework. This is especially the case for the coralline red algae, a group comprising 

a large part of unresolved biodiversity. Despite this difficulty identifying species, we 
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identified 85% of the 217 samples to species level based on molecular data. This 

shows that aquaria host substantial unknown diversity.  

Like the available online seaweed diversity, the diversity sampled in aquaria was 

highest for Rhodophyta. This high diversity in Rhodophyta is mainly due to the high 

abundance of coralline red algae (44 species). These calcified algae are popular 

among aquarists because of their appealing colour and good covering of the tank. 

Therefore, aquarists often add supplements to enhance growth of coralline algae 

(personal communication aquarists). Chlorophyta are popular among aquarists as 

biological filtration mechanism (e.g. Caulerpa, Chaetomorpha) (Odom & Walters, 

2014). Popular macroalgae, such as Bortryocladia, Chaetomorpha, Caulerpa, are 

easily maintained in aquarium conditions because they have broad environmental 

tolerances, exhibit rapid growth, vegetative reproduction and high reproductions 

rates. These are also characteristics linked to invasive seaweeds (Thomsen & 

McGlathery, 2007; Andreakis & Schaffelke, 2012). A worrying concern emerging 

from our survey is the presence of introduced and known invasives or species 

related to invasives, including Caulerpa taxifolia, Asparagopsis taxiformis and 

Womersleyella setacea. Aquarium associated species may therefore pose a realistic 

threat to European coasts.  

The diversity found in the sampled aquaria is remarkably larger than the diversity 

found online. Species found online are mostly large species used for ornamental 

purposes, fish food, or to a lesser extent, filtration purposes, while the diversity 

samples in the aquaria also includes small, epibiotic species that are often 

accidentally introduced in the aquaria through other organisms or live rocks. 

Especially live rocks prove to be a successful vector for a variety of species (Bolton 

and Graham 2006; Walters et al. 2006; this study). Walters et al., (2006) mentioned 

the development of 25 seaweed species, next to 4 Caulerpa species from live rock. 

Several genera we observed (e. g. Caulerpa, Hydrolithon, Peyssonnelia, Dictyota, 

Cladophoropsis, and Valonia) were already recorded to develop from live rock by 

Fosså & Nilsen (1996). Furthermore, we observed polychaetes, hydroids and 

cyanobacteria developing from the live rocks. These specimens have not been 

further surveyed but this highlights that live rock is a successful vector for an 

unknown variety of organisms, including inconspicuous microorganisms. Next to 

tropical seaweed species we found in warm water aquaria, we also found European 

species in cold water aquaria (e.g. Dictyota implexa, Halopteris filicina, Cladophora 

albida). These examples were the result of private samplings by the responsible of 

the aquarium (personal communication). This indicates that aquarists also acquire 
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seaweeds through informal ways and in this case even facilitates intra-European 

introductions. 

The estimated asymptotic species richness was both for the e-trade as well as the 

aquaria far larger than the number of species identified indicating that there is 

relatively large remaining diversity to be uncovered (Figs. 1 & 2). This was confirmed 

by the species accumulation curves  

Comparison of the mean SST and temperature range of the aquarium species 

demonstrates that European aquarium trade may not pose an imminent risk 

towards introductions of new macroalgae in European ecoregions. Most of the 

species are either already established in Europe or are not able to thrive in European 

ecoregions. But additional introductions may however result in an expansion of the 

genetic diversity of these invasive species. The higher risk of introduction in the 

southern parts of Europe is to be expected, as most species found in the aquaria are 

tropical species. As climate change proceeds, most ecoregions will become suitable 

to a higher number of aquarium species (Fig. 3 & Table 3). The invasive species 

included in the risk assessment (Asparagopsis taxiformis, Caulerpa taxifolia, 

Sargassum muticum, Womersleyella setacea) are all able to thrive in more 

ecoregions after climate change then under current conditions (Table S3). Note that 

while a thermal range of a species may not fully overlap the thermal range of an 

ecoregion, there might be smaller parts of that ecoregion that are suitable for a 

species. Consequently, the estimated number of species that can thrive in an 

ecoregion may be higher than we calculated. Conversely, given that only 

temperature was used to estimate the introduction risk, other factors restricting the 

distribution of macroalgae such as salinity and substrate may render specific 

ecoregions less suitable. We expect this to be especially the case for the Baltics and 

the Black Sea as they have a very specific salinity profile. These findings support the 

hypotheses of Rixon et al. (2005) that the probability of aquarium species 

establishment along European coasts will increase with climate warming because 

most aquarium species are of tropical or subtropical origin. 

Eradication of invasive species once they are established is very challenging. Hence 

prevention of new introductions is most effective in avoiding and limiting new 

biological invasions (Doelle et al., 2007; Vander Zanden & Olden, 2008). Research 

like this study, that focuses on identification of possible vectors of invasive species 

geographic regions and ecosystems most susceptible to them, is therefore essential 

in the development of effective management strategies (Stam et al., 2006; Vander 

Zanden & Olden, 2008; Corriero et al., 2016). Although global awareness regarding 
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invasive species is growing, the development of legal restrictions is slow. The 

European Union has recently developed a blacklist of species for which keeping, 

importing, selling, breeding, and growing are restricted. This list contains only 37 

species (mostly marine and terrestrial animals, and land plants), and no macroalgae 

(European Parliament, 2014; European Commission, 2016). The trade of macroalgal 

species is not restricted by CITES regulations, but the trade of live rocks is (CITES, 

2006). 

It has been previously stated that the probability of introduction of aquarium species 

is higher in regions close to large coastal cities and in regions where mega yachts 

with on-board marine aquaria are common due to a higher chance of transfer of 

seaweed material to the sea (Johnston & Purkis, 2014; Guidetti et al., 2015). 

Personal communication with aquarists revealed that many aquarists dispose their 

waste in ways that should prevent future introductions; i.e. putting waste in solid 

waste for landfill or solid waste for compost, which is encouraging. There were 

unfortunately also aquarists that dump their aquarium waste in the indoor plumbing 

or garden (personal communication), which may be dangerous in regions in close 

vicinity of the coast. Adding bleach to or boiling waste before dumping are possible 

solutions to avoid new introductions. Next to trade related legislations, proper 

education of aquarists has proven to help to prevent new introductions (Padilla & 

Williams, 2004; Walters et al., 2006) and is welcome here. But to fully eliminate the 

introduction risk by aquarium trade, policy-making bodies should further legal 

restrictions. 
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Supporting information 

 

Figure S1. Species accumulation curves for the number of species (black) and genera (blue) found in the 
e-commerce websites, each website represents one sample event and the vertical bars represent the 
standard deviation. 

 

Figure S2. Species accumulation curves for the number of species (black) and genera (blue) found in the 
16 public and private aquaria and retail shops, each aquarium representing one sample event and the 
vertical bars representing the standard deviation.  
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Table S1. Primers used for PCR amplification and sequencing. 

 

Forward 
primer 

Reverse 
primer 

Reference 

Chlorophyta 

ITS1  TW3 H1R (Leliaert et al. 2009) 

ITS2  TW5 ITS4 (Leliaert et al. 2009) 

RBCL1 7F 712F (Verbruggen et al. 2009) 

TUFA1 Tuf AF Tuf AR (Verbruggen et al. 2009) 

LSU C'1FL 
 

(Leliaert et al. 2007) 

SSU 
SR1 
SSU897 

SS11H 
18Sc2 

(Bakker et al. 1994; Hanyuda et al. 2002; Leliaert et al. 
2007) 

Phaeophyceae 

COX1 COX1F_Dic 
 

(Tronholm et al. 2010) 

PsbA psbAF1 
 

(Yoon et al. 2002) 

Rhodophyta 

RBCL2 
F8 
F481  

(Draisma et al. 2001) 

PSBA psbAF1 
 

(Yoon et al. 2002) 

Bakker FT, Olsen JL, Stam WT, Van Den Hoek C. 1994. The cladophora complex (Chlorophyta): new 
views based on 185 rRNA gene sequences. Molecular Phylogenetics and Evolution 3:365-382. 

Draisma SG, Prud'Homme van Reine WF, Stam WT, Olsen JL. 2001. A reassessment of phylogenetic 
relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA 
sequences. Journal of Phycology 37:586-603. 

Hanyuda T, Wakana I, Arai S, Miyaji K, Watano Y, Ueda K. 2002. Phylogenetic relationships within 
Cladophorales (Ulvophyceae, Chlorophyta) infered from 18S rRNA gene sequences, with 
special reference to Aegagropila linnaei1. Journal of phycology 38:564-571. 

Leliaert F, De Clerck O, Verbruggen H, Boedeker C, Coppejans E. 2007. Molecular phylogeny of the 
Siphonocladales (Chlorophyta: Cladophorophyceae). Molecular phylogenetics and evolution 
44:1237-1256. 

Leliaert F, Verbruggen H, Wysor B, De Clerck O. 2009. DNA taxonomy in morphologically plastic taxa: 
algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales). 
Molecular Phylogenetics and Evolution 53:122-133. 

Tronholm A, Steen F, Tyberghein L, Leliaert F, Verbruggen H, Antonia Ribera Siguan M, De Clerck O. 
2010. Species Delimitation, Taxonomy, and Biogeography of Dictyota in Europe (Dictyotales, 
Phaeophyceae) 1. Journal of phycology 46:1301-1321. 

Verbruggen H, et al. 2009. A multi-locus time-calibrated phylogeny of the siphonous green algae. 
Molecular Phylogenetics and Evolution 50:642-653. 

Yoon HS, Hackett JD, Pinto G, Bhattacharya D. 2002. The single, ancient origin of chromist plastids. 
Journal of Phycology 38:40-40. 
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Table S2. List of specimens sampled in aquaria. 

Taxon Sample ID Location 

Caulerpa racemosa SV0001 Live rock 1 

Boodlea sp13 SV0002 Live rock 1 

Boergesenia forbesii SV0003 Live rock 1 

Chaetomorpha vieillardii SV0004 Live rock 1 

Chaetomorpha SV0005 Live rock 1 

Chaetopmorpha sp1 SV0006 Live rock 1 

Chaetopmorpha sp2 SV0007 Live rock 1 

Cladophora SV0008 Live rock 1 

Cladophora SV0009 Live rock 1 

Caulerpa racemosa SV0010 Live rock 1 

Parvocaulis parvula SV0011 Live rock 1 

Caulerpa oligophylla SV0012 Live rock 1 

Palisada sp1 SV0013 Live rock 1 

Chlorodesmis SV0014 Live rock 1 

Caulerpa racemosa SV0015 Live rock 1 

Boodlea sp1 SV0016 Live rock 1 

Boodlea sp2 SV0017 Live rock 1 

Sarconema filiforme SV0019 Live rock 1 

Caulerpa racemosa SV0020 Live rock 1 

Ulva sp1 SV0021 Live rock 1 

Ulvella leptochaete SV0022 Live rock 1 

Caulerpa taxifolia SV0023 Live rock 1 

Gracilaria vieillardii SV0024 Live rock 1 

Chaetomorpha vieillardii SV0025 Live rock 1 

Chaetomorpha vieillardii SV0026 Live rock 1 

Chaetopmorpha sp3 SV0027 Live rock 1 

Gracilaria vieillardii SV0035 Live rock 1 

Pterocladiella caerulescens SV0036 Live rock  2 

Pterocladiella sp1 SV0037 Live rock  2 

Caulerpa cupressoides SV0038 Live rock  2 

Taxon Sample ID Location 

Peyssonnelia sp5 SV0039 Live rock  2 

Peyssonnelia sp3 SV0040 Live rock  2 

Hydrolithon sp2 SV0041 Live rock  2 

Hydrolithon sp3 SV0042 Live rock  2 

Hydrolithon sp1 SV0043 Live rock  2 

Peyssonnelia sp6 SV0044 Live rock  2 

Peyssonnelia sp3 SV0046 Live rock  2 

Peyssonnelia sp2 SV0047 Live rock  2 

Valonia macrophysa SV0048 Live rock  3 

Plocamium sp1 SV0049 Public Aquarium 1 

Crouania attenuata SV0050 Public Aquarium 1 

Womersleyella setacea SV0051 Public Aquarium 1 

Dictyota implexa SV0052 Public Aquarium 1 

Rhodymenia ardissonei SV0053 Public Aquarium 1 

Asparagopsis SV0054 Public Aquarium 1 

Ceramium codii SV0055 Public Aquarium 1 

Antithamnion SV0056 Public Aquarium 1 

Caulerpa prolifera SV0057 Public Aquarium 1 

Caulerpa taxifolia SV0058 Public Aquarium 1 

Caulerpa constricta SV0059 Public Aquarium 1 

Sargassum muticum SV0060 Public Aquarium 2 

Caulerpa prolifera SV0061 Public Aquarium 2 

Caulerpa sertularioides SV0062 Public Aquarium 2 

Caulerpa racemosa SV0063 Public Aquarium 2 

Halimeda disoidea SV0064 Public Aquarium 2 

Polysiphonia sp1 SV0065 Public Aquarium 2 

Cladophora SV0066 Public Aquarium 2 

Cladophoropsis SV0067 Public Aquarium 2 

Peyssonnelia sp1 SV0068 Public Aquarium 2 

Sporolithon sp1 SV0069 Public Aquarium 2 

Mesophyllum sp1 SV0070 Public Aquarium 2 

Halopteris filicina SV0071 Public Aquarium 1 
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Taxon Sample ID Location 

Cladophora SV0072 Public Aquarium 1 

Caulerpa constricta SV0073 Public Aquarium 3 

Codium SV0074 Public Aquarium 3 

Caulerpa taxifolia SV0075 Public Aquarium 3 

Yonagunia zollingeri SV0077 Public Aquarium 3 

Caulerpa serrulata SV0078 Public Aquarium 3 

Bryopsis sp3 SV0079 Public Aquarium 3 

Bryopsis sp1 SV0080 Public Aquarium 3 

Valonia utricularis SV0081 Public Aquarium 3 

Chaetomorpha SV0082 Public Aquarium 3 

Mesophyllum sp1 SV0083 Public Aquarium 3 

Chaetomorpha vieillardii SV0084 Public Aquarium 3 

Cladophora SV0085 Public Aquarium 3 

Derbesia sp3 SV0086 Public Aquarium 3 

Ceratodictyon repens SV0087 Public Aquarium 3 

Antithamnion SV0088 Public Aquarium 3 

Chaetomorpha SV0089 Public Aquarium 3 

Erythrotrichia carnosa SV0090 Public Aquarium 3 

Polysiphonia SV0091 Public Aquarium 3 

Cladophora albida/sericea SV0092 Public Aquarium 3 

Cladophora pellucida SV0093 Public Aquarium 3 

Derbesia sp4 SV0094 Public Aquarium 3 

Cladophora pellucida SV0095 Public Aquarium 3 

Cryptonemia lomation SV0096 Public Aquarium 3 

Coelarthrum SV0097 Public Aquarium 3 

Derbesia SV0098 Public Aquarium 3 

Chondracanthus saundersii SV0099 Public Aquarium 3 

Sarconema sp1 SV0100 Public Aquarium 3 

Botryocladia sp1 SV0101 Public Aquarium 3 

Rhodymeniaceae SV0102 Public Aquarium 3 

Polystrata sp1 SV0103 Public Aquarium 3 

Mesophyllum sp1 SV0104 Public Aquarium 3 

Taxon Sample ID Location 

Caulerpa parvifolia SV0107 Private aquarium 1 

Caulerpa sertularioides SV0108 Private aquarium 1 

Caulerpa chemnitzia SV0109 Private aquarium 1 

Halimeda minima SV0110 Private aquarium 1 

Caulerpa parvifolia SV0112 Private aquarium 2 

Botryocladia sp1 SV0113 Private aquarium 2 

Acanthophora spicifera SV0114 Private Aquarium 3 

Acanthophora spicifera SV0115 Private Aquarium 3 

Hypnea valentiae SV0116 Private Aquarium 3 

Caulerpa parvifolia SV0117 Private Aquarium 3 

Caulerpa parvifolia SV0118 Retail shop 1 

Asparagopsis taxiformis SV0120 Retail shop 1 

Mesophyllum sp4 SV0122 Retail shop 1 

Incendia sp1 SV0123 Retail shop 1 

Botryocladia SV0124 Retail shop 1 

Bryopsis SV0125 Retail shop 1 

Halimeda minima SV0126 Retail shop 1 

Derbesia SV0127 Retail shop 1 

Halimeda gigas SV0128 Retail shop 1 

Ramicrusta sp1 SV0129 Retail shop 1 

Polysiphonia sp1 SV0130 Retail shop 1 

Meredithia sp1 SV0132 Retail shop 1 

Caulerpa constricta SV0133 Public Aquarium 3 

Codium arenicola SV0134 Public Aquarium 3 

Caulerpa constricta SV0136 Public Aquarium 4 

Cladophora herpestica SV0137 Public Aquarium 4 

Yonagunia zollingeri SV0138 Public Aquarium 4 

Mesophyllum sp2 SV0139 Public Aquarium 4 

Valonia utricularis SV0140 Public Aquarium 4 

Chaetomorpha vieillardii SV0141 Public Aquarium 4 

Yonagunia sp1 SV0143 Public Aquarium 4 

Cladophora herpestica SV0144 Public Aquarium 4 
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Taxon Sample ID Location 

Derbesia sp1 SV0145 Public Aquarium 4 

Ulva SV0146 Public Aquarium 4 

Polysiphonia SV0147 Public Aquarium 4 

Cladophora albida/sericea SV0148 Public Aquarium 4 

Bryopsis SV0149 Public Aquarium 4 

Cladophora albida/sericea SV0150 Public Aquarium 4 

Cladophora prolifera SV0151 Public Aquarium 4 

Cladophora prolifera SV0152 Public Aquarium 4 

Phymatolithon sp1 SV0153 Public Aquarium 4 

Peyssonnelia sp4 SV0154 Public Aquarium 4 

Ulva laetevirens SV0155 Private Aquarium 4 

Caulerpa constricta SV0156 Private Aquarium 4 

Laurencia sp1 SV0157 Private Aquarium 4 

Chaetomorpha vieillardii SV0158 Private Aquarium 4 

Griffithsia sp1 SV0159 Private Aquarium 4 

Hypnea sp1 SV0166 Private Aquarium 4 

Haraldiophyllum sp1 SV0167 Private Aquarium 4 

Halimeda opuntia SV0169 Private Aquarium 4 

Caulerpa cupressoides SV0170 Private Aquarium 4 

Halymenia durvillei2 SV0172 Private Aquarium 4 

Halimeda gigas SV0173 Retail shop 2 

Halimeda gigas SV0174 Retail shop 2 

Dictyota ceylanica4 SV0175 Retail shop 2 

Dictyota friabilis1 SV0176 Retail shop 2 

Caulerpa racemosa SV_0.1 Private Aquarium 5 

Titanophora sp1 SV_0.10 Private Aquarium 5 

Mesophyllum sp1 SV_0.11 Private Aquarium 5 

Melobesioideae sp2 SV_0.12 Private Aquarium 5 

Sporolithon sp1 SV_0.13 Private Aquarium 5 

Melobesioideae sp2 SV_0.14 Private Aquarium 5 

Titanophora sp1 SV_0.15 Private Aquarium 5 

Sporolithon sp1 SV_0.16 Private Aquarium 5 

Taxon Sample ID Location 

Acrosymphyton sp1 SV_0.19 Private Aquarium 5 

Botryocladia sp2 SV_0.2 Private Aquarium 5 

Mesophyllum sp3 SV_0.20 Private Aquarium 5 

Melobesioideae sp1 SV_0.3 Private Aquarium 5 

Sporolithon sp3 SV_0.4 Private Aquarium 5 

Mesophyllum sp1 SV_0.6 Private Aquarium 5 

Sporolithon sp2 SV_0.7 Private Aquarium 5 

Titanophora sp1 SV_0.8 Private Aquarium 5 

Acrosymphyton sp1 SV_0.9 Private Aquarium 5 

Asparagopsis taxiformis SV_1.1 Live rock 4 

Titanoderma sp1 SV_1.11 Live rock 4 

Peyssonnelia japonica SV_1.11A Live rock 4 

Lithophyllum sp4 SV_1.11B Live rock 4 

Lithophyllum sp1 SV_1.11C Live rock 4 

Pneophyllum SV_1.12 Live rock 4 

Porolithon SV_1.13 Live rock 4 

Neosiphonia sp1 SV_1.14 Live rock 4 

Dictyota friabilis1 SV_1.16 Live rock 4 

Bryopsis sp1 SV_1.17 Live rock 4 

Ulva sp2 SV_1.19 Live rock 4 

Caulerpa parvifolia SV_1.2 Live rock 4 

Lithophyllum sp2 SV_1.21 Live rock 4 

Lithophyllum sp3 SV_1.21A Live rock 4 

Lithophyllum sp2 SV_1.21B Live rock 4 

Sporolithon sp3 SV_1.24 Live rock 4 

Dictyota friabilis1 SV_1.26 Live rock 4 

Ramicrusta sp1 SV_1.27 Live rock 4 

Chaetomorpha vieillardii SV_1.3 Live rock 4 

Derbesia SV_1.6 Live rock 4 

Caulerpa flexilis SV_1.7 Live rock 4 

Dictyota friabilis1 SV_1.8 Live rock 4 

Valonia macrophysa SV_1.9 Live rock 4 
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Taxon Sample ID Location 

Codium dwarkense SV_2.1 Retail shop 3 

Caulerpa parvifolia SV_2.10A Retail shop 3 

Mastophoroideae sp1 SV_2.10BV Retail shop 3 

Valonia macrophysa SV_2.10C Retail shop 3 

Derbesia sp3 SV_2.10D Retail shop 3 

Amphiroa SV_2.11 Retail shop 3 

Bryopsis sp3 SV_2.12 Retail shop 3 

Ulvella SV_2.13A Retail shop 3 

Peyssonnelia japonica SV_2.13B Retail shop 3 

Haraldiophyllum sp1 SV_2.14A Retail shop 3 

Bryopsis sp2 SV_2.15 Retail shop 3 

Caulerpa lentillifera SV_2.16 Retail shop 3 

Caulerpa parvifolia SV_2.18 Retail shop 3 

Harveylithon sp1  SV_2.19A Retail shop 3 

Harveylithon sp1  SV_2.19B Retail shop 3 

Cryptonemia sp1 SV_2.2 Retail shop 3 

Sargassum sp1 SV_2.20 Retail shop 3 

Haraldiophyllum sp1 SV_2.21 Retail shop 3 

Haraldiophyllum sp1 SV_2.22 Retail shop 3 

Caulerpa parvifolia SV_2.23 Retail shop 3 

Lithophyllum sp5 SV_2.28A Retail shop 3 

Mastophoroideae sp2 SV_2.28B Retail shop 3 

Ptilophora scalaramosa SV_2.3 Retail shop 3 

Halymenia durvillei1 SV_2.5 Retail shop 3 

Caulerpa parvifolia SV_2.6A Retail shop 3 

Cryptonemia sp1 SV_2.6B Retail shop 3 

Caulerpa taxifolia SV_2.7 Retail shop 3 

Peyssonnelia sp7 SV_2.9 Retail shop 3 
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Table S3. Species used for the thermal niche modelling analysis with their record count, midpoint of the 
thermal range, and the number of ecoregions they currently occur in and estimated under current 
(2010) and future (2055) climate conditions. 

Species Count Midpoint (°C) Current 2010 2055 

Acanthophora spicifera 319 24.4 0 0 1 
Asparagopsis taxiformis 545 21.5 7 8 10 
Boergesenia forbesii 111 25.7 0 0 0 
Caulerpa brachypus 127 22.3 0 4 6 
Caulerpa chemnitzia 76 25.2 0 0 0 
Caulerpa cupressoides 474 24.3 0 0 1 
Caulerpa flexilis 245 17.1 0 2 2 
Caulerpa lentillifera 181 24.5 0 0 1 
Caulerpa prolifera 205 21.4 4 8 10 
Caulerpa racemosa 954 23.1 1 3 5 
Caulerpa serrulata 418 25.1 0 0 0 
Caulerpa sertularioides 495 25 0 0 0 
Caulerpa taxifolia 467 21.3 2 8 10 
Ceramium codii 77 21.7 1 7 9 
Cladophora albida 371 14.8 11 17 18 
Cladophora herpestica 82 23.1 1 3 4 
Cladophora pellucida 408 15.4 6 13 13 
Cladophora prolifera 193 18.6 8 11 12 
Cladophora sericea 920 12.1 6 8 8 
Codium dwarkense 33 26.2 0 0 0 
Crouania attenuata 111 18.6 6 11 12 
Dictyota ceylanica 159 24.6 0 0 0 
Dictyota friabilis 157 24.6 0 0 0 
Dictyota implexa 52 19.1 5 11 12 
Erythrotrichia carnea 537 15.6 9 16 18 
Halimeda discoidea 639 24.7 0 0 0 
Halimeda minima 161 25.2 0 0 0 
Halimeda opuntia 739 25.4 0 0 0 
Halopteris filicina 418 16.1 7 10 12 
Halymenia durvillei 72 24.7 0 0 0 
Hypnea valentiae 163 21.4 2 9 10 
Parvocaulis parvulus 34 25.3 0 0 0 
Pterocladiella caerulescens 71 24.3 0 0 0 
Rhodymenia ardissonei 204 16 5 8 10 
Sarconema filiforme 67 22.5 1 6 8 
Sargassum muticum 1094 11.9 6 6 8 
Valonia macrophysa 141 21.7 3 8 10 
Valonia utricularis 105 19.9 6 10 10 
Womersleyella setacea 94 19.7 7 7 10 
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Abstract 
Invasive species can cause significant problems at ecosystem, economic and social 

levels. Assessing the potential geographic range of such species in invaded regions is 

therefore increasingly promoted for proactive ecological management. 

Unfortunately, because invasive species are by definition not at equilibrium within 

recipient environments, there is considerable uncertainty on how to model their 

distributions. In this study we evaluated the performance of species distribution 

modelling, trained with native and/or non-European distribution records, as a tool 

for predicting the spread of invasive seaweeds at various stages of the invasion 

process. We estimated the level of niche expansion observed under analog and non-

analog conditions and assessed which areas in Europe are expected to be 

disproportionally impacted by migrations of introduced seaweeds due to climate 

change. Our results indicate that due to considerable niche expansion in non-analog 

conditions including only native records is generally not sufficient to predict the 

range of invasive species. Including distribution records from non-European invaded 

regions on the other hand significantly increases the predictive power of the models 

and reduces the measured niche expansion in analog and non-analog conditions 

considerably. The European change and turnover maps combined with an 

assessment of the uncertainty therein predict an increased habitat suitability in 

northern Europe (northern UK, Scandinavia, Iceland), while southern European are 

likely to become less suitable. In addition to the overall picture, uncertainty in the 

estimates is apparent for specific regions but correlates only moderately to changes 

in habitat suitability.  
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Introduction 
Invasive species rank as one of the greatest threats to marine coastal biodiversity 

(McGeoch et al., 2010; Seebens et al., 2013). The European shores sadly stand out as 

a hotspot for introduced species (Molnar et al., 2008) and seaweeds represent one 

of the largest groups of marine aliens, accounting for 10 to 30% of all marine 

introduced species in Europe (Schaffelke et al., 2006; Williams & Smith, 2007; 

Zenetos et al., 2012; Katsanevakis et al., 2013). Several seaweeds, such as kelp or 

fucoids in the Atlantic Ocean and the canopy-forming Cystoseira species in the 

Mediterranean Sea, are true ecosystem engineers or foundation species (Jones et 

al., 1994; Mineur et al., 2015). Consequently, changes in seaweed communities can 

provoke cascading effects influencing the entire ecosystem, including for example 

changes in abundances of herbivores and understorey coralline algae (Monteiro et 

al., 2009; Harley et al., 2012; Verges et al., 2014; Wernberg et al., 2016). 

The ecological importance of seaweeds combined with high introduction rates of 

non-native species, highlights the need for methods able to accurately predict the 

future distribution of invasive species, preferably at the early stages of the invasion 

process. Species distribution modelling (SDM) links species occurrences with the 

environmental characteristics, and has the potential to predict distributions in a 

geographically explicit framework, including extrapolation in space and time. SDM 

can be used to identify areas with suitable habitat, assess whether introductions are 

likely to be successful, anticipate arrival points, and predict the extent of potential 

spread following an introduction. However, arrival points also heavily depend on the 

introduction vector (e.g. shipping, aquaculture) and the level of human activity 

related to these introduction vectors (Reiss et al., 2015). SDM can thus, 

supplemented with information on introduction vectors, help us inform decisions 

about preventive and control actions. 

The predictive power of SDM, however, is very much dependent on the assumption 

that species are at equilibrium with their environment, which implies that 

distribution records reflect stable relationships with environment. The very nature of 

invasive alien species, which are possibly still in the process of range expansion in 

the introduced range, means that this assumption is not met for these organisms 

(Elith et al., 2010). Furthermore, the biotic interactions in the native and introduced 

environment may differ leading to changes in the geographical and environmental 

range (DeWalt et al., 2004; Mitchell et al., 2006). Therefore SDM of invasive or 

range-shifting species is particularly challenging, and requires the development of 

advanced modelling techniques potentially integrating mechanistic and correlative 

approaches (Kearney & Porter, 2009). Mechanistic approaches may model species 
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distributions by modelling the body temperature based on functional traits of 

organisms instead of using the air or sea surface temperature as indicators of 

environmental stress (Kearney et al., 2010; Helmuth et al., 2011) However, data 

availability for mechanistic models is limited while distribution data to build 

correlative models is more widely available (Elith et al., 2010). Improving  

transferability of correlative models to other time/space datasets has been 

accomplished by reducing overfitting and sample selection bias . Such models can be 

obtained by using different model choices in the background selection (Barbet-

Massin et al., 2012; Martínez et al., 2015), restricting model complexity 

(regularization and number of variables) (Wenger & Olden, 2012), eliminating 

sample selection bias (Verbruggen et al., 2013; Radosavljevic & Anderson, 2014) or 

applying ensemble models (Hijmans & Graham, 2006; Araújo & New, 2007). 

In order to accurately predict the introduced geographic range, the environmental 

niche of the native and introduced populations of the species should be similar 

(Guisan et al., 2014). While, Wasof et al. (2015) have shown that environmental 

niches are generally conserved between separated populations of alpine plants, for 

introduced seaweeds this has not been shown. We, furthermore, distinguish niche 

expansion or niche conservatism in analog and non-analog conditions (Guisan et al., 

2014). Analog conditions are environmental conditions occurring both in the native 

and invaded range, while non-analog conditions are only occurring in one of the 

ranges. Although calculating niche change metrics in non-analog climates provides 

little insight in the evolution of the niche of a species, the change in niche metrics in 

non-analog conditions is still highly relevant for predicting the distribution of the 

species in invaded ranges (Petitpierre et al., 2012; Webber et al., 2012; Guisan et al., 

2014). 

In this study, we aim to improve predictions of invasive seaweeds in Europe and to 

map areas that will be disproportionally affected by changes in invasive seaweed 

distributions due to climate change. To this end, we first analyse the predictive 

performance of SDM towards the identification of suitable habitats in Europe at 

different stages of the invasion history based on a case study with five invasive 

seaweeds. Next, we calculated niche expansion and relate it to the performance of 

SDM. Finally, using an expanded dataset of 15 commonly recorded and widespread 

non-native seaweeds, we identified geographic risk areas in Europe by comparing 

current and future climate species distribution models.  
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Methods 

Records collection 
In order to explore the modelling of invasive seaweeds and their environmental 

niche in Europe we collected species records for five invasive species, for which we 

have ample distribution records in the introduced and native range: Codium fragile 

subsp. fragile, Dictyota cyanoloma, Grateloupia turuturu, Sargassum muticum and 

Undaria pinnatifida. Distribution records were classified as native or invasive, by 

region (Asia, Europe, America, Africa and Australia) and by year whenever possible. 

With respect to C. fragile subsp. fragile we decided to include species records for all 

subspecies as the identification of subspecies of C. fragile is notoriously difficult 

based on morphological criteria and the invasive subspecies is found in the entire 

range of the species (Brodie et al., 2007b; Provan et al., 2008; McDonald et al., 

2015). Moreover, DNA barcodes and morphometric data indicate that C. fragile may 

actually consist of two species, the invasive subspecies fragile and a second species 

grouping all remaining subspecies (Verbruggen et al., 2016). Distribution records 

were collected from different data portals including the Macroalgal Herbarium 

Portal (macroalgae.org), Global Biodiversity Information Facility (gbif.org), Australia’s 

Virtual Herbarium (avh.chah.org.au), Natural History Museum London (nhm.ac.uk), 

Muséum National d'Histoire Naturelle (mnhn.fr) with records updated until March 

2016. For the last part of our study we want to uncover areas in Europe that will be 

affected by displacements of introduced seaweeds due to climate change. 

Therefore, we collected occurrences for an additional set of ten seaweeds: 

Asparagopsis armata, Bonnemaisonia hamifera, Colpomenia peregrina, Dasya 

sessilis, Dasysiphonia japonica, Gracilaria vermiculophylla, Grateloupia subpectinata, 

Lomentaria hakodatensis, Polysiphonia harveyi and Polysiphonia morrowii. Together 

with the five species from the first part they form a set of 15 representative and 

widely introduced seaweeds in Europe. 

The quality of the distribution records was checked by geographic visualization and 

verification of mismatches between the location where the records were found and 

the coordinates recorded (Marcelino & Verbruggen, 2015). Duplicate records were 

eliminated as well as records located in the same grid cell of the environmental data 

in the same year. Records within the boundaries of the landmask were moved to the 

nearest ocean grid cell if located within 1,000 meters from an ocean grid cell. 

Records further than 1,000 meters from an ocean cell were deleted.  

http://macroalgae.org/
http://www.gbif.org/
http://avh.chah.org.au/
http://nhm.ac.uk/
http://mnhn.fr/
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Environmental data 
The Bio-ORACLE dataset was used as a source for environmental predictor variables. 

It consists of global rasters with a spatial resolution of 5 arcmin (Tyberghein et al., 

2012) and it is primarily designed for global-scale niche modelling of shallow water 

marine organisms (Marcelino & Verbruggen, 2015). The environmental layers were 

retrieved using the sdmpredictors R package (Bosch et al., 2016). 

Predictor selection is a major concern when building transferable SDMs. Many 

studies have addressed the consequences of variable selection (Rödder & Lötters, 

2009; Verbruggen et al., 2013; Barbet-Massin & Jetz, 2014). The problem underlying 

this issue is the absence of causal links between predictor and response variables 

which may constrain the predictive power of the model (Austin, 2002; Martínez et 

al., 2015). In this study, the selection of variables was made a priori, taking general 

knowledge on the physiology and ecology of seaweeds into account (Lüning, 1990; 

Hurd et al., 2014). In addition variables with high correlation were not selected. 

Four variables were selected a priori as potentially influencing seaweed distributions 

(Table 1). Sea surface temperature is suspected to be the main variable driving the 

distribution of seaweeds. It can affect the performance of growth, photosynthesis, 

reproduction and survival (Breeman, 1988; Lüning, 1990; Eggert, 2012). We used 

two temperature measures: maximum sea surface temperature and sea surface 

temperature range. Two more variables were added: mean photosynthetically active 

radiation and sea surface salinity. Seaweeds are photosynthetic organisms and 

therefore the quantity of light can affect their growth and limit habitat suitability. 

Salinity can influence osmotic dynamics limiting nutrient absorption and affect 

membrane integrity (Hurd et al., 2014), thus influencing growth, fitness and survival 

of seaweeds and therefore limit suitable habitats (Martins et al., 1999), as for 

example is the case in the Baltic Sea (Nyström Sandman et al., 2013). 

Table 1. Overview of the ranges (minimum, median and maximum) of the environmental data used for 
modelling invasive seaweeds both for global and coastal data with the values for Europe between 
brackets. The different layers are maximum and range of sea surface temperature (SST), mean 
photosynthetically active radiation (PAR) and sea surface salinity. 

 Minimum Median Maximum 
Layer Global Coastal Global Coastal Global Coastal 

SST (max) -1.5 (0.7) -1.5 (0.6) 25.3 (19.2) 20.2 (19.9) 35.9 (32.7) 37.6 (34.4) 
SST (range) 0.1 (2.5) 0.0 (1.3) 4.1 (7.0) 5.3 (12.2) 29.6 (25.1) 31.2 (29.4) 
PAR (mean) 0.5 (23.7) 0.5 (8.2) 39.6 (31.3) 34.4 (32.6) 52.3 (47.1) 66.9 (55.0) 
Salinity 0.0 (2.1) 0.0 (1.8) 34.7 (35.5) 33.4 (33.9) 40.7 (40.6) 41.5 (41.5) 
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Distribution modelling 
Species distributions were modelled using four different algorithms: surface range 

envelope, which is equivalent to bioclim (SRE, Busby, 1991), generalized linear 

model (GLM), maximum entropy (MaxEnt, Phillips et al., 2004) and random forests 

(Breiman, 2001). For MaxEnt and GLM, we explored the complexity of the models 

fitted by building models with linear and quadratic features. The complexity of SRE 

cannot be controlled and for random forests different settings were not explored. 

Additionally, an ensemble model (Araújo & New, 2007) was built by averaging the 

results of the most transferable models. Distributions were modelled using the R (R 

Core Team, 2016) packages biomod2 (Georges & Thuiller, 2013; Thuiller et al., 2016) 

and dismo (Hijmans et al., 2016). 

Sample selection bias is one of the main problems impacting the transferability of 

models, leading to an overrepresentation of conditions in places where collecting 

effort is higher and thereby inflating model performance indices (Hijmans, 2012). In 

order to reduce sample selection bias, and therefore also environmental bias, a 

spatial occurrence thinning method was used (Veloz, 2009). Presence records were 

eliminated with the R package spThin (Aiello-Lammens et al., 2015) for two different 

thinning distances, 30 and 100 kilometres, and the results of these were compared 

for the different model algorithms and complexities. 

Presence-only methods use species occurrence records and background points, 

which are selected randomly in the study area. As suggested by Phillips & Dudík 

(2008) we used 10000 background points in our study, which is adequate to cover 

the whole area. Two different sets of training background points were generated, 

one with points restricted to all pixels adjacent to land (coastal) and one with global 

background points. 

In order to evaluate the different modelling options an evaluation dataset is needed 

(Arlot & Celisse, 2010). As no independently sampled evaluation data was available, 

three different ways to obtain the evaluation dataset from our dataset were 

explored by either splitting ‘randomly’, ‘temporally’ or ‘spatially’ (Roberts et al., 

2016). The random splitting method consists of randomly splitting the dataset into 

training and testing. In the temporal approach, we used records from the earlier 

years to build the model and more recent occurrence records to evaluate them. 

Testing absence  points were selected using pairwise distances such that the 

distance between the test occurrences and pseudo-absence points is the same as 

the distance between training and test occurrences (Hijmans, 2012). Finally, the 

spatial approach consists of dividing datasets based on geography. European 
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occurrence records and coastal pseudo-absence points are used to evaluate the 

model built with records outside of Europe. The European region was determined as 

the area with longitude between -34 and 65 and latitude between 29 and 73. 

Three different metrics were used to evaluate model performance: area under the 

receiver operating curve (AUC) (Hanley & McNeil, 1982), Cohen’s kappa and the H-

measure. Although AUC values have been criticized in the context of species 

distribution modelling (Lobo et al., 2008), its use was motivated because it is 

objective, threshold independent and insensitive to imbalanced datasets (Hand, 

2009). Cohen´s kappa measures the agreement between predictions of the model 

and observations but corrects for agreement expected by chance. Kappa is sensitive 

to imbalanced datasets. Therefore, it has been corrected by creating a multitude of 

kappa values calculated from random balanced subsamples and taking the first 

quartile as the final kappa value. The H-measure (Hand, 2009), is similar to AUC but 

has as additional property that it is independent of the distribution of the empirical 

scores. 

Starting from the model choices resulting in the most transferable and robust 

models, SDMs were created for all five species for different timeframes in their 

invasive history. Models were fitted with an increasing number of records starting 

with all records from the last year prior to introduction in Europe (T1). We assessed 

the ability of these and successive models (T2, T3 and T4), which cumulatively 

included more invasive records, to predict the European distribution. 

This invasive history was analysed for two scenarios: a restricted and a global one. 

The restricted scenario consisted of a first model (T1), built with all native records 

and subsequent models with invasive records from Europe cumulatively added 

according to the invasive history (Table 2). The global scenario, on the other hand, 

consisted of models fitted with all available native and invasive records at the 

specific timeframe. Therefore, T1 models included native and invasive records from 

all non-European areas known at T1. 

As continuous model projections are sometimes difficult to interpret, the creation of 

binary presence/absence maps can be a useful tool for risk assessment. We used as 

threshold the value that maximizes the sum of sensitivity and specificity (maxSSS) to 

create binary suitability maps because it is one of the best performing methods to 

create threshold maps when absences are not reliable (Liu et al., 2013). 
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Niche shifts 
In order to measure the overlap in the realized niche of the species between the 

native and invaded range, three different indices have been calculated: niche 

expansion, niche stability and niche unfilling (Guisan et al., 2014). Niche expansion 

measures conditions in niche space not occupied in the native range. On the other 

hand, niche stability measures the conditions shared between both distributions. 

The niche stability is comparable to the niche overlap as assessed through 

Schoener’s D or Hellinger’s I. Lastly, niche unfilling measures the conditions occupied 

in the native range but not in the invasive range (Guisan et al., 2014). Ordination 

techniques, more specifically PCA-env, have been show to measure the niche 

overlap between two distributions better than SDM methods (Broennimann et al., 

2012). The PCA-env method compares kernel smoothed species occurrence densities 

in an ordinated environmental space, which allows for direct comparisons of 

species-environment relationships in environmental space. Similar to the 

distribution modelling, niche measures were calculated for the restricted and global 

scenario and by either only taking into account analog conditions or also including 

non-analog conditions (Guisan et al., 2012; Webber et al., 2012). The study area 

used to distinguish between analog and non-analog conditions was defined as all 

ecoregions (sensu Spalding et al., 2007) wherein occurrences are located. All indices 

were transformed to percentages of the entire niche. These analyses were 

performed using the R package ecospat (Broennimann et al., 2016).  

Risk areas 
In order to identify areas at risk in Europe we modelled current and future climate 

distributions with the same predictors used to build transferable models. 

Additionally, we fitted models for two extra predictor sets by substituting maximum 

sea surface temperature with the mean or minimum sea surface temperature, since 

according to Synes and Osborn (2011) it is rarely clear which temperature variable is 

most applicable. 

Ensemble models for these three sets of predictors were created by averaging the 

output of SDMs built with coastal background and all occurrence records using 

generalized linear models (GLM) with quadratic features, MaxEnt with quadratic 

features, random forests (RF) and surface range envelope model (SRE). These 

current climate models were subsequently projected to the three IPCC climate 

scenarios B1 (550 ppm stabilization), A1B (720 ppm stabilization) and A2 (>800 ppm) 

for the year 2100 (Jueterbock et al., 2013). The maximum sum of sensitivity and 

specificity (maxSSS) was used as a threshold for converting the current and future 

climate SDMs to binary maps. These binary maps for the 15 species were summed to 
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get a map of the number of species predicted in the current and future climate. The 

change maps were obtained by subtracting the current and future climate count 

maps for the three predictor sets, and subsequently calculating the mean and 

standard deviation of these. The mean anomaly map then reflects the change in 

number of species in the different areas, and the standard deviation map indicates 

the uncertainty of the results. Additionally, maps of the mean and standard 

deviation of the species turnover were calculated by counting, based on the binary 

maps, for each raster cell the number of species that either are predicted in the 

current climate and are not predicted in the future climate or vice versa. 

Results 

Distribution modelling 
The most transferable species distribution models were obtained by creating an 

ensemble based on MaxEnt and GLM with quadratic features, random forests and 

SRE, with models fitted using coastal background and species specific spatial 

thinning settings. Further information on the modelling choices is provided in the 

Supporting information. 

Based on these modelling choices we present the model performance when 

cumulatively more records are included in the training set representing different 

time points during the history of the introduction process. We repeated this process 

for two different setups, the first one using all non-European records (global 

scenario) and the second one using only native records (restricted scenario). Fig. 1 

represents the performance of the model for the two different scenarios for all 

species, while the previously introduced Table 2 gives an overview of the number of 

records available for each timeframe. 

For the restricted scenario, when only native records are used to build the model, 

AUC values are generally lower (left most values in Fig. 1A). The highest AUC is 

measured for D. cyanoloma (AUC = 0.872 with 11 records from the native range). 

While models for U. pinnatifida (AUC = 0.618) and S. muticum (AUC = 0.607) perform 

similarly with 77 and 71 records in the native range, respectively. Both G. turuturu 

(AUC = 0.536 with 43 records) and C. fragile (AUC = 0.485 with 44 records) have the 

lowest AUC. The AUC increases when occurrence records from Europe are included 

in the model (second, third and fourth value for each line in Fig. 1A and B), and this 

increase in AUC is larger at the early compared to the later phases of the 

introduction process. 
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Table 2 Data used to build the models in the global and restricted scenarios. The number of records 
included in the models (T1, T2, T3 and T4) is determined by the cumulative sum of the records 
(Timeframe). The number of records for the restricted scenario is determined by the sum of the Native 
and European records and for the global scenario by the sum of the Native, European and Non-
European records. All records, including records after the last timeframe or without a year indication, 
were only used for calculating the niche metrics. 

Species Timeframe Native European Non-European 

Codium fragile  

Before 1845 = T1 

44 

0 9 

Before 1940 = T2 41 49 

Before 1965 = T3 169 164 

Before 1990 = T4 471 350 

All 965 917 

Dictyota cyanoloma 

Before 1935 = T1 

11 

0 0 
Before 2008 = T2 5 0 
Before 2010 = T3 15 2 

All 41 2 

Grateloupia turuturu 

Before 1969 = T1 

43 

0 1 
Before 1985 = T2 13 1 
Before 2000 = T3 44 3 

All 170 36 

Undaria pinnatifida 

Before 1971 = T1 

77 

0 0 
Before 1990 = T2 7 1 
Before 2000 = T3 50 4 

All 165 51 

Sargassum muticum 

Before 1970 = T1 

71 

0 93 
Before 1975 = T2 12 112 
Before 1985 = T3 143 159 
Before 2000 = T4 412 179 

All 1447 345 

 

Figure 1 Evolution of the area under the curve (AUC) values at different points along the invasive 
history. The left figure (A) shows the AUC values for the restricted scenario, in which at T1 only native 
records are used for model fitting. Subsequent time points use both native and European records. For 
the right figure (B) all occurrence records (European and non-European) known at the specific year are 
used for modelling. The x-axis represents the percentage of invasive records used to build the model 
with the total number of records included in the last model as 100%. 
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Model performances of the global scenario are quite similar to those of the 

restricted scenario with the exceptions for C. fragile and S. muticum (Fig. 1B). Both 

the models for S. muticum and C. fragile have markedly higher AUC values when, 

next to native records, invasive records from other parts of the world known before 

the introduction in Europe (T1) are used to create the SDM. The other evaluation 

metrics (H-measure and kappa) show similar trends (Fig. S2 in Supporting 

information). 

Fig. 2 shows maps of the model predictions of S. muticum for the timeframes T1 and 

T4 for the restricted and global scenarios. While both T1 models generally predict 

low habitat suitability, the threshold map of the global scenario overall reflects the 

present European invaded area well (Fig. 2B). However, the model failed to predict 

parts of the French and Catalonian coasts in the Mediterranean Sea. Model 

predictions from the restricted scenario (Fig. 2A and C) tend to overpredict the 

Mediterranean and Baltic sea and underpredict Portugal and the North of the British 

Isles. Maps of the other species are available in Figs. S3 to S6 in Supporting 

information. 

Niche shifts 
The niche analysis was performed in both the restricted and global scenario and 

niche indices were measured with or without taking into account non-analog 

conditions. Generally very low niche unfilling was measured with the highest value 

being 3% for G. turuturu. From Fig. 3, which reports the niche expansion, we notice 

that except for D. cyanoloma there is virtually no niche expansion between the 

invasive records in Europe and the non-European records, regardless of whether 

non-analog conditions are included in the niche expansion. When the niche of the 

native records is compared with the niche of the European records (restricted 

scenario), we see that in analog conditions there is 20 % niche expansion for C. 

fragile and about 10 % niche expansion for S. muticum. Niche expansion is highest 

when non-analog conditions are also taken into account with almost 50% for C. 

fragile, around 20% for G. turuturu and S. muticum and 10 % for U. pinnatifida. D. 

cyanoloma, which is not introduced in regions outside Europe, has less than 10 % 

niche expansion between native and invaded range when non-analog conditions are 

taken into account. 

 



 

159 

 

 

Figure 2. European predictions of 
suitable areas for Sargassum 
muticum. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of S. muticum in 
Europe, C) native records and all 
European records known in the 
year 2000 (T4) and D) native 
records and all invasive records 
known in 2000. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. Maps of the other 
species are available in Supporting 
information (Figs S3-S5). 

a 
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Figure 3 Niche expansion between the native and European occurrence records for four different 
setups. The setups have differences in the records used for comparing niches and in what is considered 
as niche expansion. We compared the niche expansion in Europe for the native records (restricted) and 
the native and non-European introduced distribution records (global). For the analog scenario niche 
expansion is only measured in environmental space that is available in both native and invaded area. In 
the non-analog scenario all niche expansion is reported. The error bars represent the standard error of 
using either 30 or 100 km spatial thinning. 

Risk areas 

Regarding the assessment of areas at risk in Europe, we see that the largest increase 

in number of introduced species is predicted in the northern areas of Europe, more 

specifically along the coasts of Iceland, Denmark and Norway by 2100 for the IPCC 

scenario B1 (Fig. 4A). Smaller increases in the number of introduced species are 

predicted for the United Kingdom, the Netherlands and Belgium. Areas with the 

biggest decreases, effectively becoming less suitable for the modelled list of species, 

are mostly located in the Mediterranean region. Additionally, some smaller spots in 

the Atlantic show a decrease in the number of introduced species predicted. The 

standard deviation map (Fig. 4B) clearly shows that some areas with larger gain also 

have a higher uncertainty and that the northern regions have higher standard 

deviations. The Pearson correlation between the absolute value of the mean and 

standard deviation of the change maps is only 0.55 (Table 4), which indicates a low 

to moderate correlation. The turnover maps for the same IPCC scenario B1 (Fig. 4C) 

reveal a high turnover for the regions with big increases and decreases as identified 

by the change maps and a number of additional areas with changes in species 

composition. This is most notably the case for the southern coasts of Great-Britain 

and Ireland. The Pearson correlation between the mean and standard deviation of 

the turnover maps is 0.66 (Table 4).  
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Figure 4. The change in number 
and turnover of introduced 
seaweeds predicted by 2100 under 
the IPCC climate change scenario 
B1. The top left map (A) shows the 
mean difference in number of 
introduced species between the 
current climate and climate change 
scenario B1 from SDMs build for 15 
species. The top right map (B) 
indicates the standard deviation in 
model predictions when using the 
mean, minimum or maximum sea 
surface temperature as one of the 
four predictors for building the 
distribution models for each 
species. The bottom left (C) and 
right (D) maps indicate the mean 
and standard deviation of the 
turnover of introduced seaweeds. 
For the results based on two other 
IPCC scenarios, A1B (Fig. S7) and A2 
(Fig. S8) we refer to Supporting 
information. 
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For the two other IPCC scenarios, A1B (Fig. S7) and A2 (Fig. S8) in Supporting 

information, we observe the same trends. This is confirmed by the Pearson 

correlation between the change and turnover maps of the different climate change 

scenarios which are all highly or very highly correlated, with the smallest correlation 

for the mean maps being 0.88 and for the standard deviation maps 0.82 (Table 4). 

Table 4 Pearson correlation between the mean and standard deviation (SD) of the change (left) and 
turnover (right) maps for the different climate change scenarios (B1, A1B and A2). The left numbers are 
the correlations between the change maps, the right numbers represent the correlations between the 
turnover maps. 

 B1 A1B A2 

Mean SD Mean SD Mean SD 

B1 
Mean 1 / 1      

SD 0.55 / 0.67 1 / 1     

A1B 
Mean 0.90 /0.93 - 1 / 1    

SD - 0.85 / 0.82 0.53 / 0.66 1 / 1   

A2 
Mean 0.88 / 0.91 - 0.95 / 0.97 - 1/ 1  

SD - 0.82 / 0.79 - 0.88 / 0.84 0.50 / 0.69 1 / 1 

Discussion 

Distribution modelling 
Modelling the distribution of invasive species requires extrapolation to locations 

where the species have not previously been recorded. Therefore, general models 

with high transferability are needed (Randin et al., 2006). Several studies have 

researched methods to split occurrences into evaluation and training sets (Arlot & 

Celisse, 2010; Hijmans, 2012; Radosavljevic & Anderson, 2014; Roberts et al., 2016). 

The results of this study (Table S1 and Fig. S1) show that the random splitting 

method inflates the values of the evaluation metrics due to two different causes. 

Firstly, the environmental space distribution of the training and test occurrence 

records is the same. Hijmans (2012) already stated that closer testing and training 

points lead to artefacts in model evaluation and inflation of evaluation metrics. 

Secondly, background points and occurrences are more distant from each other in 

the environmental space leading to higher performance metrics. On the other hand, 

the temporal splitting approach shows low performance because background points 

and occurrences are distributed in the same environmental space rendering the 

differentiation between background points and presences difficult. With the spatial 

splitting approach, background points are well discriminated from occurrences but 

the occurrences used for testing the models and those used to build the model have 

a different distribution. In this context, we conclude that the spatial approach is the 
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most realistic cross-validation method for model selection of invasive species 

distribution models. This approach corroborates results by Radosavljevic & Anderson 

(2013), who demonstrated the power of geographic approaches to split the data to 

improve transferability and, therefore, to model invasive species. 

Models with overly complex response curves limit the transferability of SDMs due to 

overfitting (Wenger & Olden, 2012; Merow et al., 2013; Verbruggen et al., 2013; 

Duque-Lazo et al., 2016). However, our results showed that including only very 

simple features results in models with a low performance as compared to using 

quadratic features, indicating that using only linear features results in underfitting 

(Hastie et al., 2009; Merow et al., 2014; Moreno-Amat et al., 2015). This can 

potentially be explained by the inability of the models to capture the relationship of 

predictors like maximum sea surface temperature (SST (max)) with the species 

distribution as an organism’s response to temperature behaves like a quadratic 

curve and not a linear curve. With respect to algorithms we used GLM, MaxEnt, RF 

and SRE. GLM and MaxEnt generally performed well when models were tested with 

an independent European dataset (Table S3). However, a general trend does not 

exist which could be due to the variability in model performance of algorithms for 

different species (Elith et al., 2006; Araújo & New, 2007).In this context ensemble 

models prove to be a good solution to capture differences between model 

algorithms in a single transferable SDM (Table S3). 

Background selection has a big impact on model transferability. The model 

performance of the coastal background is consistently higher (Table S3). The 

motivation for this approach was the impossibility of seaweeds, being coastal 

organisms, to survive in deep oceanic areas (Lüning, 1990; Marcelino & Verbruggen, 

2015) and the usage of a similar approach in previous studies (Pauly et al., 2011; 

Martínez et al., 2015). Masking out training background data from the middle of the 

ocean improved model transferability when evaluated with testing records and 

coastal background points from Europe. Disregarding the absence of suitable 

substrate, the open ocean could hold environmental conditions suitable for the 

species. But when they are included in the background data they have to be 

classified as absences as species are not able to live there. By removing open ocean 

background data from the training set the number of false absences is thus 

significantly decreased, resulting in better and more transferable SDMs. 

Interestingly, differences between occurrence thinning parameters were species 

dependent. The lack of a common trend results from the idiosyncratic nature of the 

invasive process and recording history of the individual species. We followed the 

recommendations made in the literature (Phillips et al., 2009; Anderson & Raza, 
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2010; Barnes et al., 2014) and selected the wider thinning distances for those 

species with a small difference in performance for the two thinning distances since 

sample selection bias is one of the main drivers constraining transferability. 

Threshold maps of the predictions of the European invasion allow us to visualize 

areas for which presences and absences were incorrectly predicted (Fig. 2). Species 

distributions were not predicted accurately when models were built without any 

invasive records from Europe. However, prediction improves rapidly when only 10 

per cent of the European records were included to build the model. The addition of 

distribution records from other regions (global scenario case) improves the 

prediction and model performance mainly in C. fragile and S. muticum as these are 

the species with more records from other invaded regions. Especially, for S. muticum 

this resulted in a marked improvement of the T1 and later models. This implies that 

the inclusion of, the mostly Californian, invasive records known before the invasion 

in Europe add essential information about the environmental niche of S. muticum 

for modelling the European distribution. The fact that models perform generally 

better when including more records and when records from other invaded areas are 

included supports the idea that the whole environmental niche may not be recorded 

in the native range. Our results confirm that correlative models which aim to predict 

biological invasions should use all available records in order to capture the 

environmental niche better (Broennimann & Guisan, 2008; Verbruggen et al., 2013). 

But, in order to further improve the performance of species distribution models, 

next to extensive sampling of the native area, additional factors such as eco-

physiological data and biotic interactions may need to be included. 

For the other species the performance of T1 models is really low even if they are 

built with a relatively high number of records. For example the T1 model of U. 

pinnatifida was built with 77 native records and was barely able to predict the 

records in Europe. D. cyanoloma is a special case due to the few number of records 

available. The low number of records in D. cyanoloma models could explain the high 

AUC values and, therefore, it is probably heavily affected by the stochasticity of the 

known invasion process. Other factors contributing to the low initial performance 

include: differences in distributions in the environmental space between native and 

European occurrences, oversampling of specific native areas, lack of knowledge of 

the native distribution and lower competition in the invaded area. 

Niche shifts 
When using only analog climatic conditions, as suggested by Petitpierre et al. (2012), 

C. fragile and S. muticum are the species with the highest niche expansion in the 
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restricted scenario with both more than 10%, considered by Strubbe et al. (2013) to 

be a significant amount of niche expansion. The inclusion of distribution records 

from other invaded areas reduced the niche expansion to nearly zero. These results 

are very similar to previous studies of non-native plants and birds, with respectively 

7 out of 50 and 8 out of 28 species displaying more than 10% niche expansion in 

analog conditions (Petitpierre et al., 2012; Strubbe et al., 2013). In contrast to non-

native plants and birds, where niche unfilling was more prevalent than niche 

expansion, no niche unfilling was measured. This might potentially indicate a lack of 

sampling in the native range. 

However, we agree with Webber et al. (2012) that studies aiming to forecast 

biological invasions should include non-analog conditions, as those studies are based 

on extrapolation in analog but also non-analog conditions. The difference of niche 

expansion with or without inclusion of non-analog conditions in the restricted 

scenario is 20% for C. fragile and G. turuturu and more than 10% for S. muticum and 

U. pinnatifida which could significantly constrain the prediction of introduced 

species. However the inclusion of records from invaded areas outside of Europe 

eliminated all significant niche expansion. This might explain why including other 

invaded records resulted in an improvement of the distribution models. 

Risk areas 
The increase in number of introduced species in the more northern areas of Europe 

is in accordance with Jueterbock et al. (2013) who predicted a northward shift for 

three North Atlantic seaweeds. But, the predicted risk areas are influenced by the 

fact that we only took into account previously known invasive seaweeds in Europe, 

for instance the predicted decrease in introduced species in the Mediterranean Sea 

was to be expected given that the rising temperatures in the Mediterranean will 

render it unsuitable for several of the modelled species. This doesn’t necessarily 

imply that new species will not be introduced as the increased temperature might 

make it suitable for other, predominantly subtropical to tropical species that have 

not yet been reported in Europe. The big increase in predicted suitability for invasive 

seaweeds in the Northern Atlantic by 2100 might be tempered by the fact that the 

introduction and distribution of species depends on more factors than only the 

environmental suitability. Although temperature can be considered to be the main 

factor restricting the distribution of seaweeds (Breeman, 1988; Lüning, 1990; Eggert, 

2012), it is also limited by other abiotic (bathymetry, light, substrate) and biotic 

factors (competition and grazing) at smaller geographic scales (Marcelino & 

Verbruggen, 2015).  
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Another inherent factor of uncertainty in the results is the fact that we used models 

to predict the distributions of species in the current and future climate. One of the 

important factors contributing to this uncertainty is the selection of predictor 

variables (Synes & Osborne, 2011). By calculating the mean and standard deviation 

of models built with the minimum, mean and maximum temperature we tried to 

mitigate and visualize this uncertainty. By employing spatial thinning we reduced 

sampling bias and thus reduced overfitting, which in turn improves the 

transferability of the models in space and time (Boria et al., 2014). A limiting factor 

of distribution modelling of introduced seaweeds for future climate predictions is 

the availability of future climate predictions of other abiotic factors, like pH and 

phosphor, that have been shown to be important predictors of seaweed 

distributions (Verbruggen et al., 2013). 

The turnover maps show that the species composition in certain places will be 

altered, even when there is a limited increase in the total number of introduced 

species. If one or a few ‘leverage species’ become suitable or unsuitable this may 

result in sweeping community-level changes (Harley et al., 2006). 

Conclusion 
Distribution modelling of invasive seaweeds is a challenging task. In this study we 

showed that using coastal background, spatial thinning and an ensemble of models 

with quadratic features results in transferable distribution models. However, 

predicting the invasion through time can yield poorly performing models when the 

known distribution records don’t reflect the environmental niche of the species. 

Change and turnover maps combined with an assessment of the uncertainty therein 

are valuable tools. They allow for a cost-effective monitoring of coastlines, as not all 

European coastlines will be evenly impacted by climate change. 
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Supporting information 
In this supporting information we first aim to build transferable SDMs by selecting 

the best modelling choices. In order to be able to select transferable models the 

cross-validation (CV) splitting approaches have to be compared. Of the three cross-

validation data splitting approaches (CV) the random splitting approach yielded the 

highest values across the evaluation metrics used: AUC, kappa and H-measure (Table 

S1). On the other hand, the temporal splitting approach resulted in the lowest 

evaluation metrics for all species, with some of the models becoming 

indistinguishable from random models. The random CV resulted in occurrence 

training and test sets with very similar densities in environmental space, that are 

dissimilar from the background test points (Fig. S1). The spatial CV has occurrence 

training and test records that are both dissimilar from each other and from the 

background points. Lastly, with the temporal splitting approach both the occurrence 

training and test sets and the background test points are very similar. From this 

point onward options were only evaluated using the spatial CV. 

None of the two thinning distances explored (30 versus 100 km) performed better 

for all species (Table S2). Therefore the thinning procedure was kept species-specific. 

The thinning distances used were 30 km for G. turuturu and S. muticum and 100 km 

for the other species. 

Table S3 shows that models built with coastal background have higher AUC values. 

They are the most transferable for all features, species and algorithms. As the 

Surface Range Envelope algorithm only uses occurrence data to build the model, the 

resulting AUC values are the same for both types of background. 

Including quadratic features results in a higher transferability of the models for both 

MaxEnt and GLM (Table S3). Regarding the different algorithms tested, although 

generalized linear models consistently have a high AUC (Table S3A), other coastal 

background algorithms sometimes perform better than GLM depending on the 

species. In addition, MaxEnt coastal models with quadratic features perform 

somewhat similarly to coastal GLMs with quadratic features. The ensemble model 

built using all the algorithms, with the coastal background and quadratic features 

(for MaxEnt and GLM), generally performs well. The results for the other evaluations 

metrics show the same trends as those for AUC described here (Table S3B and C).  
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Table S1. Model performance for different algorithms and cross-validation (CV) data splitting 
approaches for all species. Values in red indicate high values while values in white indicate low values. 
A coastal background was used for all models and MaxEnt and GLM algorithms were performed with 
quadratic features. Thinning distances used for the different species were 100, 100, 30, 30 and 100 km, 
respectively. The three evaluation metrics used are AUC (A), kappa (B) and the H-measure (C). 

A. AUC       

CV Algorithm D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Spatial 

GLM 0.89 0.769 0.86 0.866 0.899 
MaxEnt 0.764 0.765 0.682 0.862 0.755 
RF 0.713 0.63 0.641 0.652 0.764 
SRE 0.727 0.796 0.743 0.613 0.813 

Year 

GLM 0.576 0.598 0.798 0.593 0.607 
MaxEnt 0.502 0.593 0.663 0.578 0.556 
RF 0.46 0.568 0.749 0.558 0.529 
SRE 0.567 0.588 0.743 0.621 0.626 

Random 

GLM 0.964 0.908 0.938 0.939 0.948 
MaxEnt 0.949 0.91 0.937 0.94 0.935 
RF 0.915 0.908 0.949 0.957 0.931 
SRE 0.893 0.835 0.805 0.848 0.86 

B. Kappa 

      CV Algorithm D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Spatial 

GLM 0.636 0.345 0.657 0.667 0.702 

MaxEnt 0.424 0.345 0.357 0.638 0.471 

RF 0.182 -0.024 -0.086 0.039 -0.038 

SER 0.455 0.595 0.486 0.226 0.615 

Year 

GLM 0.067 0.088 0.378 0.151 0.058 

MaxEnt 0.067 0.076 0.324 0.196 0.084 

RF -0.067 0.069 0.135 0.063 0.027 

SER 0.133 0.176 0.486 0.242 0.254 

Random 

GLM 0.857 0.675 0.78 0.725 0.824 

MaxEnt 0.786 0.675 0.805 0.725 0.765 

RF 0 0.147 0.146 0.469 0.059 

SER 0.786 0.669 0.61 0.689 0.721 

C. H-measure 

      CV Algorithm D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Europe 

GLM 0.539 0.301 0.492 0.509 0.608 

MaxEnt 0.354 0.299 0.185 0.506 0.296 

RF 0.255 0.1 0.132 0.094 0.28 

SER 0.391 0.394 0.381 0.093 0.454 

Year 

GLM 0.155 0.084 0.39 0.097 0.108 

MaxEnt 0.128 0.079 0.232 0.105 0.109 

RF 0.12 0.036 0.288 0.032 0.04 

SER 0.024 0.056 0.281 0.092 0.111 

Random 

GLM 0.853 0.542 0.756 0.648 0.752 

MaxEnt 0.884 0.542 0.732 0.648 0.705 

RF 0.783 0.529 0.736 0.735 0.694 

SER 0.768 0.449 0.544 0.531 0.61 
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Figure S1. Distribution of occurrences (training and test) and background test for the maximum sea 
surface temperature for Sargassum muticum for the three different splitting approaches: Europe (A), 
year (B) and random (C). 

Table S2. Model performance for the two thinning distances, 30km and 100km for the three different 
metrics: AUC (A), kappa (B) and H-measure (C). GLM and MaxEnt models were built with quadratic 
features. The best thinning distance is marked in green. 

A. AUC 

Algorithm 
D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 

GLM 0.881 0.895 0.766 0.769 0.86 0.665 0.866 0.688 0.907 0.899 

MaxEnt 0.728 0.764 0.82 0.765 0.682 0.631 0.862 0.683 0.779 0.755 

RF 0.705 0.713 0.725 0.63 0.641 0.59 0.652 0.566 0.817 0.764 

SRE 0.727 0.727 0.805 0.796 0.743 0.75 0.613 0.593 0.827 0.813 

B. Kappa 

Algorithm 
D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 

GLM 0.636 0.636 0.278 0.345 0.657 0.443 0.667 0.211 0.692 0.702 

MaxEnt 0.394 0.424 0.487 0.345 0.357 0.314 0.638 0.166 0.51 0.471 

RF 0.212 0.182 0.216 -0.024 -0.086 -0.014 0.039 -0.005 0.038 -0.038 

SRE 0.455 0.455 0.612 0.595 0.486 0.5 0.226 0.184 0.663 0.615 

C. H-measure 

Algorithm 
D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 

GLM 0.534 0.539 0.261 0.301 0.492 0.206 0.509 0.169 0.599 0.608 

MaxEnt 0.312 0.354 0.395 0.299 0.185 0.158 0.506 0.168 0.324 0.296 

RF 0.25 0.255 0.195 0.1 0.132 0.083 0.094 0.036 0.383 0.28 

SRE 0.389 0.391 0.418 0.394 0.381 0.399 0.093 0.076 0.512 0.454 
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Table S3 Overview of the effect of the different modelling choices on the model performance. Columns 
are divided by species and background type (coastal and global background), rows represent modelling 
algorithms and feature types (linear or quadratic), and the values are the performance metrics area 
under the curve (A), kappa (B) and H-measure (C). A higher value (red) indicates a high transferability, 
while low values (white) indicate a poor performance. Thinning distances used for the different species 
were 100, 100, 30, 30 and 100 km, respectively. Ensemble models for the different species were built 
with the options selected with an asterisk (*). 

A. AUC           

Algorithm 

D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Coastal Global Coastal Global Coastal Global Coastal Global Coastal Global 

GLM Q 0.895 0.768 0.769 0.666 0.86 0.383 0.866 0.771 0.899 0.827 

GLM L 0.651 0.647 0.49 0.351 0.529 0.329 0.505 0.492 0.56 0.508 

MaxEnt Q 0.764 0.662 0.765 0.536 0.682 0.379 0.862 0.762 0.755 0.529 

MaxEnt L 0.661 0.632 0.485 0.359 0.527 0.386 0.51 0.484 0.564 0.487 

RF 0.713 0.655 0.63 0.498 0.641 0.46 0.652 0.392 0.764 0.745 

SRE 0.727 0.727 0.796 0.797 0.743 0.743 0.613 0.614 0.813 0.808 

Ensemble 0.894 
 

0.831 
 

0.802 
 

0.843 
 

0.885 
 

B. Kappa    

Algorithm 

D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Coastal Global Coastal Global Coastal Global Coastal Global Coastal Global 

GLM Q 0.636 0.515 0.345 0.297 0.657 -0.071 0.667 0.286 0.702 0.538 

GLM L 0.455 0.485 0.259 -0.012 0.157 -0.229 0.099 0.077 0.327 0.115 

MaxEnt Q 0.424 0.394 0.345 0.136 0.357 -0.043 0.638 0.358 0.471 0.135 

MaxEnt L 0.455 0.394 0.253 0.003 0.171 -0.057 0.102 0.047 0.317 0.106 

RF 0.182 0.061 -0.024 0 -0.086 -0.143 0.039 -0.031 -0.038 0.317 

SRE 0.455 0.455 0.595 0.59 0.486 0.486 0.226 0.226 0.615 0.625 

Ensemble 0.545   0.463   0.4   0.461   0.519   

C. H-measure    

Algorithm 

D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Coastal Global Coastal Global Coastal Global Coastal Global Coastal Global 

GLM Q 0.539 0.367 0.301 0.151 0.492 0.068 0.509 0.34 0.608 0.366 

GLM L 0.256 0.239 0.065 0.133 0.091 0.083 0.033 0.074 0.119 0.043 

MaxEnt Q 0.354 0.251 0.299 0.056 0.185 0.057 0.506 0.339 0.296 0.052 

MaxEnt L 0.293 0.25 0.068 0.133 0.096 0.065 0.034 0.074 0.123 0.039 

RF 0.255 0.17 0.1 0.01 0.132 0.027 0.094 0.067 0.28 0.257 

SRE 0.391 0.391 0.394 0.394 0.381 0.381 0.093 0.093 0.454 0.454 

Ensemble 0.562   0.451   0.414   0.478   0.526   
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Figure S2. Evolution of kappa (A, B) and H-measure (C, D) at different points along the invasive history. 
The left figure (A, C) shows the values for the restricted scenario, in which at T1 only native records are 
used for model fitting. Subsequent time points use both native and European records. For the right 
figure (B, D) all occurrence records known at the specific years are used for modelling. The x-axis 
represents the percentage of invasive records included to build the model with the total number of 
records included in the last model as 100%. 
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Figure S3. European predictions of 
suitable areas for Grateloupia 
turuturu. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of G. turuturu in 
Europe, C) native records and all 
European records known in the 
year 2000 (T3) and D) native 
records and all invasive records 
known in 2000. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. 
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Figure S4. European predictions of 
suitable areas for Undaria 
pinnatifida. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of U. pinnatifida in 
Europe, C) native records and all 
European records known in the 
year 2000 (T3) and D) native 
records and all invasive records 
known in 2000. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. 
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Figure S5. European predictions of 
suitable areas for Codium fragile 
subsp. fragile. Red stars are 
locations used as test occurrences 
and the training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of C. fragile in Europe, 
C) native records and all European 
records known in the year 1990 
(T4) and D) native records and all 
invasive records known in 1990. A) 
and C) represent models from the 
restricted scenario while B) and D) 
are models from the global 
scenario. For further information 
about the number of records 
included in each model we refer to 
Table 2. 
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Figure S6. European predictions of 
suitable areas for Dictyota 
cyanoloma. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of D. cyanoloma in 
Europe, C) native records and all 
European records known in the 
year 2010 (T3) and D) native 
records and all invasive records 
known in 2010. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. 
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Figure S7. The change in number 
and turnover of introduced 
seaweeds predicted by 2100 under 
the IPCC climate change scenario 
A1B. The top left map (A) shows 
the mean difference in number of 
introduced species between the 
current climate and climate change 
scenario A1B from SDMs build for 
15 species. The top right map (B) 
indicates the standard deviation in 
model predictions when using the 
mean, minimum or maximum sea 
surface temperature as one of the 
four predictors for building the 
distribution models for each 
species. The bottom left (C) and 
right (D) maps indicate the mean 
and standard deviation of the 
turnover of introduced seaweeds. 
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Figure S8. The change in number 
and turnover of introduced 
seaweeds predicted by 2100 under 
the IPCC climate change scenario 
A2. The top left map (A) shows the 
mean difference in number of 
introduced species between the 
current climate and climate change 
scenario A2 from SDMs build for 15 
species. The top right map (B) 
indicates the standard deviation in 
model predictions when using the 
mean, minimum or maximum sea 
surface temperature as one of the 
four predictors for building the 
distribution models for each 
species. The bottom left (C) and 
right (D) maps indicate the mean 
and standard deviation of the 
turnover of introduced seaweeds. 



 

 



 

 

Chapter 8 
 

General discussion 
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The question of how plants and animals are distributed on Earth in space and time 

has fascinated biologists for a long time. The structure in the patterns observed 

inspired biogeographers and ecologists to seek explanations (Guisan & Thuiller, 

2005). This fascination has acquired an additional significance in the 21th century 

now that it becomes evident that the global climate is changing at an unprecedented 

scale. Climate exerts a dominant control over the natural distribution of species 

(Pearson & Dawson, 2003) and changes in climatic conditions are currently altering 

ranges of terrestrial and marine species (Walther et al., 2002; Parmesan & Yohe, 

2003; Perry, 2005; Chen et al., 2011). Without intending to downplay the effect of 

global climate change on terrestrial environments there is strong evidence that 

especially coastal marine ecosystems are affected by global climate change (Harley 

et al., 2006; Doney et al., 2012). It has been repeatedly suggested that the relentless 

anthropogenic pressure by pollution, eutrophication, overexploitation, habitat 

destruction and human-mediated exchanges of species has important cumulative 

effects on marine coastal environments (Strain et al., 2014). These anthropogenic 

stressors have the capacity to undermine the natural resilience of coastal 

ecosystems and exacerbate the effect of global climate change. For example, the 

distribution ranges of many intertidal species have shifted by as much as 50 km per 

decade, which is much faster than most recorded shifts of terrestrial species 

(Helmuth et al., 2006). Understanding the response of coastal marine ecosystems 

and predicting the potential impacts of a changing environment as a consequence of 

global change is therefore important and timely. 

Species distribution models that correlate the distributions of a species with climate 

variables or through an understanding of species’ physiological responses to climate 

change can present a valuable tool to understand the environmental conditions 

governing a species distribution range and to predict changes in the range 

distribution as a consequence of climate change (Pearson & Dawson, 2003). Despite 

this potential, species distribution modelling in the marine environment is less 

studied than for terrestrial ecosystems (Robinson et al., 2011). 

In this thesis we tried to push marine species distribution modelling by making 

distribution and environmental data more accessible to the end-user (Chapter 2, 3) 

and to advance our understanding of predictor relevance (Chapter 4). To achieve the 

latter we compiled a benchmark dataset which should facilitate future comparative 

studies of various aspects of the marine species distribution modelling process. In 

addition we applied these findings to test cases consisting of invasive seaweeds 

along European coasts. 
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Below I discuss the main findings in a broader perspective and provide perspectives 

on how to improve species distribution modelling in the future. 

Data 
Data about marine species and their distributions is an essential part of 

contemporary biological studies. The use of species-level data is required to get an 

understanding of the spatial pattern of marine ecosystems, their evolution, and how 

they respond to environmental change (Grassle, 2000).  

An ever increasing amount of taxonomic and distributional information is made 

available through web databases (see Table 1 for a small overview) like World 

Register of Marine Species (worms.org), Ocean Biogeographic Information System 

(iobis.org), Global Biodiversity Information Facility (gbif.org), Encyclopedia Of Life 

(eol.org), etc. Next to these general databases a wide variety of specialized websites 

exist for e.g. introduced species (DASIE, www.europe-aliens.org), fish (FishBase, 

fishbase.org), coral reefs (ReefBase, reefbase.org), algae (Algaebase, algaebase.org), 

etc. Moreover, multiple museum and herbarium collections have been released 

online e.g. Macroalgal Herbarium Portal (macroalgae.org), Australia’s Virtual 

Herbarium (avh.chah.org.au), Natural History Museum London (nhm.ac.uk) and 

Muséum National d'Histoire Naturelle (mnhn.fr). Finally, citizen science initiatives 

contribute significantly towards international biodiversity monitoring (Chandler et 

al., 2016). While most initiatives are geared towards terrestrial species, some marine 

citizen projects are well established (Edgar & Stuart-Smith, 2009; Theobald et al., 

2015; Edgar et al., 2016). Note that several of these databases exchange data, for 

example data from Algaebase and FishBase is shared with WoRMS and the Natural 

History Museum London collection data is uploaded to GBIF. Bingham et al. (2017) 

give a broad overview of this global landscape of biodiversity databases, projects 

and datasets, and the relations between these elements. 

Data from these databases have been used for a wide variety of applications. For 

instance, records from OBIS have in the last two years been used to model shifts in 

distributions of fish species (Fogarty et al., 2017), classify degrees of species 

commonness (Coro et al., 2015), identify species richness patterns (Chaudhary et al., 

2016; Ma et al., 2017), describe the biodiversity and biogeography of intertidal 

communities (Griffiths & Waller, 2016), identify biases in biodiversity (Higgs & Attrill, 

2015) and study marine spatial planning (Caldow et al., 2015; Geijzendorffer et al., 

2016). In Box 1 we give some modelling perspectives for new data in these public 

databases. 

http://worms.org/
http://iobis.org/
http://gbif.org/
http://eol.org/
http://www.europe-aliens.org/
http://fishbase.org/
http://reefbase.org/
http://algaebase.org/
http://macroalgae.org/
http://avh.chah.org.au/
http://nhm.ac.uk/
http://mnhn.fr/
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Table 1. Overview of the online databases with taxonomic and biogeographic data used in this thesis. 

Dark grey indicates the focus of the database as a source for taxonomy, biogeography, traits and 

herbarium data. Some of the database only focus on the marine environment (dark grey) while others 

collect data from both the marine and terrestrial environment. While citizen science data ends up in 

multiple of the listed databases only Reef Life Survey is focused on this. Although some databases have 

geographic focus, data from sampling campaigns in other parts of the world often ends up in these 

databases. 

Online database  T
ax
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 B
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 H
er

b
ar

iu
m

 

 O
n

ly
 m

ar
in

e 

 C
it

iz
en

 s
ci

en
ce

 

Taxonomic 
focus 

Geographic 
focus 

Algaebase (algaebase.org)       Algae World 

Australia's Virtual Herbarium 
(avh.chah.org.au) 

      
Plants, algae 
and fungi 

Australia 

Encyclopedia Of Life (eol.org)       
 

World 

FishBase (fishbase.org)       Fish World 

Global Biodiversity Information 
Facility (gbif.org) 

      
 

World 

Macroalgal Herbarium Portal 
(macroalgae.org) 

      Algae World 

Muséum National d'Histoire Naturelle 
(mnhn.fr) 

      
 

France 

Natural History Museum London 
(nhm.ac.uk) 

      
 

United 
Kingdom 

Ocean Biogeographic Information 
System (iobis.org) 

      
 

World 

Reef Life Survey (reeflifesurvey.com)       Reefs World 

ReefBase (reefbase.org)       
 

World 

World Register of Marine Species 
(worms.org) 

      
 

World 

All of the above mentioned data sources were used in one or more of the studies 

performed for this thesis. However, we encountered, several limitations related to 

the available information on the taxonomy and distribution of species. Caveats 

became most apparent while characterizing trends in introduced seaweeds in 

Chapter 5. Especially taxonomic problems were rife as for a large percentage of the 

species the taxonomic identity could not be accurately assessed. Furthermore, the 

introduction itself was uncertain or the native area of the species was unknown. 

Taxonomic issues and uncertainty with respect to the introduction history can often 

be resolved by performing genetic analyses of in situ and herbarium samples (McIvor 

et al., 2001; Verbruggen et al., 2007; Provan et al., 2008; Steen et al., 2017). 
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Box 1. New data for predictive modelling 
 

As shown in previous chapters, taxonomic databases such as the World Register of 
Marine Species (WoRMS) and Encyclopedia Of Life (EOL) and biogeographic 
databases like the Ocean Biogeographic Information System (OBIS) and the Global 
Biodiversity Information Facility (GBIF) are of great importance for marine predictive 
modelling. The inclusion of new types of data will allow for new applications and 
improvements of the current applications. 
 

Regarding taxonomic databases, specific attention has been given towards the 
inclusion of species’ traits information. The development of a marine species traits 
vocabulary was one of the tasks of the European Marine Observation Data Network 
Biology project (www.emodnet-biology.eu). As proposed in Chapter 2, traits from 
WoRMS can be very valuable for creating new quality control procedures for 
biogeographic databases, by allowing for example flagging a coastal species 
observed in the open ocean. When traits can be linked to a species’ distribution, this 
information can be used to study the relationship between traits and predictors, 
background data, algorithms and model complexity. In Chapter 7 we identified one 
such relationship between seaweeds and background data concluding that the usage 
of coastal background data results in a higher transferability of the models. Another 
unreported aspect concerns the relationship between different species, e.g. 
community membership, food web structure and cryptic species complexes. Having 
distributional information on other species that are part of the same community as 
the species being modelled allows for community-level approaches to species 
distribution modelling, which can, especially for rare species, result in improved 
model predictions (Elith et al., 2006; Hui et al., 2013; Madon et al., 2013; Harris, 
2015). 
 

For the biogeographic databases, OBIS has proposed to store in its database the 
sampling methodology, animal tracking and telemetry data, biological 
measurements (e.g., body length, percent live cover, ...) and environmental 
measurements such as nutrient concentrations, sediment characteristics or other 
abiotic parameters measured during sampling (De Pooter et al., 2017). While these 
data run risk to be highly heterogeneous, they potentially allow for studies of the 
link between the presence and abundance of species and the abiotic factors 
available for the species at the moment of the sampling event. The additional 
information on sampling methodology could be valuable metadata for the 
assessment of the fitness for use of the sample for a specific use case. 

However, a DNA reference framework is still missing for most macroalgae and for 

some species their origin will remain unknown. We also find a geographic signature 

with respect to taxonomic uncertainty, which is more common in Macaronesia and 

the Mediterranean Sea compared to the NE Atlantic. This difference is probably not 

due to taxonomic effort which we would expect to be more or less equal across 

these regions. In our opinion the higher percentage of species with tropical affinities 

http://www.emodnet-biology.eu/
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contributes significantly to taxonomic uncertainty. Tropical seaweeds in particular 

are poorly characterized with many ‘species’ being reported from all major ocean 

basins. In many cases these so-called pantropical species turn out to represent 

complexes of cryptic species. The individual species have predominantly, but not 

always, relatively small and well-defined ranges (e.g. Payo et al. 2013, Silberfeld et 

al. 2013, Vieira et al. 2017). Reports of widespread tropical species in the 

Mediterranean Sea or Macaronesia are therefore very difficult to interpret correctly. 

The species could after all be native and if introduced their area of origin is difficult 

to assess. 

While developing the MarineSPEED benchmark dataset (Chapter 4) we specifically 

aimed to avoid species with the above mentioned taxonomical issues by selecting 

well-studied species. During this process we identified the need for an indicator of 

taxonomic reliability on two levels. On a species level it would be useful to indicate 

whether a species is part of a group of cryptic species or whether it potentially is a 

synonym of another species. Additionally, an indication of the taxonomic reliability 

on specimen-level based on the identification source could prove valuable as we 

expect that for many species identification based on genetic information is more 

reliable than identification based on visual information. 

In Chapter 2 we aimed to alleviate the problems associated with publicly available 

databases containing distribution records from various sources. While OBIS records 

and their quality control flags have been made available through the robis R package 

(Provoost et al., 2016), the records available from OBIS and other species 

distribution databases, display significant differences in the quality and abundance 

of information on different parts of the world. By collecting data for a benchmark 

dataset and for modelling introduced seaweeds we identified multiple issues. The 

first issue consists of the uneven distribution of researchers throughout the marine 

world leading to clear biases, linked to the distribution of economic wealth. 

Secondly, even similar research effort can lead to pronounced differences in the 

abundance of distribution records. For instance, at a European scale we noted 

marked differences in availability of distribution records of macroalgae. Distribution 

records from France and the Mediterranean Sea are significantly less represented 

than records from the United Kingdom. We additionally encountered a paucity of 

distribution records in countries from the North Western Pacific (e.g. Japan, Russia, 

China and South-Korea), the native area of many introduced seaweed species. 

Australia on the other side is much better represented. For our analyses of trends of 

introduced seaweeds in Europe (Chapter 5), the 4,900 distribution records used 

were all sourced from literature and from participants of the INVASIVES project. 
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These records are by and large not available from public databases, indicating that 

there is a lot more data available. Gathering new distribution records and 

georeferencing from literature records is especially tedious as sampling locations are 

often only mentioned in the text or on a map and not as coordinates. The lack of 

distribution records refrained us from applying species distribution modelling 

techniques for the species identified in aquaria (Chapter 6). For future publications, 

this problem can be avoided by adopting a paper submission policy which requires 

the submission of distribution information to OBIS or GBIF just like is currently 

required for DNA sequences to GenBank (Costello et al., 2013). 

The promotion of current and new citizen science initiatives can be invaluable if we 

want to improve the number and quality of the available distribution information. 

New citizen science initiatives for extracting distribution information from literature 

sources combined with text mining could allow for the inclusion of literature records 

in public databases. However special care should be taken to avoid errors. A 

common error includes, dating distribution records as the publication date, which is 

generally not the same as the date the records were sampled. Moreover, one should 

avoid including fossil specimens (e.g. Foraminifera) in databases of contemporary 

distributions. Although citizen science projects are very appealing because of the 

relatively low costs involved and the resulting data has similar accuracy as data from 

other sampling campaigns (Edgar & Stuart-Smith, 2009), it can only be used as a 

supplement to funded research as the resulting data, especially from observations, is 

biased towards larger species. 

In Chapter 2 we reported the introduction of quality control flags for (Eur)OBIS. Such 

quality flags are a useful tool for feedback towards data publishers and allow for 

filtering of records according to the needs of the study envisioned by the 

researchers. This process could be improved by adding additional flags to datasets 

based on the study design and by grouping quality control flags into useful groups 

based on specific criteria, e.g. abundance-related or time-related criteria. A trade-

off, however, exists between the stringency of the quality control and obtaining 

sufficient data for modelling. While some progress has been made in fuzzy and 

Bayesian modelling techniques, a further development of these incorporating the 

uncertainty in distribution records could allow for the inclusion of the available 

information while taking into account the quality of the data (Mouton et al., 2009; 

Hattab et al., 2013; Costa et al., 2015; Hamilton et al., 2015; Golding & Purse, 2016). 

The currently available datasets with global environmental data such as WorldClim 

(Hijmans et al., 2005) and Bio-ORACLE (Tyberghein et al., 2012) have proven their 
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value in numerous species distribution modelling studies. Nevertheless, it should be 

acknowledged that these predictors often only provide a rough approximation of the 

abiotic factors controlling a species’ distribution and the usage of other predictors 

may lead to better models. Recently, Title and Bemmels (2017) identified an 

additional set of 18 new terrestrial climatic and topographic variables that are likely 

to have direct relevance to ecological or physiological processes determining 

terrestrial species distributions. Similarly, a new extended version of Bio-ORACLE is 

being created which addresses the need for high resolution benthic layers for 

modelling marine benthic species (Davies & Guinotte, 2011; Reiss et al., 2015; 

Boavida et al., 2016), which make up the bulk of the marine diversity. For example, 

the exploration of deep cryptic refugia for marine benthic species, is suboptimal 

when distributions are modelled using surface data only (Graham et al., 2007b; Assis 

et al., 2016). Besides benthic data for temperature, silicate, salinity, primary 

production, carbon phytoplankton biomass, nitrate, light, phosphate, iron, dissolved 

oxygen, current velocity and chlorophyll, data on sea surface temperature, sea ice 

and bathymetry is provided. All layers will be generated for the current and future 

climate and be made available through the sdmpredictors R package (Chapter 3). 

While these new benthic layers in Bio-ORACLE2 will no doubt open up new 

possibilities for improvements in marine benthic species distribution modelling it will 

render the approach used in Chapter 4, to model the relevance of predictors by 

fitting distribution models for all combinations of predictors, computationally 

unfeasible as the number of combinations of predictors increases non-linearly. Using 

the variable importance from a limited number of predictor sets (Brandt et al., 

2017), combined with an analysis of synergistic and antagonistic interaction effects, 

may allow for a considerable reduction of this computational burden. 

Predictive models and uncertainty 
In the previous chapters different models were created related to the distribution of 

marine species. In Chapter 2 we used a simple but effective outlier detection model 

based on the median absolute distance and the interquartile range to detect 

environmental and geographical outliers in distribution records published on OBIS. 

The relevance of available marine predictors was modelled by ranking the 

performance of predictors in species distribution models for various combinations 

using the MarineSPEED benchmark dataset in Chapter 4. Trends in the number of 

introduced seaweeds in Europe were modelled using logistic regression in Chapter 5. 

In Chapter 6 we estimated total species richness and created thermal niche models 

in order to assess the risk for seaweed introductions in Europe due to aquarium 
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trade. Lastly, in Chapter 7 we modelled the distribution and niche of invasive and 

introduced seaweeds in Europe. 

While all of the above approaches provide models fit for the purpose, the need for 

the assessment and visualization of the uncertainty is apparent. In Chapter 4 

variation in predictor relevance, and thus uncertainty, was visualized by using box 

plots of the results from various combinations of modelling setups. The uncertainty 

in the midpoint of the best fitting logistic curve for introduced seaweeds was 

assessed using bootstrapping (Chapter 5, Efron and Tibshirani 1986). Considerable 

uncertainty is involved when estimating total species richness in aquarium trade and 

on live rock which is visualized by EstimateS (Chapter 6, Colwell and Elsensohn 

2014). 

In Chapter 7 we explicitly mapped uncertainty resulting from picking one predictor 

out of a set of highly correlated predictors when predicting the current and 

forecasting the future distribution of introduced seaweeds. These results were then 

aggregated into change and turnover maps for which the standard deviation was 

mapped. However, species distribution modelling (SDM) is subject to multiple 

sources of uncertainty linked to the data, the model and the prediction (Rocchini et 

al., 2011; Beale & Lennon, 2012). Dormann et al. (2008) and Buisson et al. (2010) 

found that the SDM method contributes the most to the variation in future climate 

forecasts of species distribution. Other important factors include data uncertainty 

and the general circulation model (GCM) used for climate change impact studies 

(Dormann et al., 2008; Buisson et al., 2010). Synes and Osborne (2011), on the other 

hand, found that the predictor set used, contributes more to the uncertainty than 

the GCM and the climate change scenario. For maps of climate change forecasts of 

species distributions, prediction uncertainty assessment using residual variation 

analysis (PURV) plots allow for the visualization of interpolation and extrapolation 

uncertainties (Engler & Rodder, 2012). Concerning the uncertainty in the data, Naimi 

et al. (2011, 2014) showed that the impact of the positional uncertainty is heavily 

linked with the amount of spatial autocorrelation in the predictors. In order to 

visualize the uncertainty of species distribution maps, Rocchini et al. (2011) 

proposed to create maps of ignorance and Hartley et al. (2006) calculated 

confidence intervals for each location on the map. 

The addition of an indication of the uncertainty in the OBIS quality control flags 

(Chapter 2), and more specifically the outlier flags, could be relevant for future 

studies. This could be achieved by distributing, next to the quality control flags 

themselves, the values that were used to calculate the outlier flags. Uncertainty in 
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the models due to errors in the environmental data could possibly be assessed by 

including predictor permutation procedures, based on the original data and an error 

model, in the R package sdmpredictors (Chapter 3). Bio-ORACLE (Tyberghein et al., 

2012), for example, included maps of extrapolation errors which can be used as an 

error model. For other predictors, such as sea surface temperature, that didn’t 

require extrapolation the error is uncertain. Generally, we expect these 

permutations to have the largest effect on the model at the edges of the species’ 

distribution. But the impact on geographic space will depend on the interplay 

between the predictor importance, the spatial distribution of the errors and the 

distribution of the species modelled. 

Another important aspect of SDM is the need to take into account the bias-variance 

trade off as the model complexity had a clear impact on our results. While we did 

not experiment with the parameters regulating the complexity of the algorithms, the 

impact of using algorithms with different complexities resulted in marked 

differences in the predictor relevance (Chapter 4). This was especially the case for 

generalized linear models (GLM) fitted with only linear features for which the sea 

surface temperature had a lower relevance in comparison to the other algorithms 

used. While modelling invasive seaweeds (Chapter 7) the complexity of the models 

was a priori restricted by only allowing quadratic and linear features in MaxEnt and 

GLM. Further restricting the model complexity lead to a decrease in model 

transferability.  

The link between model complexity and the interpolation and extrapolation 

capabilities of species distribution models is well researched (Reineking & Schröder, 

2006; Heikkinen et al., 2012; Syfert et al., 2013; Merow et al., 2014; Radosavljevic & 

Anderson, 2014; García-Callejas & Araújo, 2015; Moreno-Amat et al., 2015). 

Avoiding models which overfit the distribution only depends on the selection of the 

evaluation data which should penalize overly complex models. The validation data 

can be obtained from independent sampling campaigns or by subsampling the 

collected distribution records. Many researchers noted that when subsampling 

distribution records the spatio-temporal nature of the data should be taken into 

account by either using geographically or temporally independent data for validation 

(Fielding & Haworth, 1995; Boyce et al., 2002; Araujo et al., 2005; Veloz, 2009; Arlot 

& Celisse, 2010; Peterson et al., 2011; Anderson, 2012; Hijmans, 2012; Barbet-

Massin & Jetz, 2014; Roberts et al., 2016). For invasive species with well-defined 

native ranges this is easy to perform as the native and invasive populations are 

spatially separated (Chapter 7, Jiménez-Valverde et al. 2011, Verbruggen et al. 2013, 

Petitpierre et al. 2017). For other species spatial data splitting is less obvious. In 
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Chapter 4 we proposed and implemented two spatial cross-validation methods: a 

disc-based and a grid-based approach. The biggest disadvantage of spatial cross-

validation is that it can result in the need for extrapolation between the training and 

test set. This is desired when extrapolation is expected, which is the case for invasive 

species exhibiting considerable niche expansion or for climate change studies 

(Chapter 7). But, it can also lead to the selection of sub-optimal models (Anderson, 

2012). This can in turn be mitigated by performing model selection based on the 

results of k-fold cross-validation (Roberts et al., 2016). In our predictor relevance 

study (Chapter 4) we noticed a marked difference between the relevance obtained 

by random and spatial cross-validation. These differences indicate that some 

predictors are more relevant for interpolation than for extrapolation. 

Next to the use of virtual species (Box 2), the use of a benchmark dataset such as, 

MarineSPEED, is ideally suited for a further study of optimal model complexities and 

extrapolation abilities of marine species distribution models. This could be achieved 

by applying hyperparameter optimization techniques commonly used in machine 

learning in order to choose algorithm settings resulting in models that do not over- 

or underfit the species distribution. Care should hereby be taken to prioritize the 

ecological relevance and plausibility of the resulting models over the accuracy of the 

prediction as measured by the evaluation metric used (Bell & Schlaepfer, 2016; 

Brewer et al., 2016).  

Some future perspectives 
In this final section we would like to bring forward some general and specific 

recommendations for future research avenues related to modelling marine species 

distributions. 

In Box 1 we already alluded to the possible added value of adding data such as traits 

data to taxonomic databases and biological and environmental data to 

biogeographic databases. Especially with more data on biotic interactions, migration 

patterns and environmental data becoming available, the ability to model the future 

distribution of marine species will greatly improve. Furthermore, an increased effort, 

from researchers, funding agencies and citizen science initiatives, in making the 

known distribution data publicly available will automatically lead towards better 

models as usually more data beats better algorithms (Halevy et al., 2009). More data 

could even lead to the development of general ecosystem models (GEM) with a 

higher resolution and precision as data is the main limiting factor for GEMs (Purves 

et al., 2013). 
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However, more data and more specifically more environmental data to choose from 

requires, next to a selection based on the ecology of a species, an easy way to filter 

out the most relevant predictors. For our predictor relevance study (Chapter 4) we 

unsuccessfully tried to predict the predictor ranking based on some rudimentary 

species traits and the ranking of models built with a single predictor. We believe that 

finding heuristics that are able to trim down or rank the extensive list of possible 

predictors of species distributions would be a valuable research topic. One possible 

avenue would be to elaborate on some of our preliminary results, based on a 

suggestion from Petitpierre et al. (2017), where we compared the performance of 10 

random predictor sets and a set of 5 PCA variables on the MarineSPEED dataset and 

found that the best predictor set of the first fold of all combinations of predictors did 

not statistically have a better performance than the best predictor set out of 10 

random predictor sets when tested on the other folds of a spatial cross-validation 

(Fig. 1). Another approach could involve modelling with all predictors and then, 

based on the importance of the variables in the model, reduce the number of 

included predictors as is done for Random Forests models in the R package VSURF 

(Genuer et al., 2015). 

A combination of the automated selection of near-optimal predictors with additional 

research on the selection of algorithms and their parameters, can lead to the 

automated modelling of species distributions. Such a system would allow for 

numerous applications. As a first application, the generated models could be used as 

an additional quality control procedure in OBIS (Chapter 2) whereby records with a 

low predicted suitability would be flagged. Another use case could be the generation 

of climate change risk zones , especially if models from multiple species are 

combined into a community model and additional information on biotic interactions 

and the migratory capabilities of the species are included. As most marine invasive 

species are difficult to eradicate once established, there is a need for the monitoring 

of vulnerable habitats (Reiss et al., 2015). The generated species distribution models 

of invasive species could prove to be invaluable for this. But, additional information, 

such as the introduction vectors (shipping, aquaculture, …), will have to be taken 

into account. 
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Figure 1. Performance of models build with PCA predictors or with random predictors measured as a 

delta the best predictor set from the first fold. Difference between the AUC (left) and COR (right) of the 

best predictor set from all combinations of 7 predictors from the first fold and the best predictor set 

from a set of 10 pseudo-random predictor sets from the first fold or the best model from a set of PCA 

models with different number of principal components from the first fold. 

While performing niche analyses of invasive seaweeds in Chapter 7 with the intend 

to estimate the amount of niche expansion, several issues came up. Firstly, we noted 

that spatial thinning of distribution records, the study area and whether occurrences 

in novel environments are considered, all have an impact on the resulting niche 

metrics. While these changes have a moderate to high impact on some species, 

further study is needed to elucidate this by doing an in depth investigation of the 

generated kernel densities of multiple real and simulated invasive species. Secondly, 

the great discrepancy between calculating the niche expansion only for analog 

conditions or additionally including expansion into non-analog climates has to be 

further investigated. The biggest question therein is whether this niche expansion 

reflects genuine niche shifts with ecological or evolutionary mechanisms or whether 

it is due to methodological or data issues such as a lack of distribution records in the 

native habitat and differences in the available environmental conditions in the 

native and invaded area. Including this observed niche expansion either by 

transferring magnitude and character of observed niche shifts from well-studied 

avatar invaders to new or potential invaders or by the use of mechanistic models 

combining eco-physiological data with distribution data or some other method will 

no doubt lead to improved distribution models (Kearney & Porter, 2009; Larson et 

al., 2014). This is not only important for invasive species but will increasingly become 

important for the prediction of the future distribution of species under a changing 

global climate. 
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Box 2. Virtual species 
 

Many researchers have used virtual species, sometimes in combination with real 
species, to study various aspects of species distribution modelling (SDM). The idea of 
virtual species is to simulate the species’ probability of occurrence in relationship 
with one or more environmental gradients, and project it into a real or artificial 
landscape (Leroy et al., 2016). 
 

Hirzel et al. (2001) pioneered this approach in their comparison on the performance 
of two methods (GLM and ENFA) for three different scenarios: a spreading species, a 
species at equilibrium and an overabundant species. Other studies used it to 
compare sample selection mitigation methods (Dudík et al., 2005; Kramer-Schadt et 
al., 2013; Varela et al., 2014), the performance of analysts (Austin et al., 2006), 
regularization methods (Reineking & Schröder, 2006), SDM algorithms (Real et al., 
2006; Meynard & Quinn, 2007), methods accounting for spatial autocorrelation and 
collinearity (Dormann et al., 2007, 2013) and pseudo-absence generation methods 
(Wisz & Guisan, 2009). Furthermore virtual species have been used to assess the 
impact of data errors (Naimi et al., 2011, 2014; Lauzeral et al., 2012), species 
invasion (Václavík & Meentemeyer, 2009), scale effects (Bombi & D’Amen, 2012) 
and model complexity (Santika & Hutchinson, 2009; García-Callejas & Araújo, 2015) 
and to assess the general performance of SDM (Bahn & McGill, 2007; Elith & 
Graham, 2009; Zurell et al., 2009; Saupe et al., 2012; Li & Guo, 2013). 
 

While most papers developed their own approach for creating virtual species, 
various software packages for virtual species have been (recently) released: COMPAS 
(Austin et al., 2006), demoniche (Nenzén et al., 2012), SDMvspecies (Duan et al., 
2015), virtualspecies (Leroy et al., 2016), NicheLim (Huang et al., 2016) and NicheA 
(Qiao et al., 2016). Additionally Garzon-Lopez et al. (2016) released a set of two 
virtual terrestrial species. Some commonly used approaches for simulating species 
include drawing a distribution from a known equation in a real or simulated 
environment, sampling a spatially explicit population model or creating a 
thresholded species distribution model and then subsampling from the resulting 
map (Miller, 2014). 
 

As the true distribution of the virtual species is known, this approach allows for a 
direct comparison with the predictions from an SDM. The use of virtual species thus 
allows for the independent testing of various properties affecting the performance 
of species distribution models without the presence of any confounding factors, 
such as sample selection bias, commonly present in real datasets (Miller, 2014). 
Virtual species are particularly useful if relevant aspects of the species distribution, 
such as population processes and competition are included (Elith & Graham, 2009). 
The biggest disadvantage of using virtual species is that the ecological relevance and 
transferability of the obtained results towards real species is often not assessed 
(Meynard & Kaplan, 2013; Miller, 2014). A mixed approach, combining virtual and 
real species such as those from the MarineSPEED benchmark dataset (Chapter 4) 
could alleviate this concern. 
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Summary 

The increased anthropogenic pressure on the marine environment through over-use 

and overfishing, invasion of species and global climate change has led to an urgent 

need for more knowledge on the marine ecosystem. Marine species distribution 

modelling is an important element of marine ecosystem management. It is relied 

upon by marine spatial planning for i.e. predicting biological resources, the design of 

marine protected areas, the designation of essential fish habitats, the assessment of 

species invasion risk, pest control, human-animal conflict prevention, …. 

This study aims to improve and contribute to the process and understanding of 

marine species distribution modelling in order to facilitate an in depth study of the 

trends, vectors and distribution of introduced seaweeds in Europe. More specifically 

we wanted to 1) provide quality indicators for the marine species distribution data 

available in the Ocean Biogeographic Information System (OBIS), 2) make global 

datasets for species distribution modelling in the past, current and future climate 

more accessible in R, 3) explore the relevance of different predictors of marine 

species distributions with MarineSPEED, a marine benchmark dataset of more than 

500 species, 4) investigate the introduction history and trends in introduced 

seaweeds in Europe, 5) evaluate the risk of aquarium trade as a vector for future 

introductions of seaweeds and 6) study the ability of species distribution modelling to 

predict the introduction and spread of introduced seaweeds and propose a method 

for identifying candidate areas for further spreading under climate change. 

The first part of this thesis concerns general aspects of marine species distributions, 

the environmental data used for modelling and the relevance of marine predictors of 

species distributions. 

In Chapter 2, different steps are developed to analyse the quality and completeness 

of the distribution records within the European and international Ocean 

Biogeographic Information Systems (EurOBIS and OBIS). Records are checked on data 

format, completeness and validity of information, quality and detail of the used 

taxonomy and geographic indications and whether or not the record is an outlier. The 

corresponding quality control (QC) flags not only help users with their data selection, 

they also help the data management team and the data custodians to identify 

possible gaps and errors in the submitted data. Through the Biology portal of the 

European Marine Observation and Data Network (EMODnet Biology), a subset of 

EurOBIS records—passing a specific combination of these QC steps—is offered to the 
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users. Through LifeWatch, users can upload their own data and check them against a 

selection of the quality control procedures. The R package robis allows users to query 

the QC flags of distribution records and additionally filter distribution records based 

on these. 

In Chapter 3, we present the open source R package sdmpredictors. It allows the end 

user to download terrestrial and marine environmental layers for the past, current 

and future climates. sdmpredictors contains metadata, statistics and pairwise 

correlations for the available datasets and layers. These correlations between 

predictors can be subsequently grouped and plotted. Currently sdmpredictors 

contains data from WorldClim, ENVIREM, Bio-ORACLE and MARSPEC at 5 arcmin 

resolution and in the Behrmann equal area projection with a resolution of 7 

kilometres. 

Chapter 4 aims to investigate marine predictor relevance as a function of modelling 

algorithms and settings for a global dataset of marine species. Additionally, we 

present the standardized benchmark dataset MarineSPEED and promote its use for 

methodological SDM studies. For MarineSPEED, we selected well studied and 

identifiable species from all major marine taxonomic groups. Distribution records 

were compiled from public sources (e.g. OBIS, GBIF, Reef Life Survey) and linked to 

environmental data from Bio-ORACLE and MARSPEC. Using this dataset, predictor 

relevance was analysed under different variations of modelling algorithms, numbers 

of predictor variables, cross-validation strategies, sampling bias mitigation methods, 

evaluation methods and ranking methods. SDMs for all combinations of predictors 

from 8 correlation groups were fitted and ranked, from which the top five predictors 

were selected as the most relevant. For the creation of the benchmark dataset we 

collected two million distribution records from 514 species across 18 phyla and made 

them available with associated environmental data and cross-validation splits through 

the open source R package marinespeed and at http://marinespeed.org. Mean sea 

surface temperature and calcite are respectively the most relevant and irrelevant 

predictors of marine species distributions. A less clear pattern was derived from the 

other predictors. The biggest differences in predictor relevance were induced by 

varying the number of predictors, the modelling algorithm and the sample selection 

bias correction. Based on the above results we conclude that while temperature is a 

relevant predictor of global marine species distributions, considerable variation in 

predictor relevance is linked to the SDM setup. Furthermore, methodological SDM 

studies should consider the use of a benchmark dataset. 

http://marinespeed.org/
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The next three chapters present case studies related to the introduction of seaweeds 

in Europe. 

In Chapter 5, we aim to analyse the spatio-temporal trends of introduced seaweeds in 

Europe. In order to achieve this we assembled a database of seaweed introductions in 

Europe containing dated observations, origins of the introduced seaweeds combined 

with an assessments of the uncertainty of the data. Based on this we made a 

quantitative assessment of the temporal dynamics of primary and secondary 

introductions, which show that the rate of nonindigenous species being reported for 

the first time in European waters started declining since the beginning of the 90’s. To 

investigate whether this trend reflects a decline in the number of species being 

introduced or whether the discovery rate has declined because of factors other than 

the introduction rate, we analyzed trends in the literature of introduced seaweed 

species. Contrary to the rate of newly introduced species, the rate of the total 

number of records remained constant since 1990. The number of papers and authors 

increased spectacularly from 1970 to 2000 but shows a decrease from then onward. 

The combination of trends is interpreted as a decline in the rate new species are 

being introduced. Classifying introduced species according to geographical origin, the 

decline is mainly attributable to lower numbers of nonindigenous species with a NW 

Pacific origin being recorded from Europe, while the discovery rates of Lessepsian 

species or species native to Australasia has remained constant over the years. Given 

that livestock transfer of shellfish is the principal vector for the introduction of NW 

Pacific species, it appears that the increased awareness of authorities and 

stakeholders, and the implementation of policies dedicated to the prevention of 

introductions, reduce, but not prevent, the introduction of nonindigenous species. 

In Chapter 6 we aim to investigate the potential of aquarium trade as a vector for the 

introduction of seaweeds in Europe. Firstly, we assessed the seaweed diversity in the 

European online aquarium retail circuit. This web survey revealed that more than 30 

genera are available for online sale into Europe, including known and introduced 

invasive species. Secondly, we assessed the algal diversity found in local aquaria and 

on ‘live rocks’. As this second approach allowed a direct and accurate identification of 

the specimens, we targeted not only ornamental species, but also seaweeds that may 

be accidentally present in the aquarium circuit. By DNA-barcoding we identified no 

less than 135 species, of which 7 species are flagged as introduced in Europe with 5 of 

them reported as invasive. Lastly, we build thermal niche models for the current and 

future climate. These models showed that 23 aquarium species have the potential to 

thrive in European waters. As expected by the tropical conditions in most aquaria, 
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southern Atlantic regions of Europe and the Mediterranean are the most vulnerable 

towards new introductions. From the future climate forecasts, we learn that this risk 

will increase and shift northwards as global warming proceeds. Overall our data 

indicates that aquarium trade poses a potential but limited risk of new introductions. 

However, the large reservoir of macroalgal species in aquaria calls for a cautious 

approach with the highest risk coming from aquaria in coastal cities and on board of 

mega yachts. 

Chapter 7 focuses on various aspects of modelling the current and future distribution 

of invasive and introduced seaweeds in Europe. In this study we evaluated the 

performance of species distribution modelling, trained with native and/or non-

European distribution records, as a tool for predicting the spread of invasive 

seaweeds at various stages of the invasion process. We estimated the level of niche 

expansion observed under analog and non-analog conditions and assessed which 

areas in Europe are expected to be disproportionally impacted by migrations of 

introduced seaweeds due to climate change. Our results indicate that due to 

considerable niche expansion in non-analog conditions including only native records is 

generally not sufficient to predict the range of invasive species. Including distribution 

records from non-European invaded regions on the other hand significantly increases 

the predictive power of the models and reduces the measured niche expansion in 

analog and non-analog conditions considerably. Based on forecasts of the distribution 

of 15 introduced seaweeds in Europe in the future climate, we created European 

change and turnover maps. These maps predict an increased habitat suitability in 

northern Europe (northern UK, Scandinavia, Iceland), while southern European 

regions are likely to become less suitable. In addition to the overall picture, 

uncertainty in the estimates is apparent for specific regions and this uncertainty 

correlates only moderately to changes in habitat suitability. 

Finally, in Chapter 8 we highlight various modelling data and uncertainty related 

aspects of this thesis. Furthermore, we provide some future perspectives with respect 

to modelling marine species niches and distributions. 



 

 

Samenvatting 

De toenemende blootstelling van het mariene milieu aan een groeiende 

antropogene druk door overmatig gebruik, overbevissing, de introductie van 

invasieve soorten en globale klimaatsverandering heeft geleid tot een dringende 

behoefte aan meer kennis over het mariene ecosysteem. Het modelleren van de 

verspreiding van mariene soorten is een belangrijk onderdeel van het beheer van 

mariene ecosystemen. Binnen maritieme ruimtelijke ordening wordt het gebruikt 

voor het ontwerp van natuurreservaten, voorspellen van biologische bronnen, in 

kaart brengen van vishabitat, inschatten van het invasieve risico, mens-dier 

conflictpreventie, … 

Deze studie streeft naar het verbeteren en bijdragen aan het proces van en begrip 

over het modelleren van de verspreiding van mariene soorten om een diepgaande 

studie van de trends, introductievectoren en verspreiding van geïntroduceerde 

zeewieren in Europa te vergemakkelijken. Meer specifiek wilden we 1) 

kwaliteitsindicatoren leveren voor de verspreidingsgegevens van de mariene soorten 

beschikbaar in het Ocean Biogeographic Information System (OBIS), 2) wereldwijde 

datasets, geschikt voor het modelleren van de verspreiding van soorten, beschikbaar 

maken in R, 3) de relevantie van verschillende omgevingsvariabelen voor het 

modelleren van de verspreiding van mariene soorten onderzoeken met 

MarineSPEED, een benchmark dataset met meer dan 500 mariene soorten, 4) de 

geschiedenis en trends in geïntroduceerde zeewieren in Europa te onderzoeken, 5) 

het risico van aquariumhandel beoordelen als vector voor toekomstige introducties 

van zeewieren en 6) een haalbaarheidsstudie van het gebruik van 

verspreidingsmodellen om de introductie en verspreiding van uitheemse zeewieren 

en om potentiële risicogebieden voor uitheemse zeewieren in het huidige en 

toekomstige klimaat te voorspellen. 

Het eerste deel van dit proefschrift betreft algemene aspecten van de verspreiding 

van mariene soorten en het gebruik en de relevantie van omgevingsvariabelen 

gebruikt voor het modelleren van de verspreiding van mariene soorten. 

In Hoofdstuk 2 worden verschillende stappen voorgesteld om de kwaliteit en 

volledigheid van de verspreidingsinformatie in de Europese en internationale 

oceanische biogeografische informatiesystemen (EurOBIS en OBIS) te analyseren. De 

verspreidingsinformatie wordt gecontroleerd op dataformaat, volledigheid en 

correctheid van informatie, kwaliteit van de gebruikte taxonomische en geografische 
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aanduidingen en of de registratie al dan niet een statistische uitschieter is. De 

kwaliteitscontrole (QC) vlaggen helpen niet alleen eindgebruikers met hun data-

selectie, maar helpen ook het data management team en de databeheerders om 

mogelijke fouten in de ingediende gegevens te identificeren. Via het Biology portaal 

van het European Marine Observation en Data Network (EMODnet Biology) wordt 

een deel van de EurOBIS-registraties aangeboden aan de eindgebruikers na filtering 

op basis van een specifieke combinatie van deze QC stappen. Via LifeWatch kunnen 

eindgebruikers hun eigen gegevens opladen en controleren voor een selectie van de 

kwaliteitscontrole procedures. Het R pakket robis stelt gebruikers in staat om de QC-

vlaggen van distributieregistraties van OBIS op te vragen en op basis hiervan te 

filteren. 

In Hoofdstuk 3 stellen we het R pakket sdmpredictors voor. Het biedt eindgebruikers 

de mogelijkheid om terrestrische en mariene omgevingslagen te downloaden voor 

zowel het paleoklimaat, het huidige klimaat als het toekomstige klimaat. Bovendien 

bevat sdmpredictors metadata, samenvattende statistieken en correlatiematrices 

voor de beschikbare lagen. Lagen kunnen op basis van hun correlaties gegroepeerd 

en gevisualiseerd worden. Momenteel is data beschikbaar van WorldClim, ENVIREM, 

Bio-ORACLE en MARSPEC met een ruimtelijke resolutie van 5 arcminuten of in de 

Behrmann equivalente projectie met een resolutie van 7 kilometer. 

Hoofdstuk 4 beoogt de relevantie van verschillende mariene omgevingslagen te 

onderzoeken voor verschillende modelleer methoden en instellingen voor een 

wereldwijde dataset van mariene soorten. Daarnaast presenteren we de 

gestandaardiseerde benchmark dataset MarineSPEED om aldus het uitvoeren van 

methodologische studies omtrent het modelleren van de verspreiding van soorten 

te faciliteren. MarineSPEED omvat 514 goed bestudeerde en/of gemakkelijk te 

identificeren soorten behorende tot 18 verschillende phyla. In totaal werden twee 

miljoen verspreiding gegevens uit publieke bronnen (bv. OBIS, GBIF, Reef Life 

Survey) verzameld en gekoppeld aan omgevingsdata van Bio-ORACLE en MARSPEC. 

Deze data werd, samen met crossvalidatie datasets van deze data, beschikbaar 

gemaakt in het R pakket marinespeed en op http://marinespeed.org. Op basis 

van ons onderzoek naar de relevantie van de verschillende mariene 

omgevingsfactoren kunnen we concluderen dat temperatuur de meest relevante en 

calciet de minst relevante factoren zijn voor het modelleren van de verspreiding van 

mariene soorten. De grootste variaties in de relevantie van factoren werden 

veroorzaakt door het gebruik van een verschillend aantal variabelen in de modellen, 

de gebruikte modelleer methode en het al dan niet gebruik maken van methodes 

om onevenwichtige rapportering van soorten op te vangen. Met deze studie hebben 

http://marinespeed.org/
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we aangetoond dat MarineSPEED een goed instrument is voor het uitvoeren van 

studies omtrent de methodologie van het modelleren van soorten. Bovendien 

kunnen we concluderen dat hoewel temperatuur zeer relevant is, er aanzienlijke 

variatie in de relevantie zichtbaar is wanneer de wijze van modelleren gevarieerd 

wordt. 

De volgende drie hoofdstukken belichten verschillende aspecten van uitheemse 

zeewieren in Europe. 

In hoofdstuk 5 streven we ernaar om de spatio-temporele trends van uitheemse 

zeewieren in Europa te analyseren. We hebben hiervoor een Europese database met 

gedateerde waarnemingen van uitheemse zeewieren, hun oorsprong en een 

beoordeling van de onzekerheid van de gegevens. Op basis hiervan hebben we de 

temporale dynamiek van primaire en secundaire introducties geanalyseerd en 

aangetoond dat het aantal uitheemse zeewiersoorten dat jaarlijks gerapporteerd 

wordt, sinds het begin van de jaren 90 begon te dalen. Om te achterhalen of deze 

trend het gevolg is van een daling in de geïntroduceerde soorten of het gevolg van 

andere factoren, hebben we de temporale dynamiek van het aantal waarnemingen, 

publicaties en auteurs met betrekking tot uitheemse zeewiersoorten geanalyseerd. 

In tegenstelling tot het aantal nieuwe uitheemse soorten bleef het aantal 

waarnemingen sinds 1990 constant. Het aantal publicaties en auteurs daarentegen 

steeg spectaculair tussen 1970 en 2000, maar daarna nam het aantal publicaties en 

in mindere mate het aantal auteurs af. De combinatie van trends wordt 

geïnterpreteerd als een afname van het aantal ingevoerde soorten. Op basis van de 

waarschijnlijke geografische oorsprong van de uitheemse soorten is deze afname 

vooral te danken aan een afname van het aantal nieuwe uitheemse soorten 

afkomstig van het noordwesten van de Stille Oceaan. Aangezien het transport van 

levende schelpdieren de voornaamste introductie vector is voor soorten uit het 

noordwesten van de Stille Oceaan, blijkt dat het toenemende bewustzijn van 

autoriteiten en het gevoerde beleid ter voorkoming van introducties leidt tot een 

afname maar niet voorkoming van de introductie van nieuwe uitheemse zeewieren 

in de Europese wateren. 

In hoofdstuk 6 streven we ernaar om het potentieel van aquariumhandel als vector 

voor de introductie van zeewier in Europa te bepalen. Ten eerste hebben we de 

zeewier diversiteit in het Europese online aquarium handelscircuit beoordeeld. 

Hierbij stelden we vast dat meer dan 30 genera vrij online beschikbaar zijn in 

Europa, waaronder bekende invasieve soorten. Ten tweede hebben we de diversiteit 

aan soorten in lokale aquaria en op 'levende rotsen' gemeten. Aangezien deze 
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tweede aanpak de directe en nauwkeurige identificatie van de soorten mogelijk 

maakte, richtten we ons niet alleen op siersoorten, maar ook op zeewieren die per 

ongeluk aanwezig zijn in aquaria. Door DNA-barcoding identificeerden we niet 

minder dan 135 soorten, met 7 uitheemse soorten in Europa, waarvan 5 van hen 

bekend staan als invasieve soorten. Ten slotte bouwen we thermische niche 

modellen voor het huidige en toekomstige klimaat. Deze modellen tonen aan dat 23 

aquarium soorten het potentieel hebben om in Europese wateren te gedijen. Zoals 

verwacht door de tropische omstandigheden in de meeste aquaria, zijn de zuidelijke 

Atlantische regio's van Europa en de Middellandse Zee het meest kwetsbaar voor 

nieuwe introducties. Dit risico zal in het toekomstige klimaat vergroten en 

noordwaarts opschuiven met een toenemende opwarming van het klimaat. 

Algemeen blijkt uit onze gegevens dat aquariumhandel een beperkt risico op nieuwe 

introducties van uitheemse soorten inhoudt. Het grote aantal soorten 

zeewiersoorten in aquaria vraagt echter om een voorzichtige aanpak. 

Hoofdstuk 7 richt zich op verschillende aspecten van het modelleren van de huidige 

en toekomstige verdeling van invasieve en uitheemse zeewieren in Europa. In deze 

studie onderzoeken we in hoeverre modellen van de verspreiding van soorten in 

staat zijn om de introductie en verspreiding van uitheemse zeewiersoorten in 

Europa te voorspellen. Deze resultaten linken we vervolgens aan de mate van niche 

uitbreiding in analoge en niet-analoge klimatologische omstandigheden. Op basis 

hiervan hebben voor 15 uitheemse zeewiersoorten verspreidingsmodellen gemaakt 

voor het huidige en toekomstige klimaat om aldus risicogebieden te identificeren. 

Onze resultaten wijzen erop dat het gebruik van verspreidingsgegevens van het 

oorsprongsgebied voor het modelleren van een soort leidt tot modellen met een 

onvoldoende voorspellende capaciteit. Het gebruik van data uit andere uitheemse 

gebieden en/of Europese data vergroot de voorspellende kracht van de modellen 

aanzienlijk. De veranderingskaarten, gemaakt op basis van modellen van 15 

uitheemse zeewieren, voorspellen voor het klimaat in het jaar 2100 een verhoogde 

habitat geschiktheid in Noord-Europa (Noord-Engeland, Scandinavië, IJsland), terwijl 

Zuid-Europese en vooral mediterrane regio's waarschijnlijk minder geschikt worden. 

Naast het algemene beeld is de onzekerheid in de schattingen duidelijk voor 

specifieke regio’s en staan deze los van de mate van verandering. 

Ten slotte belichten we in hoofdstuk 8 diverse aspecten met betrekking tot de 

gebruikte data en de onzekerheid van de modellen in dit proefschrift. Daarnaast 

bieden we toekomstige perspectieven met betrekking tot het modelleren van de 

niche en verspreiding van mariene soorten. 
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