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Abstract 
Invasive species can cause significant problems at ecosystem, economic and social 

levels. Assessing the potential geographic range of such species in invaded regions is 

therefore increasingly promoted for proactive ecological management. 

Unfortunately, because invasive species are by definition not at equilibrium within 

recipient environments, there is considerable uncertainty on how to model their 

distributions. In this study we evaluated the performance of species distribution 

modelling, trained with native and/or non-European distribution records, as a tool 

for predicting the spread of invasive seaweeds at various stages of the invasion 

process. We estimated the level of niche expansion observed under analog and non-

analog conditions and assessed which areas in Europe are expected to be 

disproportionally impacted by migrations of introduced seaweeds due to climate 

change. Our results indicate that due to considerable niche expansion in non-analog 

conditions including only native records is generally not sufficient to predict the 

range of invasive species. Including distribution records from non-European invaded 

regions on the other hand significantly increases the predictive power of the models 

and reduces the measured niche expansion in analog and non-analog conditions 

considerably. The European change and turnover maps combined with an 

assessment of the uncertainty therein predict an increased habitat suitability in 

northern Europe (northern UK, Scandinavia, Iceland), while southern European are 

likely to become less suitable. In addition to the overall picture, uncertainty in the 

estimates is apparent for specific regions but correlates only moderately to changes 

in habitat suitability.  
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Introduction 
Invasive species rank as one of the greatest threats to marine coastal biodiversity 

(McGeoch et al., 2010; Seebens et al., 2013). The European shores sadly stand out as 

a hotspot for introduced species (Molnar et al., 2008) and seaweeds represent one 

of the largest groups of marine aliens, accounting for 10 to 30% of all marine 

introduced species in Europe (Schaffelke et al., 2006; Williams & Smith, 2007; 

Zenetos et al., 2012; Katsanevakis et al., 2013). Several seaweeds, such as kelp or 

fucoids in the Atlantic Ocean and the canopy-forming Cystoseira species in the 

Mediterranean Sea, are true ecosystem engineers or foundation species (Jones et 

al., 1994; Mineur et al., 2015). Consequently, changes in seaweed communities can 

provoke cascading effects influencing the entire ecosystem, including for example 

changes in abundances of herbivores and understorey coralline algae (Monteiro et 

al., 2009; Harley et al., 2012; Verges et al., 2014; Wernberg et al., 2016). 

The ecological importance of seaweeds combined with high introduction rates of 

non-native species, highlights the need for methods able to accurately predict the 

future distribution of invasive species, preferably at the early stages of the invasion 

process. Species distribution modelling (SDM) links species occurrences with the 

environmental characteristics, and has the potential to predict distributions in a 

geographically explicit framework, including extrapolation in space and time. SDM 

can be used to identify areas with suitable habitat, assess whether introductions are 

likely to be successful, anticipate arrival points, and predict the extent of potential 

spread following an introduction. However, arrival points also heavily depend on the 

introduction vector (e.g. shipping, aquaculture) and the level of human activity 

related to these introduction vectors (Reiss et al., 2015). SDM can thus, 

supplemented with information on introduction vectors, help us inform decisions 

about preventive and control actions. 

The predictive power of SDM, however, is very much dependent on the assumption 

that species are at equilibrium with their environment, which implies that 

distribution records reflect stable relationships with environment. The very nature of 

invasive alien species, which are possibly still in the process of range expansion in 

the introduced range, means that this assumption is not met for these organisms 

(Elith et al., 2010). Furthermore, the biotic interactions in the native and introduced 

environment may differ leading to changes in the geographical and environmental 

range (DeWalt et al., 2004; Mitchell et al., 2006). Therefore SDM of invasive or 

range-shifting species is particularly challenging, and requires the development of 

advanced modelling techniques potentially integrating mechanistic and correlative 

approaches (Kearney & Porter, 2009). Mechanistic approaches may model species 
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distributions by modelling the body temperature based on functional traits of 

organisms instead of using the air or sea surface temperature as indicators of 

environmental stress (Kearney et al., 2010; Helmuth et al., 2011) However, data 

availability for mechanistic models is limited while distribution data to build 

correlative models is more widely available (Elith et al., 2010). Improving  

transferability of correlative models to other time/space datasets has been 

accomplished by reducing overfitting and sample selection bias . Such models can be 

obtained by using different model choices in the background selection (Barbet-

Massin et al., 2012; Martínez et al., 2015), restricting model complexity 

(regularization and number of variables) (Wenger & Olden, 2012), eliminating 

sample selection bias (Verbruggen et al., 2013; Radosavljevic & Anderson, 2014) or 

applying ensemble models (Hijmans & Graham, 2006; Araújo & New, 2007). 

In order to accurately predict the introduced geographic range, the environmental 

niche of the native and introduced populations of the species should be similar 

(Guisan et al., 2014). While, Wasof et al. (2015) have shown that environmental 

niches are generally conserved between separated populations of alpine plants, for 

introduced seaweeds this has not been shown. We, furthermore, distinguish niche 

expansion or niche conservatism in analog and non-analog conditions (Guisan et al., 

2014). Analog conditions are environmental conditions occurring both in the native 

and invaded range, while non-analog conditions are only occurring in one of the 

ranges. Although calculating niche change metrics in non-analog climates provides 

little insight in the evolution of the niche of a species, the change in niche metrics in 

non-analog conditions is still highly relevant for predicting the distribution of the 

species in invaded ranges (Petitpierre et al., 2012; Webber et al., 2012; Guisan et al., 

2014). 

In this study, we aim to improve predictions of invasive seaweeds in Europe and to 

map areas that will be disproportionally affected by changes in invasive seaweed 

distributions due to climate change. To this end, we first analyse the predictive 

performance of SDM towards the identification of suitable habitats in Europe at 

different stages of the invasion history based on a case study with five invasive 

seaweeds. Next, we calculated niche expansion and relate it to the performance of 

SDM. Finally, using an expanded dataset of 15 commonly recorded and widespread 

non-native seaweeds, we identified geographic risk areas in Europe by comparing 

current and future climate species distribution models.  
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Methods 

Records collection 
In order to explore the modelling of invasive seaweeds and their environmental 

niche in Europe we collected species records for five invasive species, for which we 

have ample distribution records in the introduced and native range: Codium fragile 

subsp. fragile, Dictyota cyanoloma, Grateloupia turuturu, Sargassum muticum and 

Undaria pinnatifida. Distribution records were classified as native or invasive, by 

region (Asia, Europe, America, Africa and Australia) and by year whenever possible. 

With respect to C. fragile subsp. fragile we decided to include species records for all 

subspecies as the identification of subspecies of C. fragile is notoriously difficult 

based on morphological criteria and the invasive subspecies is found in the entire 

range of the species (Brodie et al., 2007b; Provan et al., 2008; McDonald et al., 

2015). Moreover, DNA barcodes and morphometric data indicate that C. fragile may 

actually consist of two species, the invasive subspecies fragile and a second species 

grouping all remaining subspecies (Verbruggen et al., 2016). Distribution records 

were collected from different data portals including the Macroalgal Herbarium 

Portal (macroalgae.org), Global Biodiversity Information Facility (gbif.org), Australia’s 

Virtual Herbarium (avh.chah.org.au), Natural History Museum London (nhm.ac.uk), 

Muséum National d'Histoire Naturelle (mnhn.fr) with records updated until March 

2016. For the last part of our study we want to uncover areas in Europe that will be 

affected by displacements of introduced seaweeds due to climate change. 

Therefore, we collected occurrences for an additional set of ten seaweeds: 

Asparagopsis armata, Bonnemaisonia hamifera, Colpomenia peregrina, Dasya 

sessilis, Dasysiphonia japonica, Gracilaria vermiculophylla, Grateloupia subpectinata, 

Lomentaria hakodatensis, Polysiphonia harveyi and Polysiphonia morrowii. Together 

with the five species from the first part they form a set of 15 representative and 

widely introduced seaweeds in Europe. 

The quality of the distribution records was checked by geographic visualization and 

verification of mismatches between the location where the records were found and 

the coordinates recorded (Marcelino & Verbruggen, 2015). Duplicate records were 

eliminated as well as records located in the same grid cell of the environmental data 

in the same year. Records within the boundaries of the landmask were moved to the 

nearest ocean grid cell if located within 1,000 meters from an ocean grid cell. 

Records further than 1,000 meters from an ocean cell were deleted.  

http://macroalgae.org/
http://www.gbif.org/
http://avh.chah.org.au/
http://nhm.ac.uk/
http://mnhn.fr/
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Environmental data 
The Bio-ORACLE dataset was used as a source for environmental predictor variables. 

It consists of global rasters with a spatial resolution of 5 arcmin (Tyberghein et al., 

2012) and it is primarily designed for global-scale niche modelling of shallow water 

marine organisms (Marcelino & Verbruggen, 2015). The environmental layers were 

retrieved using the sdmpredictors R package (Bosch et al., 2016). 

Predictor selection is a major concern when building transferable SDMs. Many 

studies have addressed the consequences of variable selection (Rödder & Lötters, 

2009; Verbruggen et al., 2013; Barbet-Massin & Jetz, 2014). The problem underlying 

this issue is the absence of causal links between predictor and response variables 

which may constrain the predictive power of the model (Austin, 2002; Martínez et 

al., 2015). In this study, the selection of variables was made a priori, taking general 

knowledge on the physiology and ecology of seaweeds into account (Lüning, 1990; 

Hurd et al., 2014). In addition variables with high correlation were not selected. 

Four variables were selected a priori as potentially influencing seaweed distributions 

(Table 1). Sea surface temperature is suspected to be the main variable driving the 

distribution of seaweeds. It can affect the performance of growth, photosynthesis, 

reproduction and survival (Breeman, 1988; Lüning, 1990; Eggert, 2012). We used 

two temperature measures: maximum sea surface temperature and sea surface 

temperature range. Two more variables were added: mean photosynthetically active 

radiation and sea surface salinity. Seaweeds are photosynthetic organisms and 

therefore the quantity of light can affect their growth and limit habitat suitability. 

Salinity can influence osmotic dynamics limiting nutrient absorption and affect 

membrane integrity (Hurd et al., 2014), thus influencing growth, fitness and survival 

of seaweeds and therefore limit suitable habitats (Martins et al., 1999), as for 

example is the case in the Baltic Sea (Nyström Sandman et al., 2013). 

Table 1. Overview of the ranges (minimum, median and maximum) of the environmental data used for 
modelling invasive seaweeds both for global and coastal data with the values for Europe between 
brackets. The different layers are maximum and range of sea surface temperature (SST), mean 
photosynthetically active radiation (PAR) and sea surface salinity. 

 Minimum Median Maximum 
Layer Global Coastal Global Coastal Global Coastal 

SST (max) -1.5 (0.7) -1.5 (0.6) 25.3 (19.2) 20.2 (19.9) 35.9 (32.7) 37.6 (34.4) 
SST (range) 0.1 (2.5) 0.0 (1.3) 4.1 (7.0) 5.3 (12.2) 29.6 (25.1) 31.2 (29.4) 
PAR (mean) 0.5 (23.7) 0.5 (8.2) 39.6 (31.3) 34.4 (32.6) 52.3 (47.1) 66.9 (55.0) 
Salinity 0.0 (2.1) 0.0 (1.8) 34.7 (35.5) 33.4 (33.9) 40.7 (40.6) 41.5 (41.5) 
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Distribution modelling 
Species distributions were modelled using four different algorithms: surface range 

envelope, which is equivalent to bioclim (SRE, Busby, 1991), generalized linear 

model (GLM), maximum entropy (MaxEnt, Phillips et al., 2004) and random forests 

(Breiman, 2001). For MaxEnt and GLM, we explored the complexity of the models 

fitted by building models with linear and quadratic features. The complexity of SRE 

cannot be controlled and for random forests different settings were not explored. 

Additionally, an ensemble model (Araújo & New, 2007) was built by averaging the 

results of the most transferable models. Distributions were modelled using the R (R 

Core Team, 2016) packages biomod2 (Georges & Thuiller, 2013; Thuiller et al., 2016) 

and dismo (Hijmans et al., 2016). 

Sample selection bias is one of the main problems impacting the transferability of 

models, leading to an overrepresentation of conditions in places where collecting 

effort is higher and thereby inflating model performance indices (Hijmans, 2012). In 

order to reduce sample selection bias, and therefore also environmental bias, a 

spatial occurrence thinning method was used (Veloz, 2009). Presence records were 

eliminated with the R package spThin (Aiello-Lammens et al., 2015) for two different 

thinning distances, 30 and 100 kilometres, and the results of these were compared 

for the different model algorithms and complexities. 

Presence-only methods use species occurrence records and background points, 

which are selected randomly in the study area. As suggested by Phillips & Dudík 

(2008) we used 10000 background points in our study, which is adequate to cover 

the whole area. Two different sets of training background points were generated, 

one with points restricted to all pixels adjacent to land (coastal) and one with global 

background points. 

In order to evaluate the different modelling options an evaluation dataset is needed 

(Arlot & Celisse, 2010). As no independently sampled evaluation data was available, 

three different ways to obtain the evaluation dataset from our dataset were 

explored by either splitting ‘randomly’, ‘temporally’ or ‘spatially’ (Roberts et al., 

2016). The random splitting method consists of randomly splitting the dataset into 

training and testing. In the temporal approach, we used records from the earlier 

years to build the model and more recent occurrence records to evaluate them. 

Testing absence  points were selected using pairwise distances such that the 

distance between the test occurrences and pseudo-absence points is the same as 

the distance between training and test occurrences (Hijmans, 2012). Finally, the 

spatial approach consists of dividing datasets based on geography. European 
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occurrence records and coastal pseudo-absence points are used to evaluate the 

model built with records outside of Europe. The European region was determined as 

the area with longitude between -34 and 65 and latitude between 29 and 73. 

Three different metrics were used to evaluate model performance: area under the 

receiver operating curve (AUC) (Hanley & McNeil, 1982), Cohen’s kappa and the H-

measure. Although AUC values have been criticized in the context of species 

distribution modelling (Lobo et al., 2008), its use was motivated because it is 

objective, threshold independent and insensitive to imbalanced datasets (Hand, 

2009). Cohen´s kappa measures the agreement between predictions of the model 

and observations but corrects for agreement expected by chance. Kappa is sensitive 

to imbalanced datasets. Therefore, it has been corrected by creating a multitude of 

kappa values calculated from random balanced subsamples and taking the first 

quartile as the final kappa value. The H-measure (Hand, 2009), is similar to AUC but 

has as additional property that it is independent of the distribution of the empirical 

scores. 

Starting from the model choices resulting in the most transferable and robust 

models, SDMs were created for all five species for different timeframes in their 

invasive history. Models were fitted with an increasing number of records starting 

with all records from the last year prior to introduction in Europe (T1). We assessed 

the ability of these and successive models (T2, T3 and T4), which cumulatively 

included more invasive records, to predict the European distribution. 

This invasive history was analysed for two scenarios: a restricted and a global one. 

The restricted scenario consisted of a first model (T1), built with all native records 

and subsequent models with invasive records from Europe cumulatively added 

according to the invasive history (Table 2). The global scenario, on the other hand, 

consisted of models fitted with all available native and invasive records at the 

specific timeframe. Therefore, T1 models included native and invasive records from 

all non-European areas known at T1. 

As continuous model projections are sometimes difficult to interpret, the creation of 

binary presence/absence maps can be a useful tool for risk assessment. We used as 

threshold the value that maximizes the sum of sensitivity and specificity (maxSSS) to 

create binary suitability maps because it is one of the best performing methods to 

create threshold maps when absences are not reliable (Liu et al., 2013). 
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Niche shifts 
In order to measure the overlap in the realized niche of the species between the 

native and invaded range, three different indices have been calculated: niche 

expansion, niche stability and niche unfilling (Guisan et al., 2014). Niche expansion 

measures conditions in niche space not occupied in the native range. On the other 

hand, niche stability measures the conditions shared between both distributions. 

The niche stability is comparable to the niche overlap as assessed through 

Schoener’s D or Hellinger’s I. Lastly, niche unfilling measures the conditions occupied 

in the native range but not in the invasive range (Guisan et al., 2014). Ordination 

techniques, more specifically PCA-env, have been show to measure the niche 

overlap between two distributions better than SDM methods (Broennimann et al., 

2012). The PCA-env method compares kernel smoothed species occurrence densities 

in an ordinated environmental space, which allows for direct comparisons of 

species-environment relationships in environmental space. Similar to the 

distribution modelling, niche measures were calculated for the restricted and global 

scenario and by either only taking into account analog conditions or also including 

non-analog conditions (Guisan et al., 2012; Webber et al., 2012). The study area 

used to distinguish between analog and non-analog conditions was defined as all 

ecoregions (sensu Spalding et al., 2007) wherein occurrences are located. All indices 

were transformed to percentages of the entire niche. These analyses were 

performed using the R package ecospat (Broennimann et al., 2016).  

Risk areas 
In order to identify areas at risk in Europe we modelled current and future climate 

distributions with the same predictors used to build transferable models. 

Additionally, we fitted models for two extra predictor sets by substituting maximum 

sea surface temperature with the mean or minimum sea surface temperature, since 

according to Synes and Osborn (2011) it is rarely clear which temperature variable is 

most applicable. 

Ensemble models for these three sets of predictors were created by averaging the 

output of SDMs built with coastal background and all occurrence records using 

generalized linear models (GLM) with quadratic features, MaxEnt with quadratic 

features, random forests (RF) and surface range envelope model (SRE). These 

current climate models were subsequently projected to the three IPCC climate 

scenarios B1 (550 ppm stabilization), A1B (720 ppm stabilization) and A2 (>800 ppm) 

for the year 2100 (Jueterbock et al., 2013). The maximum sum of sensitivity and 

specificity (maxSSS) was used as a threshold for converting the current and future 

climate SDMs to binary maps. These binary maps for the 15 species were summed to 



156 | C h a p t e r  7  

 

get a map of the number of species predicted in the current and future climate. The 

change maps were obtained by subtracting the current and future climate count 

maps for the three predictor sets, and subsequently calculating the mean and 

standard deviation of these. The mean anomaly map then reflects the change in 

number of species in the different areas, and the standard deviation map indicates 

the uncertainty of the results. Additionally, maps of the mean and standard 

deviation of the species turnover were calculated by counting, based on the binary 

maps, for each raster cell the number of species that either are predicted in the 

current climate and are not predicted in the future climate or vice versa. 

Results 

Distribution modelling 
The most transferable species distribution models were obtained by creating an 

ensemble based on MaxEnt and GLM with quadratic features, random forests and 

SRE, with models fitted using coastal background and species specific spatial 

thinning settings. Further information on the modelling choices is provided in the 

Supporting information. 

Based on these modelling choices we present the model performance when 

cumulatively more records are included in the training set representing different 

time points during the history of the introduction process. We repeated this process 

for two different setups, the first one using all non-European records (global 

scenario) and the second one using only native records (restricted scenario). Fig. 1 

represents the performance of the model for the two different scenarios for all 

species, while the previously introduced Table 2 gives an overview of the number of 

records available for each timeframe. 

For the restricted scenario, when only native records are used to build the model, 

AUC values are generally lower (left most values in Fig. 1A). The highest AUC is 

measured for D. cyanoloma (AUC = 0.872 with 11 records from the native range). 

While models for U. pinnatifida (AUC = 0.618) and S. muticum (AUC = 0.607) perform 

similarly with 77 and 71 records in the native range, respectively. Both G. turuturu 

(AUC = 0.536 with 43 records) and C. fragile (AUC = 0.485 with 44 records) have the 

lowest AUC. The AUC increases when occurrence records from Europe are included 

in the model (second, third and fourth value for each line in Fig. 1A and B), and this 

increase in AUC is larger at the early compared to the later phases of the 

introduction process. 
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Table 2 Data used to build the models in the global and restricted scenarios. The number of records 
included in the models (T1, T2, T3 and T4) is determined by the cumulative sum of the records 
(Timeframe). The number of records for the restricted scenario is determined by the sum of the Native 
and European records and for the global scenario by the sum of the Native, European and Non-
European records. All records, including records after the last timeframe or without a year indication, 
were only used for calculating the niche metrics. 

Species Timeframe Native European Non-European 

Codium fragile  

Before 1845 = T1 

44 

0 9 

Before 1940 = T2 41 49 

Before 1965 = T3 169 164 

Before 1990 = T4 471 350 

All 965 917 

Dictyota cyanoloma 

Before 1935 = T1 

11 

0 0 
Before 2008 = T2 5 0 
Before 2010 = T3 15 2 

All 41 2 

Grateloupia turuturu 

Before 1969 = T1 

43 

0 1 
Before 1985 = T2 13 1 
Before 2000 = T3 44 3 

All 170 36 

Undaria pinnatifida 

Before 1971 = T1 

77 

0 0 
Before 1990 = T2 7 1 
Before 2000 = T3 50 4 

All 165 51 

Sargassum muticum 

Before 1970 = T1 

71 

0 93 
Before 1975 = T2 12 112 
Before 1985 = T3 143 159 
Before 2000 = T4 412 179 

All 1447 345 

 

Figure 1 Evolution of the area under the curve (AUC) values at different points along the invasive 
history. The left figure (A) shows the AUC values for the restricted scenario, in which at T1 only native 
records are used for model fitting. Subsequent time points use both native and European records. For 
the right figure (B) all occurrence records (European and non-European) known at the specific year are 
used for modelling. The x-axis represents the percentage of invasive records used to build the model 
with the total number of records included in the last model as 100%. 
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Model performances of the global scenario are quite similar to those of the 

restricted scenario with the exceptions for C. fragile and S. muticum (Fig. 1B). Both 

the models for S. muticum and C. fragile have markedly higher AUC values when, 

next to native records, invasive records from other parts of the world known before 

the introduction in Europe (T1) are used to create the SDM. The other evaluation 

metrics (H-measure and kappa) show similar trends (Fig. S2 in Supporting 

information). 

Fig. 2 shows maps of the model predictions of S. muticum for the timeframes T1 and 

T4 for the restricted and global scenarios. While both T1 models generally predict 

low habitat suitability, the threshold map of the global scenario overall reflects the 

present European invaded area well (Fig. 2B). However, the model failed to predict 

parts of the French and Catalonian coasts in the Mediterranean Sea. Model 

predictions from the restricted scenario (Fig. 2A and C) tend to overpredict the 

Mediterranean and Baltic sea and underpredict Portugal and the North of the British 

Isles. Maps of the other species are available in Figs. S3 to S6 in Supporting 

information. 

Niche shifts 
The niche analysis was performed in both the restricted and global scenario and 

niche indices were measured with or without taking into account non-analog 

conditions. Generally very low niche unfilling was measured with the highest value 

being 3% for G. turuturu. From Fig. 3, which reports the niche expansion, we notice 

that except for D. cyanoloma there is virtually no niche expansion between the 

invasive records in Europe and the non-European records, regardless of whether 

non-analog conditions are included in the niche expansion. When the niche of the 

native records is compared with the niche of the European records (restricted 

scenario), we see that in analog conditions there is 20 % niche expansion for C. 

fragile and about 10 % niche expansion for S. muticum. Niche expansion is highest 

when non-analog conditions are also taken into account with almost 50% for C. 

fragile, around 20% for G. turuturu and S. muticum and 10 % for U. pinnatifida. D. 

cyanoloma, which is not introduced in regions outside Europe, has less than 10 % 

niche expansion between native and invaded range when non-analog conditions are 

taken into account. 
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Figure 2. European predictions of 
suitable areas for Sargassum 
muticum. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of S. muticum in 
Europe, C) native records and all 
European records known in the 
year 2000 (T4) and D) native 
records and all invasive records 
known in 2000. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. Maps of the other 
species are available in Supporting 
information (Figs S3-S5). 

a 
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Figure 3 Niche expansion between the native and European occurrence records for four different 
setups. The setups have differences in the records used for comparing niches and in what is considered 
as niche expansion. We compared the niche expansion in Europe for the native records (restricted) and 
the native and non-European introduced distribution records (global). For the analog scenario niche 
expansion is only measured in environmental space that is available in both native and invaded area. In 
the non-analog scenario all niche expansion is reported. The error bars represent the standard error of 
using either 30 or 100 km spatial thinning. 

Risk areas 

Regarding the assessment of areas at risk in Europe, we see that the largest increase 

in number of introduced species is predicted in the northern areas of Europe, more 

specifically along the coasts of Iceland, Denmark and Norway by 2100 for the IPCC 

scenario B1 (Fig. 4A). Smaller increases in the number of introduced species are 

predicted for the United Kingdom, the Netherlands and Belgium. Areas with the 

biggest decreases, effectively becoming less suitable for the modelled list of species, 

are mostly located in the Mediterranean region. Additionally, some smaller spots in 

the Atlantic show a decrease in the number of introduced species predicted. The 

standard deviation map (Fig. 4B) clearly shows that some areas with larger gain also 

have a higher uncertainty and that the northern regions have higher standard 

deviations. The Pearson correlation between the absolute value of the mean and 

standard deviation of the change maps is only 0.55 (Table 4), which indicates a low 

to moderate correlation. The turnover maps for the same IPCC scenario B1 (Fig. 4C) 

reveal a high turnover for the regions with big increases and decreases as identified 

by the change maps and a number of additional areas with changes in species 

composition. This is most notably the case for the southern coasts of Great-Britain 

and Ireland. The Pearson correlation between the mean and standard deviation of 

the turnover maps is 0.66 (Table 4).  
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Figure 4. The change in number 
and turnover of introduced 
seaweeds predicted by 2100 under 
the IPCC climate change scenario 
B1. The top left map (A) shows the 
mean difference in number of 
introduced species between the 
current climate and climate change 
scenario B1 from SDMs build for 15 
species. The top right map (B) 
indicates the standard deviation in 
model predictions when using the 
mean, minimum or maximum sea 
surface temperature as one of the 
four predictors for building the 
distribution models for each 
species. The bottom left (C) and 
right (D) maps indicate the mean 
and standard deviation of the 
turnover of introduced seaweeds. 
For the results based on two other 
IPCC scenarios, A1B (Fig. S7) and A2 
(Fig. S8) we refer to Supporting 
information. 
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For the two other IPCC scenarios, A1B (Fig. S7) and A2 (Fig. S8) in Supporting 

information, we observe the same trends. This is confirmed by the Pearson 

correlation between the change and turnover maps of the different climate change 

scenarios which are all highly or very highly correlated, with the smallest correlation 

for the mean maps being 0.88 and for the standard deviation maps 0.82 (Table 4). 

Table 4 Pearson correlation between the mean and standard deviation (SD) of the change (left) and 
turnover (right) maps for the different climate change scenarios (B1, A1B and A2). The left numbers are 
the correlations between the change maps, the right numbers represent the correlations between the 
turnover maps. 

 B1 A1B A2 

Mean SD Mean SD Mean SD 

B1 
Mean 1 / 1      

SD 0.55 / 0.67 1 / 1     

A1B 
Mean 0.90 /0.93 - 1 / 1    

SD - 0.85 / 0.82 0.53 / 0.66 1 / 1   

A2 
Mean 0.88 / 0.91 - 0.95 / 0.97 - 1/ 1  

SD - 0.82 / 0.79 - 0.88 / 0.84 0.50 / 0.69 1 / 1 

Discussion 

Distribution modelling 
Modelling the distribution of invasive species requires extrapolation to locations 

where the species have not previously been recorded. Therefore, general models 

with high transferability are needed (Randin et al., 2006). Several studies have 

researched methods to split occurrences into evaluation and training sets (Arlot & 

Celisse, 2010; Hijmans, 2012; Radosavljevic & Anderson, 2014; Roberts et al., 2016). 

The results of this study (Table S1 and Fig. S1) show that the random splitting 

method inflates the values of the evaluation metrics due to two different causes. 

Firstly, the environmental space distribution of the training and test occurrence 

records is the same. Hijmans (2012) already stated that closer testing and training 

points lead to artefacts in model evaluation and inflation of evaluation metrics. 

Secondly, background points and occurrences are more distant from each other in 

the environmental space leading to higher performance metrics. On the other hand, 

the temporal splitting approach shows low performance because background points 

and occurrences are distributed in the same environmental space rendering the 

differentiation between background points and presences difficult. With the spatial 

splitting approach, background points are well discriminated from occurrences but 

the occurrences used for testing the models and those used to build the model have 

a different distribution. In this context, we conclude that the spatial approach is the 
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most realistic cross-validation method for model selection of invasive species 

distribution models. This approach corroborates results by Radosavljevic & Anderson 

(2013), who demonstrated the power of geographic approaches to split the data to 

improve transferability and, therefore, to model invasive species. 

Models with overly complex response curves limit the transferability of SDMs due to 

overfitting (Wenger & Olden, 2012; Merow et al., 2013; Verbruggen et al., 2013; 

Duque-Lazo et al., 2016). However, our results showed that including only very 

simple features results in models with a low performance as compared to using 

quadratic features, indicating that using only linear features results in underfitting 

(Hastie et al., 2009; Merow et al., 2014; Moreno-Amat et al., 2015). This can 

potentially be explained by the inability of the models to capture the relationship of 

predictors like maximum sea surface temperature (SST (max)) with the species 

distribution as an organism’s response to temperature behaves like a quadratic 

curve and not a linear curve. With respect to algorithms we used GLM, MaxEnt, RF 

and SRE. GLM and MaxEnt generally performed well when models were tested with 

an independent European dataset (Table S3). However, a general trend does not 

exist which could be due to the variability in model performance of algorithms for 

different species (Elith et al., 2006; Araújo & New, 2007).In this context ensemble 

models prove to be a good solution to capture differences between model 

algorithms in a single transferable SDM (Table S3). 

Background selection has a big impact on model transferability. The model 

performance of the coastal background is consistently higher (Table S3). The 

motivation for this approach was the impossibility of seaweeds, being coastal 

organisms, to survive in deep oceanic areas (Lüning, 1990; Marcelino & Verbruggen, 

2015) and the usage of a similar approach in previous studies (Pauly et al., 2011; 

Martínez et al., 2015). Masking out training background data from the middle of the 

ocean improved model transferability when evaluated with testing records and 

coastal background points from Europe. Disregarding the absence of suitable 

substrate, the open ocean could hold environmental conditions suitable for the 

species. But when they are included in the background data they have to be 

classified as absences as species are not able to live there. By removing open ocean 

background data from the training set the number of false absences is thus 

significantly decreased, resulting in better and more transferable SDMs. 

Interestingly, differences between occurrence thinning parameters were species 

dependent. The lack of a common trend results from the idiosyncratic nature of the 

invasive process and recording history of the individual species. We followed the 

recommendations made in the literature (Phillips et al., 2009; Anderson & Raza, 
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2010; Barnes et al., 2014) and selected the wider thinning distances for those 

species with a small difference in performance for the two thinning distances since 

sample selection bias is one of the main drivers constraining transferability. 

Threshold maps of the predictions of the European invasion allow us to visualize 

areas for which presences and absences were incorrectly predicted (Fig. 2). Species 

distributions were not predicted accurately when models were built without any 

invasive records from Europe. However, prediction improves rapidly when only 10 

per cent of the European records were included to build the model. The addition of 

distribution records from other regions (global scenario case) improves the 

prediction and model performance mainly in C. fragile and S. muticum as these are 

the species with more records from other invaded regions. Especially, for S. muticum 

this resulted in a marked improvement of the T1 and later models. This implies that 

the inclusion of, the mostly Californian, invasive records known before the invasion 

in Europe add essential information about the environmental niche of S. muticum 

for modelling the European distribution. The fact that models perform generally 

better when including more records and when records from other invaded areas are 

included supports the idea that the whole environmental niche may not be recorded 

in the native range. Our results confirm that correlative models which aim to predict 

biological invasions should use all available records in order to capture the 

environmental niche better (Broennimann & Guisan, 2008; Verbruggen et al., 2013). 

But, in order to further improve the performance of species distribution models, 

next to extensive sampling of the native area, additional factors such as eco-

physiological data and biotic interactions may need to be included. 

For the other species the performance of T1 models is really low even if they are 

built with a relatively high number of records. For example the T1 model of U. 

pinnatifida was built with 77 native records and was barely able to predict the 

records in Europe. D. cyanoloma is a special case due to the few number of records 

available. The low number of records in D. cyanoloma models could explain the high 

AUC values and, therefore, it is probably heavily affected by the stochasticity of the 

known invasion process. Other factors contributing to the low initial performance 

include: differences in distributions in the environmental space between native and 

European occurrences, oversampling of specific native areas, lack of knowledge of 

the native distribution and lower competition in the invaded area. 

Niche shifts 
When using only analog climatic conditions, as suggested by Petitpierre et al. (2012), 

C. fragile and S. muticum are the species with the highest niche expansion in the 
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restricted scenario with both more than 10%, considered by Strubbe et al. (2013) to 

be a significant amount of niche expansion. The inclusion of distribution records 

from other invaded areas reduced the niche expansion to nearly zero. These results 

are very similar to previous studies of non-native plants and birds, with respectively 

7 out of 50 and 8 out of 28 species displaying more than 10% niche expansion in 

analog conditions (Petitpierre et al., 2012; Strubbe et al., 2013). In contrast to non-

native plants and birds, where niche unfilling was more prevalent than niche 

expansion, no niche unfilling was measured. This might potentially indicate a lack of 

sampling in the native range. 

However, we agree with Webber et al. (2012) that studies aiming to forecast 

biological invasions should include non-analog conditions, as those studies are based 

on extrapolation in analog but also non-analog conditions. The difference of niche 

expansion with or without inclusion of non-analog conditions in the restricted 

scenario is 20% for C. fragile and G. turuturu and more than 10% for S. muticum and 

U. pinnatifida which could significantly constrain the prediction of introduced 

species. However the inclusion of records from invaded areas outside of Europe 

eliminated all significant niche expansion. This might explain why including other 

invaded records resulted in an improvement of the distribution models. 

Risk areas 
The increase in number of introduced species in the more northern areas of Europe 

is in accordance with Jueterbock et al. (2013) who predicted a northward shift for 

three North Atlantic seaweeds. But, the predicted risk areas are influenced by the 

fact that we only took into account previously known invasive seaweeds in Europe, 

for instance the predicted decrease in introduced species in the Mediterranean Sea 

was to be expected given that the rising temperatures in the Mediterranean will 

render it unsuitable for several of the modelled species. This doesn’t necessarily 

imply that new species will not be introduced as the increased temperature might 

make it suitable for other, predominantly subtropical to tropical species that have 

not yet been reported in Europe. The big increase in predicted suitability for invasive 

seaweeds in the Northern Atlantic by 2100 might be tempered by the fact that the 

introduction and distribution of species depends on more factors than only the 

environmental suitability. Although temperature can be considered to be the main 

factor restricting the distribution of seaweeds (Breeman, 1988; Lüning, 1990; Eggert, 

2012), it is also limited by other abiotic (bathymetry, light, substrate) and biotic 

factors (competition and grazing) at smaller geographic scales (Marcelino & 

Verbruggen, 2015).  
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Another inherent factor of uncertainty in the results is the fact that we used models 

to predict the distributions of species in the current and future climate. One of the 

important factors contributing to this uncertainty is the selection of predictor 

variables (Synes & Osborne, 2011). By calculating the mean and standard deviation 

of models built with the minimum, mean and maximum temperature we tried to 

mitigate and visualize this uncertainty. By employing spatial thinning we reduced 

sampling bias and thus reduced overfitting, which in turn improves the 

transferability of the models in space and time (Boria et al., 2014). A limiting factor 

of distribution modelling of introduced seaweeds for future climate predictions is 

the availability of future climate predictions of other abiotic factors, like pH and 

phosphor, that have been shown to be important predictors of seaweed 

distributions (Verbruggen et al., 2013). 

The turnover maps show that the species composition in certain places will be 

altered, even when there is a limited increase in the total number of introduced 

species. If one or a few ‘leverage species’ become suitable or unsuitable this may 

result in sweeping community-level changes (Harley et al., 2006). 

Conclusion 
Distribution modelling of invasive seaweeds is a challenging task. In this study we 

showed that using coastal background, spatial thinning and an ensemble of models 

with quadratic features results in transferable distribution models. However, 

predicting the invasion through time can yield poorly performing models when the 

known distribution records don’t reflect the environmental niche of the species. 

Change and turnover maps combined with an assessment of the uncertainty therein 

are valuable tools. They allow for a cost-effective monitoring of coastlines, as not all 

European coastlines will be evenly impacted by climate change. 
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Supporting information 
In this supporting information we first aim to build transferable SDMs by selecting 

the best modelling choices. In order to be able to select transferable models the 

cross-validation (CV) splitting approaches have to be compared. Of the three cross-

validation data splitting approaches (CV) the random splitting approach yielded the 

highest values across the evaluation metrics used: AUC, kappa and H-measure (Table 

S1). On the other hand, the temporal splitting approach resulted in the lowest 

evaluation metrics for all species, with some of the models becoming 

indistinguishable from random models. The random CV resulted in occurrence 

training and test sets with very similar densities in environmental space, that are 

dissimilar from the background test points (Fig. S1). The spatial CV has occurrence 

training and test records that are both dissimilar from each other and from the 

background points. Lastly, with the temporal splitting approach both the occurrence 

training and test sets and the background test points are very similar. From this 

point onward options were only evaluated using the spatial CV. 

None of the two thinning distances explored (30 versus 100 km) performed better 

for all species (Table S2). Therefore the thinning procedure was kept species-specific. 

The thinning distances used were 30 km for G. turuturu and S. muticum and 100 km 

for the other species. 

Table S3 shows that models built with coastal background have higher AUC values. 

They are the most transferable for all features, species and algorithms. As the 

Surface Range Envelope algorithm only uses occurrence data to build the model, the 

resulting AUC values are the same for both types of background. 

Including quadratic features results in a higher transferability of the models for both 

MaxEnt and GLM (Table S3). Regarding the different algorithms tested, although 

generalized linear models consistently have a high AUC (Table S3A), other coastal 

background algorithms sometimes perform better than GLM depending on the 

species. In addition, MaxEnt coastal models with quadratic features perform 

somewhat similarly to coastal GLMs with quadratic features. The ensemble model 

built using all the algorithms, with the coastal background and quadratic features 

(for MaxEnt and GLM), generally performs well. The results for the other evaluations 

metrics show the same trends as those for AUC described here (Table S3B and C).  
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Table S1. Model performance for different algorithms and cross-validation (CV) data splitting 
approaches for all species. Values in red indicate high values while values in white indicate low values. 
A coastal background was used for all models and MaxEnt and GLM algorithms were performed with 
quadratic features. Thinning distances used for the different species were 100, 100, 30, 30 and 100 km, 
respectively. The three evaluation metrics used are AUC (A), kappa (B) and the H-measure (C). 

A. AUC       

CV Algorithm D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Spatial 

GLM 0.89 0.769 0.86 0.866 0.899 
MaxEnt 0.764 0.765 0.682 0.862 0.755 
RF 0.713 0.63 0.641 0.652 0.764 
SRE 0.727 0.796 0.743 0.613 0.813 

Year 

GLM 0.576 0.598 0.798 0.593 0.607 
MaxEnt 0.502 0.593 0.663 0.578 0.556 
RF 0.46 0.568 0.749 0.558 0.529 
SRE 0.567 0.588 0.743 0.621 0.626 

Random 

GLM 0.964 0.908 0.938 0.939 0.948 
MaxEnt 0.949 0.91 0.937 0.94 0.935 
RF 0.915 0.908 0.949 0.957 0.931 
SRE 0.893 0.835 0.805 0.848 0.86 

B. Kappa 

      CV Algorithm D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Spatial 

GLM 0.636 0.345 0.657 0.667 0.702 

MaxEnt 0.424 0.345 0.357 0.638 0.471 

RF 0.182 -0.024 -0.086 0.039 -0.038 

SER 0.455 0.595 0.486 0.226 0.615 

Year 

GLM 0.067 0.088 0.378 0.151 0.058 

MaxEnt 0.067 0.076 0.324 0.196 0.084 

RF -0.067 0.069 0.135 0.063 0.027 

SER 0.133 0.176 0.486 0.242 0.254 

Random 

GLM 0.857 0.675 0.78 0.725 0.824 

MaxEnt 0.786 0.675 0.805 0.725 0.765 

RF 0 0.147 0.146 0.469 0.059 

SER 0.786 0.669 0.61 0.689 0.721 

C. H-measure 

      CV Algorithm D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Europe 

GLM 0.539 0.301 0.492 0.509 0.608 

MaxEnt 0.354 0.299 0.185 0.506 0.296 

RF 0.255 0.1 0.132 0.094 0.28 

SER 0.391 0.394 0.381 0.093 0.454 

Year 

GLM 0.155 0.084 0.39 0.097 0.108 

MaxEnt 0.128 0.079 0.232 0.105 0.109 

RF 0.12 0.036 0.288 0.032 0.04 

SER 0.024 0.056 0.281 0.092 0.111 

Random 

GLM 0.853 0.542 0.756 0.648 0.752 

MaxEnt 0.884 0.542 0.732 0.648 0.705 

RF 0.783 0.529 0.736 0.735 0.694 

SER 0.768 0.449 0.544 0.531 0.61 
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Figure S1. Distribution of occurrences (training and test) and background test for the maximum sea 
surface temperature for Sargassum muticum for the three different splitting approaches: Europe (A), 
year (B) and random (C). 

Table S2. Model performance for the two thinning distances, 30km and 100km for the three different 
metrics: AUC (A), kappa (B) and H-measure (C). GLM and MaxEnt models were built with quadratic 
features. The best thinning distance is marked in green. 

A. AUC 

Algorithm 
D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 

GLM 0.881 0.895 0.766 0.769 0.86 0.665 0.866 0.688 0.907 0.899 

MaxEnt 0.728 0.764 0.82 0.765 0.682 0.631 0.862 0.683 0.779 0.755 

RF 0.705 0.713 0.725 0.63 0.641 0.59 0.652 0.566 0.817 0.764 

SRE 0.727 0.727 0.805 0.796 0.743 0.75 0.613 0.593 0.827 0.813 

B. Kappa 

Algorithm 
D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 

GLM 0.636 0.636 0.278 0.345 0.657 0.443 0.667 0.211 0.692 0.702 

MaxEnt 0.394 0.424 0.487 0.345 0.357 0.314 0.638 0.166 0.51 0.471 

RF 0.212 0.182 0.216 -0.024 -0.086 -0.014 0.039 -0.005 0.038 -0.038 

SRE 0.455 0.455 0.612 0.595 0.486 0.5 0.226 0.184 0.663 0.615 

C. H-measure 

Algorithm 
D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 30 km 100 km 

GLM 0.534 0.539 0.261 0.301 0.492 0.206 0.509 0.169 0.599 0.608 

MaxEnt 0.312 0.354 0.395 0.299 0.185 0.158 0.506 0.168 0.324 0.296 

RF 0.25 0.255 0.195 0.1 0.132 0.083 0.094 0.036 0.383 0.28 

SRE 0.389 0.391 0.418 0.394 0.381 0.399 0.093 0.076 0.512 0.454 
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Table S3 Overview of the effect of the different modelling choices on the model performance. Columns 
are divided by species and background type (coastal and global background), rows represent modelling 
algorithms and feature types (linear or quadratic), and the values are the performance metrics area 
under the curve (A), kappa (B) and H-measure (C). A higher value (red) indicates a high transferability, 
while low values (white) indicate a poor performance. Thinning distances used for the different species 
were 100, 100, 30, 30 and 100 km, respectively. Ensemble models for the different species were built 
with the options selected with an asterisk (*). 

A. AUC           

Algorithm 

D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Coastal Global Coastal Global Coastal Global Coastal Global Coastal Global 

GLM Q 0.895 0.768 0.769 0.666 0.86 0.383 0.866 0.771 0.899 0.827 

GLM L 0.651 0.647 0.49 0.351 0.529 0.329 0.505 0.492 0.56 0.508 

MaxEnt Q 0.764 0.662 0.765 0.536 0.682 0.379 0.862 0.762 0.755 0.529 

MaxEnt L 0.661 0.632 0.485 0.359 0.527 0.386 0.51 0.484 0.564 0.487 

RF 0.713 0.655 0.63 0.498 0.641 0.46 0.652 0.392 0.764 0.745 

SRE 0.727 0.727 0.796 0.797 0.743 0.743 0.613 0.614 0.813 0.808 

Ensemble 0.894 
 

0.831 
 

0.802 
 

0.843 
 

0.885 
 

B. Kappa    

Algorithm 

D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Coastal Global Coastal Global Coastal Global Coastal Global Coastal Global 

GLM Q 0.636 0.515 0.345 0.297 0.657 -0.071 0.667 0.286 0.702 0.538 

GLM L 0.455 0.485 0.259 -0.012 0.157 -0.229 0.099 0.077 0.327 0.115 

MaxEnt Q 0.424 0.394 0.345 0.136 0.357 -0.043 0.638 0.358 0.471 0.135 

MaxEnt L 0.455 0.394 0.253 0.003 0.171 -0.057 0.102 0.047 0.317 0.106 

RF 0.182 0.061 -0.024 0 -0.086 -0.143 0.039 -0.031 -0.038 0.317 

SRE 0.455 0.455 0.595 0.59 0.486 0.486 0.226 0.226 0.615 0.625 

Ensemble 0.545   0.463   0.4   0.461   0.519   

C. H-measure    

Algorithm 

D. cyanoloma C. fragile G. turuturu S. muticum U. pinnatifida 

Coastal Global Coastal Global Coastal Global Coastal Global Coastal Global 

GLM Q 0.539 0.367 0.301 0.151 0.492 0.068 0.509 0.34 0.608 0.366 

GLM L 0.256 0.239 0.065 0.133 0.091 0.083 0.033 0.074 0.119 0.043 

MaxEnt Q 0.354 0.251 0.299 0.056 0.185 0.057 0.506 0.339 0.296 0.052 

MaxEnt L 0.293 0.25 0.068 0.133 0.096 0.065 0.034 0.074 0.123 0.039 

RF 0.255 0.17 0.1 0.01 0.132 0.027 0.094 0.067 0.28 0.257 

SRE 0.391 0.391 0.394 0.394 0.381 0.381 0.093 0.093 0.454 0.454 

Ensemble 0.562   0.451   0.414   0.478   0.526   
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Figure S2. Evolution of kappa (A, B) and H-measure (C, D) at different points along the invasive history. 
The left figure (A, C) shows the values for the restricted scenario, in which at T1 only native records are 
used for model fitting. Subsequent time points use both native and European records. For the right 
figure (B, D) all occurrence records known at the specific years are used for modelling. The x-axis 
represents the percentage of invasive records included to build the model with the total number of 
records included in the last model as 100%. 
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Figure S3. European predictions of 
suitable areas for Grateloupia 
turuturu. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of G. turuturu in 
Europe, C) native records and all 
European records known in the 
year 2000 (T3) and D) native 
records and all invasive records 
known in 2000. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. 
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Figure S4. European predictions of 
suitable areas for Undaria 
pinnatifida. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of U. pinnatifida in 
Europe, C) native records and all 
European records known in the 
year 2000 (T3) and D) native 
records and all invasive records 
known in 2000. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. 
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Figure S5. European predictions of 
suitable areas for Codium fragile 
subsp. fragile. Red stars are 
locations used as test occurrences 
and the training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of C. fragile in Europe, 
C) native records and all European 
records known in the year 1990 
(T4) and D) native records and all 
invasive records known in 1990. A) 
and C) represent models from the 
restricted scenario while B) and D) 
are models from the global 
scenario. For further information 
about the number of records 
included in each model we refer to 
Table 2. 
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Figure S6. European predictions of 
suitable areas for Dictyota 
cyanoloma. Red stars are locations 
used as test occurrences and the 
training records are in cyan 
triangles. The records for fitting the 
models are: A) only native records, 
B) native records and all invasive 
records known before the 
introduction of D. cyanoloma in 
Europe, C) native records and all 
European records known in the 
year 2010 (T3) and D) native 
records and all invasive records 
known in 2010. A) and C) represent 
models from the restricted scenario 
while B) and D) are models from 
the global scenario. For further 
information about the number of 
records included in each model we 
refer to Table 2. 
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Figure S7. The change in number 
and turnover of introduced 
seaweeds predicted by 2100 under 
the IPCC climate change scenario 
A1B. The top left map (A) shows 
the mean difference in number of 
introduced species between the 
current climate and climate change 
scenario A1B from SDMs build for 
15 species. The top right map (B) 
indicates the standard deviation in 
model predictions when using the 
mean, minimum or maximum sea 
surface temperature as one of the 
four predictors for building the 
distribution models for each 
species. The bottom left (C) and 
right (D) maps indicate the mean 
and standard deviation of the 
turnover of introduced seaweeds. 
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Figure S8. The change in number 
and turnover of introduced 
seaweeds predicted by 2100 under 
the IPCC climate change scenario 
A2. The top left map (A) shows the 
mean difference in number of 
introduced species between the 
current climate and climate change 
scenario A2 from SDMs build for 15 
species. The top right map (B) 
indicates the standard deviation in 
model predictions when using the 
mean, minimum or maximum sea 
surface temperature as one of the 
four predictors for building the 
distribution models for each 
species. The bottom left (C) and 
right (D) maps indicate the mean 
and standard deviation of the 
turnover of introduced seaweeds. 



 

 


