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Phytoplankton are often limited by iron in aquatic environments. Here we examine Fe bioavailability
to phytoplankton by analyzing iron uptake from various Fe substrates by several species of
phytoplankton grown under conditions of Fe limitation and comparing the measured uptake rate
constants (Fe uptake rate/ substrate concentration). When unchelated iron, Fe0, buffered by an
excess of the chelating agent EDTA is used as the Fe substrate, the uptake rate constants of all the
eukaryotic phytoplankton species are tightly correlated and proportional to their respective surface
areas (S.A.). The same is true when FeDFB is the substrate, but the corresponding uptake constants
are one thousand times smaller than for Fe0. The uptake rate constants for the other substrates we
examined fall mostly between the values for Fe0 and FeDFB for the same S.A. These two model
substrates thus empirically define a bioavailability envelope with Fe0 at the upper and FeDFB at
the lower limit of iron bioavailability. This envelope provides a convenient framework to compare the
relative bioavailabilities of various Fe substrates to eukaryotic phytoplankton and the Fe uptake
abilities of different phytoplankton species. Compared with eukaryotic species, cyanobacteria
have similar uptake constants for Fe0 but lower ones for FeDFB. The unique relationship between the
uptake rate constants and the S.A. of phytoplankton species suggests that the uptake rate constant
of Fe-limited phytoplankton has reached a universal upper limit and provides insight into the
underlying uptake mechanism.
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Introduction

Iron is quantitatively the most important trace metal
in photosynthetic microorganisms (Raven et al.,
1999). Its significance within aquatics systems came
to the fore with John Martin’s pioneering work in
High Nutrient Low Chlorophyll ocean regions
(Martin and Fitzwater, 1988; Martin, 1990). The
resulting Iron Hypothesis sparked great interest in
iron as a key limiting nutrient for marine primary
production and as an important factor in the global
carbon cycle (Martin et al., 1991). Subsequent
studies have shown that phototrophic microorgan-
isms are Fe limited in vast regions of the world’s
oceans and some fresh water environments (Moore
et al., 2001; McKay et al., 2004; Boyd et al., 2007;
North et al., 2007).

At the circumneutral pH and oxic conditions that
characterize such habitats, iron is poorly soluble

and precipitates out of solution as ferric oxyhydr-
oxide solids (Millero, 1998). Many open ocean
waters and some freshwater systems are character-
ized by low dissolved iron (o0.2 mm size fraction)
concentrations, often in the nanomolar or subnano-
molar range (Johnson et al., 1997; McKay et al.,
2004). A major fraction of this dissolved Fe pool,
over 99%, is complexed by organic ligands (Gledhill
and van den Berg, 1994; Rue and Bruland, 1995; Wu
and Luther, 1995; Gledhill and Buck, 2012). As a
result, the dissolved unchelated inorganic iron, Fe0,
comprising primarily Fe(OH)x complexes (Morel
and Hering, 1993), is found at exceedingly low
concentrations (Morel et al., 2008). Moreover,
studies using ultrafiltration methods have found
that colloids account for a significant fraction of the
iron within the operationally defined dissolved Fe
pool (Wu et al., 2001).

The least abundant form of dissolved iron, Fe0, has
been found to be the most readily bioavailable to
phytoplankton (Morel et al., 2008). This preference
for Fe0 over other iron substrates is supported by
theoretical calculations (Hudson and Morel, 1993) as
well as direct uptake studies with laboratory cultures
and field populations (see, for example, Maldonado
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et al., 2005; Shaked et al., 2005). Dissolved organi-
cally complexed iron is a heterogeneous Fe pool, the
bioavailability of which depends in part on its
chemical nature (Shaked and Lis, 2012). Lastly, the
bioavailability of the colloidal and particulate Fe
fractions is generally low and is a function of the
thermodynamic stability and kinetic lability of these
phases (Kuma and Matsunaga, 1995; Chen et al.,
2003). Nevertheless, many studies have pointed to
the importance of these fractions in replenishing the
dissolved Fe pool via thermal, photochemical or
ligand mediated dissolution (Sulzberger et al., 1989;
Kraemer, 2004; Borer et al., 2005).

Iron bioavailability is not only a function of
chemical speciation but also of phytoplankton phy-
siology and Fe uptake mechanism. Studies in this
field have focused on two major (but non-exclusive)
pathways—reductive- and siderophore-mediated
uptake. Reductive Fe uptake involves an integral
reductive step before internalization of Fe via the cell
plasma membrane. This prevalent pathway has been
demonstrated in the uptake of Fe0 and organically
bound Fe compounds in fresh water and marine
prokaryotic and eukaryotic phytoplankton (Allnutt
and Bonner, 1987; Jones et al., 1987; Eckhardt and
Buckhout, 1998; Maldonado and Price, 2001; Lis and
Shaked, 2009; Kranzler et al., 2011). Siderophore-
mediated Fe uptake involves direct transport of the
ferric–siderophore complex into the cell where Fe is
released from the chelating ligand. In comparison
with the widespread reductive strategy, this mechan-
ism characterizes fresh and brackish water prokaryo-
tic phytoplankton (Hopkinson and Morel, 2009;
Hopkinson and Barbeau, 2012).

The body of published studies on iron uptake by
phytoplankton provides an extensive empirical foun-
dation for exploring the factors governing iron bio-
availability in aquatic environments. However, the
synthesis of data into an encompassing view is often
complicated by methodological differences between
studies. Organism physiology and growth phase, iron
substrate definition and concentration, pH, illumina-
tion and temperature may all influence the experi-
mental results and their interpretation, encumbering
efforts at cross comparisons between studies. Here we
attempt to resolve this difficulty by careful selection of
iron uptake data covering experiments with a variety of
Fe substrates and organisms under a range of condi-
tions. Our analysis includes both original and pub-
lished data. The results lend interesting insights into
the factors that limit Fe uptake kinetics in phytoplank-
ton and the underlying uptake mechanisms; they also
provide a framework for examining the question of iron
bioavailability in culture media and natural waters.

Methods

Analytical approach
In this contribution, we draw on original and
previously published iron uptake rates to compile

a database that covers a range of Fe substrates and
phytoplankton species (Table 1). Uptake rates were
derived from short-term as well as steady-state
growth experiments. Short-term iron uptake (r) is
measured as the intracellular accumulation of
radiolabeled Fe over time (typically 4 h to 8 h).
Steady-state iron uptake is calculated as the product
of phytoplankton growth rate and intracellular iron
concentration (equation 1):

rss ¼ Q � m ð1Þ
where rss is the steady-state iron uptake rate in

mol Fe per cell h�1; Q is the intracellular iron
concentration in mol Fe per cell (often called the Fe
quota ) and m is the specific growth rate in units
of h�1.

The inclusion of diverse data sources introduces
variability and experimental noise into the data set.
One of our greatest challenges was that iron uptake
rates were measured in different laboratories
employing different experimental conditions and
Fe substrate concentrations. To minimize these
effects, stringent standards were applied in both
data selection and analysis. We chose experiments
conducted with iron-limited cells, that is, Fe
concentrations in the growth medium were low
enough to limit specific growth rate. In addition, the
iron concentrations at which uptake rates were
measured did not saturate cellular iron transporters
and maximal Fe uptake rate (that is, Vmax) was not
achieved (see Section 1 in Supplementary Appendix
for further discussion). Under these conditions, Fe
uptake rate is proportional to the Fe substrate
concentration (equation 2):

r ¼ kin � ½S� ð2Þ
Where r is the iron uptake rate in mol Fe per

cell h� 1; kin is the uptake rate constant in l per
cell h� 1 and [S] is the Fe substrate concentration in
the medium in mol l�1. This type of analysis is
suitable for both steady-state iron uptake experi-
ments and short-term studies with cells precondi-
tioned in Fe limiting growth medium. By virtue of
its independence from substrate concentration, the
uptake rate constant, kin, facilitates the comparison
of multiple iron substrates and organisms. Subse-
quent analysis of the data necessitated the calcula-
tion of cell surface area (S.A.) for each of the
organisms. If available, surface areas were calcu-
lated from cell dimensions reported within the
study in which iron uptake rates by a specific
species were measured. If these were not provided,
other literature reports on cell dimensions of this
specie grown under Fe-limited conditions were
averaged (see Section 2 in Supplementary
Appendix for details).

Data selection
The data set analyzed here includes five major
phytoplankton divisions, 15 species and 16 Fe
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substrates collected from 18 distinct studies
(Table 1). Published studies were selected on the
basis of a set of biological and chemical criteria
outlined in Table 2. Further details on the data set
are provided in Section 2 of the Supplementary
Appendix and Supplementary Tables S1–S5. We
have also included original data for several phyto-
plankton species and Fe substrates. The methods
employed in the generation of original data
(trace metal clean methods, phytoplankton growth
and iron limitation and short-term 55Fe uptake
experiments) are outlined in Section 3 of the
Supplementary Appendix.

Two commonly used Fe substrates form the
backbone of our analysis: inorganic unchelated iron
(Fe0) in media buffered with an excess of EDTA and
Fe chelated by the siderophore desferri-ferrioxamine
B (DFB). These substrates were chosen because they
are chemically well defined and each constitutes a
single bioavailable iron substrate. The synthetic
chelator EDTA is commonly used to buffer constant
and easily calculable Fe0 concentrations (Sunda
et al., 2005). FeEDTA itself is not bioavailable and
the only bioavailable iron substrate in this system is
Fe0 (Shaked et al., 2005). While FeEDTA is photo-
labile, this process can be quantified and the Fe0

concentrations in an illuminated growth medium
can be precisely calculated. The Fe0 concentrations
in the different experimental media were calculated
according to Sunda et al. (2005) as well as using
Visual Minteq software (Gustafsson, 2010). FeDFB is
an extremely stable ferric–siderophore complex
with log KFe

0

FeL ¼ 16:5 (Hudson et al., 1992) and when
iron is complexed to a slight excess of DFB, Fe0

concentrations are negligible. In addition, the
FeDFB complex is not photosensitive and light does
not affect Fe speciation. Thus in these experiments
FeDFB is the only substrate for Fe uptake.

Results

Uptake of unchelated iron (Fe0)
We first examined the uptake kinetics of inorganic
iron (Fe0) in EDTA-buffered media. The data set
includes both steady-state (growth) and short-term
iron uptake rates of Fe-limited phytoplankton
(Table 1). It contains both prokaryotic and eukar-
yotic phytoplankton, encompassing 15 species and
28 strains isolated from a range of aquatic environ-
ments (fresh, brackish and marine waters) and
grown under different conditions, including

Table 1 A list of the phytoplankton species and Fe substrates included in our data set

Division Phytoplankon species Fe substrates References

Haptophytes Emiliania huxleyi (CCMP374; A1387) Fe0, FeDFB (Sunda and Huntsman, 1995; Shi et al.,
2010, this study)

Phaeocystis sp. (pouchetti, antarctica)
(CS243, NEPCC225, SX9, AA1)

Fe0, FeDFB, ferrichrome (FC),
Southern Ocean natural ligands,
HBED, porphyrin,gallocatechin
(CAT), saccharides

(Hassler and Schoemann, 2009; Lane
et al., 2009; Strzepek et al., 2011)

Chrysochromulina polylepis
(NEPCC242)

Fe0 (Lane et al., 2009)

Diatoms Pseudo-nitzschia sp. (for example,
turgidula, heimii, multiseries)
(UBC103, UBC403, UBC303, Orø13)

Fe0 (Marchetti et al., 2006)

Thalassiosira (oceanica, antarctica,
weissflogii, psuedonana) (CCMP982,
CCMP1049, CCMP1336, CCMP1335,
CCMP1003, NEPCC58)

Fe0, FeDFB, Southern Ocean natural
ligands, NJCW, BATS, HBED, grazed
Fe, fresh ferrihydrite, Fe-Dps, por-
phyrin, humic acid, ferrichrome (FC),
DFE, Enterobactin, Aerobactin,
Azotochelin

(Sunda and Huntsman, 1995;
Maldonado and Price, 1996; Hutchins
et al., 1999; Maldonado and Price, 2001;
Shaked et al., 2004; Kustka et al., 2005;
Marchetti et al., 2006; Kustka et al.,
2007; Chen and Wang, 2008; Hassler
and Schoemann, 2009; Lane et al., 2009;
Shi et al., 2010; Strzepek et al., 2011)

Phaeodactylum tricornutum
(CCMP2557, CCMP630)

Fe0 (Kustka et al., 2007; Shi et al., 2010)

Chaetoceros spp (CS624) FeDFB, Southern Ocean, HBED,
porphyrin, saccharide,gallocatechin
(CAT)

(Hassler and Schoemann, 2009)

Dynophytes Prorocentrum spp (minimum, micans) Fe0 (Sunda and Huntsman, 1995; Sunda
and Huntsman, 1997)

Heterokonts Pelagomonas calceolate (CCMP1214) Fe0 (Sunda and Huntsman, 1995)
Nannochloropsis oculata (CCAP 251/5) Fe0, FeDFB, FeAB (this study)

Cyanobacteria Prochlorococcus spp (MED4, MIT9319) Fe0, FeDFB (Thompson, 2009, this study)
Synechococcus spp (WH7803;
WH8102; CCMP1183; PCC7002)

Fe0, FeDFB (this study)

Syenchosystis sp (PCC6803) Fe0, FeDFB (Kranzler et al., 2011)
Trichodesmium erythraeum (IMS101) Fe0 (this study)
Anabeana sp (UTEX 2576) Fe0, FeDFB (this study)
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different growth media, temperatures and light
regimes. When uptake rates are plotted as a function
of total Fe concentration in the media on a log–log
graph, the data points are widely scattered
(Figure 1a). As Fe0 rather than FeEDTA is the
substrate for uptake, this scatter is slightly reduced
when the same uptake rates are plotted against the
calculated concentrations of Fe0 present in the
experiment (Figure 1b). The high gray points out-
lined by stars in Figures 1a and b correspond to
larger cells, whereas the lower black points outlined
by circles correspond to smaller cells.

Sunda and Huntsman (1995) showed that Fe0

uptake rate is proportional to cell S.A. in several
phytoplankton species. We thus plotted the uptake
rate constants, kin (obtained by dividing the uptake
rates, r, by the Fe0 concentrations; equation (2))
against cell S.A. (Figure 1c). This graph reveals a
very high correlation between the uptake rate
constant and the S.A. across 104 individual experi-
ments involving both short-term and steady-state
measurements of uptake kinetics (r2¼ 0.944 for
best the linear fit of kin vs S.A.—not on a log scale,
see Section 4 of Supplementary Appendix and
Supplementary Figure S2). In addition, the slope
of the linear fit on the log–log graph is negligibly
different from unity. The trend line in Figure 1b
has been forced through the origin (r2¼ 0.942),

corresponding to a linear fit with a slope of 1 on
the log–log graph. In other words, the Fe uptake
rates of taxonomically diverse phytoplankton in the
presence of the same Fe0 concentration are directly
proportional to their S.A. and the experimental
procedures are accurate and consistent enough to
reveal this relationship.

The uptake rates of iron bound to the hydro-
xamate siderophore DFB were analyzed in a similar
manner to the Fe0 data (Figure 2). Due to the high
stability of the FeDFB complex and the slight excess
of DFB over iron in these experiments, all the iron in
the experiments is present as FeDFB. This smaller
data set also shows some scatter when uptake rates
are plotted as a function of FeDFB concentration
(Figure 2a). However, when uptake rates are con-
verted to uptake rate constants (obtained by dividing
the uptake rate, r, by the FeDFB concentration) and
plotted against S.A, a strong linear correlation
between the two is apparent (Figure 2b). Similar to
the Fe0 data, the slope on the log–log graph is
negligibly different from unity (r2¼ 0.90 for the
best fit, and r2¼ 0.89 when the fit of kin versus
S.A. is forced through the origin, see Section 4 of
Supplementary Appendix and Supplementary
Figure S3) demonstrating a direct proportionality
between the uptake rate constant, kin, and cell S.A.
in both short-term and steady-state Fe uptake data.

Table 2 Criteria guiding data collection

Data selection criterion Motivation and explanatory notes

Fe status of cells—only iron-limited cells We specifically probe the Fe uptake systems induced under iron
limitation. This is environmentally relevant as Fe limitation is wide-
spread across aquatic habitats.

Fe substrates—preferably chemically defined substrates,
where only one Fe species is available for uptake

To derive the uptake rate constant (equation 2), Fe substrate concentra-
tion and speciation must be known. Most selected experiments are of
well-defined substrates such as Fe0 or strongly complexed Fe (side-
rophore bound). We also included less-defined substrates such as
polysaccharides and colloidal Fe and discuss the limitations in their
analysis.

Fe substrate concentrations—sub-saturating with respect to
cellular Fe uptake sites

Calculation of the uptake rate constant from uptake rates (equation (2)) is
valid only for Fe concentrations below those that result in maximal
uptake rate (that is, oVmax). See Section 1 of Supplementary Appendix
for more details

Growth phase—only exponentially growing cells Uniformity of phytoplankton physiological status in all experiments is
extremely important. Phytoplankton physiology during stationary or lag
phase may deviate significantly from that in exponential phase.

Cell density—low cell density to avoid changes in Fe
concentration and speciation during the uptake experiments

Quasi-equilibrium should be maintained between cells and Fe substrate.
High cell density results in underestimation of uptake rate due to
competition between cells over iron. We chose experiments where cells
took less than 20% of the total Fe, or that the total uptake rate was at most
20% of the FeEDTA dissociation rate.

Extracellular Fe washed before measurements Iron tends to stick to cell surfaces and a wash (for example, titanium–
EDTA wash or oxalate wash) is essential to prevent overestimation of
intracellular iron concentration.

Minimal excess free ligand (for siderophore-bound Fe uptake). Free excess ligand can inhibit iron uptake rates due to interference with
uptake mechanisms (Shaked et al., 2005). Therefore, uptake experiments
with strong Fe complexes (not including EDTA) with minimal excess
ligand were selected (Fe:Lo 1:5)

These criteria apply to both steady-state and short-term Fe uptake data.

Iron bioavailability: an empirical approach
H Lis et al

1006

The ISME Journal



The bioavailability envelope
From the large data set presented in Figures 1 and 2,
we compiled the Fe0 and FeDFB uptake data of
Fe-limited eukaryotic phytoplankton into a single
figure (Figure 3). Multiple uptake data reported for a
single organism in a specific study were averaged
and various symbols denote the different phylo-
genetic lineages. The positions of the linear fits for
Fe0 and FeDFB differ by three orders of magnitude,
indicating that, for the same S.A., eukaryotic
phytoplankton take up Fe0 1000-fold faster than
FeDFB. As seen in Figures 4a and b, the other
substrates we examined, be they model Fe com-
pounds or chemically complex substrates from
natural environments, fall mostly within the
boundaries defined by Fe0 and FeDFB trend lines.
For a given S.A., no Fe substrate was taken up
significantly faster than Fe0 nor slower than FeDFB.
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Figure 1 Fe0 uptake rates of Fe-limited phytoplankton within an
FeEDTA system. Each data point represents a single rate
measurement derived from either short-term radioisotope (dia-
monds) or steady-state growth (squares) experiments. To encom-
pass the breadth of Fe concentrations and uptake rates, both x and
y axes are in log scale. Data points for the largest cells are outlined
by stars, while data points representing the smallest cells are
black and outlined by circles. (a) Cellular iron uptake rate (mol Fe
per cell h�1) as a function of FeEDTA concentration (nM). (b) Iron
uptake rate as a function of unchelated inorganic iron, Fe0 (pM).
(c) Uptake rate normalized to Fe0 concentration (l per cell h�1) as a
function of cell S.A. (mm2).
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Figure 2 FeDFB uptake by iron-limited phytoplankton. Each
data point represents the result of a single experiment. Short-term
and steady-state growth measurements are indicated by diamonds
and squares respectively. Data points for the largest cells are
outlined by stars, while data points representing the smallest cells
are black and outlined by circles. Note that x and y axes are in log
scale. (a) Fe uptake rate as a function of FeDFB concentration.
Even in the presence of slight excess ligand relative to iron, Fe0

concentrations in this experimental system are negligible and the
sole substrate for uptake is FeDFB. (b) Uptake rate normalized to
FeDFB (l per cell h� 1) as a function of cell S.A. (mm2).
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The large number of studies evaluating Fe0 and
FeDFB uptake by Fe-limited eukaryotic phyto-
plankton thus define a ‘bioavailability envelope’
with an upper boundary corresponding to Fe0 uptake
and a lower boundary defined by FeDFB uptake.
The compounds lying closer to the FeDFB trend line
are octahedrally coordinated Fe–siderophore
complexes—iron bound to aerobactin, enterobactin,
ferrioxamine E and ferrichrome—and ferrihydrite
sequestered in the iron storage protein Dps
(Fe-Dps). Those lying closer to the Fe0 trend are
Fe–saccharide, Fe–humic acid and Fe–porphyrin
complexes. Going from model compounds to iron
bound to natural ligands from the Western Atlantic
and Southern Ocean, we find that the corresponding
uptake constants plot closer to the Fe0 trend line
than to FeDFB (Figure 4).

Fe uptake by cyanobacteria
In addition to providing a convenient means of
comparing the bioavailabilities of Fe substrates to
eukaryotic phytoplankton, the kin versus S.A. graph
can also be used to compare the bioavailabilities of
the same substrates to different phytoplankton taxa.
We found a remarkable similarity between cyano-
bacterial Fe0 uptake data and that of eukaryotes, with
the cyanobacterial data points falling largely along
the eukaryotic trend (Figure 5). This similarity in the
Fe0 uptake data for prokaryotic and eukaryotic
phytoplankton is independent of the habitat from

which cyanobacterial strains were isolated or the
composition of their culture media (which are
markedly different from the eukaryotic culture
medium in ionic strength and nutrient composi-
tion). In contrast, the FeDFB uptake constants of
cyanobacteria are about 20-fold lower than those of
the eukaryotes, although interestingly they still
show a rough proportionality to the S.A. of the
organisms (Figure 5). Fe–schizokinen uptake by Fe-
limited Anabaena was also included in this analysis
as a reference for endogenous siderophore uptake by
siderophore producing cyanobacteria. The corre-
sponding point (starred circle, Figure 5) is one order
of magnitude above the trend line for FeDFB uptake
by cyanobacteria.

Discussion

What mechanisms are responsible for the similarity in
S.A.-normalized Fe uptake rates across phytoplankton
species for both Fe0 and FeDFB?
The most striking empirical observation emerging
from our study is that when grown under Fe
limitation, all eukaryotic phytoplankton species
have essentially identical uptake rate constants for
Fe0 and FeDFB when normalized to S.A. Such a
similarity suggests that iron in aquatic environments
has exerted significant selective pressure on phyto-
plankton to evolve Fe uptake mechanisms that
operate at the optimal efficiency permitted by
fundamental physical, chemical or biochemical
factors (Hudson and Morel, 1990; Sunda and
Huntsman, 1995). If this is so, the results of our
analysis may provide insight into the factors that
limit iron uptake rates in phytoplankton.

The uptake of Fe by a cell first requires molecular
diffusion of the Fe substrate from the bulk medium
to the cell surface. The diffusive flux is proportional
to the (equivalent) radius, r, of the cell and thus
cannot explain our results showing proportionality
of Fe uptake to the S.A., that is, to r2. Further
calculations show that the diffusion of Fe0 or FeDFB
to cell surfaces is much faster than the measured
uptake rates unless the cells are very large (rB35
mm), larger than all the species included in our data
set (see Section 5 in of Supplementary Appendix
and Supplementary Figures S4 and S5).

The proportionality of the uptake rate constant,
kin, to S.A. demonstrated in Figures 1–3 is most
simply explained by a limit on membrane compo-
nents involved in Fe uptake. The number of Fe
uptake components at the surface of a cell must be
limited by their size and the available membrane
area, which is itself restricted by the space occupied
by all other membrane components necessary for
cellular functions and the integrity of the lipid
bilayer. The net result should be an uptake rate that
is proportional to S.A. and roughly the same S.A.
normalized kin for all species, provided that they
employ a similar iron uptake mechanism.

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05
0.1 1 10 100 1000 10000

marine syn

Brackish Syn

Synechosystis

Proch

Tricho

Anbn

Fe-schizokinen

k i
n 

(L
 c

el
l-1

 h
r-1

)

surface area (µm2)

Figure 5 The uptake rate constants (kin) for Fe0 and FeDFB
uptake by iron-limited cyanobacteria. The data is presented
within the bioavailability envelope based on the Fe0 and FeDFB
uptake of iron-limited eukaryotic phytoplankton (dashed trend
lines). Each data point represents a value taken from a different
study. A single point of Fe–schizokinen uptake by Anabaena
(starred circle) is included for comparison. The symbols indicate
different strains: marine Synechococcus (white triangles), brack-
ish Synechococcus (white squares), Synechocystis (black circles),
Prochlorococcus (gray triangles), Trichodesmium (black triangles)
and Anabaena (white circles).
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A growing body of evidence points to the
prevalence of reductive iron uptake in the acquisi-
tion of Fe0 and organically bound iron species such
as FeDFB by both fresh water and marine phyto-
plankton (Allnutt and Bonner, 1987; Jones et al.,
1987; Eckhardt and Buckhout, 1998; Maldonado and
Price, 2001; Shaked et al., 2005; Kustka et al., 2007;
Kranzler et al., 2011; Shaked and Lis, 2012). The
mechanism of Fe(III) uptake by phytoplankton
appears to be a two-step process: iron reduction at
the cell surface followed by its transport across the
cell membrane. As a result, two types of iron uptake
components in the membrane of eukaryotic phyto-
plankton are involved in Fe(III) uptake: Fe transpor-
ters (ferrioxidase-permeases) and (transmembrane)
reductases (Maldonado and Price, 2001; Maldonado
et al., 2006; Kustka et al., 2007). A maximum areal
concentration of either could be responsible for the
observed proportionality between kin and the S.A. of
cells.

An upper limit to Fe uptake rate resulting from a
maximum concentration of transport ligands in
the membrane of phytoplankton was invoked in
early work (Hudson and Morel, 1990; Sunda and
Huntsman, 1995), before it was recognized that
reduction of Fe(III) normally precedes uptake
(Maldonado and Price, 2001; Shaked et al., 2005;
Maldonado et al., 2006). Nevertheless, the uptake
could be limited by the rate of reaction of Fe(II) with
transporters following Fe(III) reduction at the surface.
This would require that the Fe(II) concentration at the
surface, Fe(II)s (Shaked et al., 2005), be maintained by
a balance between reduction and losses, both faster
than the uptake itself. Losses of Fe(II)s may occur
because of oxidation, diffusion to the bulk solution or
complexation by a competing Fe(II) ligand as demon-
strated experimentally (Shaked et al., 2005). In that
case, transmembrane transport becomes the limiting
step and the proportionality of kin to S.A. then results
from the maximum areal concentration of transporters
in the membrane.

Estimation of reduction from ferrozine binding
rates shows that reduction rates and Fe uptake rates
are on the same order of magnitude (Shaked et al.,
2004), suggesting that these two processes are in fact
coupled and that Fe(II)s loss is not substantial. If
losses are small compared with transport across the
membrane, then Fe(II)s is maintained chiefly by a
balance between reduction and uptake, and the
limiting step would be the rate of reduction of Fe(III)
substrates. In that case, a proportionality of kin to
cell S.A. could be determined by the maximum
possible number of membrane reductases per area of
cell membrane. This explanation would fit well
with the observation of much lower kin for FeDFB
than for Fe0, the uptake of which is presumably
enabled by the same reductases and transporters.
The much slower uptake of FeDFB compared
with Fe0 would result from the slower reduction
of chelated than unchelated Fe(III), as discussed
below.

Comparing the bioavailability of different iron
substrates
The ‘bioavailability envelope’ outlined by the Fe0

and FeDFB data is convenient for visualizing and
comparing the bioavailabilities of various Fe sub-
strates. The relative bioavailabilities of different Fe
complexes, inferred from the kin constant, must
ultimately depend on the reactivity of the bound
Fe(III) with the cell as well as the lability of the
ferric complex and concentration of Fe0 in the
medium. Thus, for example, in the case of Fe0 in
an EDTA-buffered system, FeEDTA itself is biologi-
cally non-reactive and the kin calculated for such a
system reflects Fe0 only. On the other extreme, the
FeDFB complex is extremely stable and Fe0 is
negligible. The kin in this case reflects only organi-
cally bound iron in the form of FeDFB. Many Fe
substrates, however, fall between these two
extremes. Therefore, caution should be exercised
in the interpretation of the kin constant. If the uptake
medium contains weak and/or photolabile Fe com-
plexes, then even when the ligand concentration
exceeds iron concentration, a significant amount of
unchelated Fe may be present (note that most
experiments reported in Figure 4 were conducted
in the light). In such instances, the calculated kin

reflects a mixed substrate pool including both
complexed iron (FeL) and uncomplexed iron (Fe0).
This is very likely the case with ligands such as
porphyrins, humic acids and saccharides, which all
show high Fe bioavailability (Figure 4). In this
situation, the uptake rate constant kin does not
represent a true kinetic parameter but it nonetheless
provides a useful measure of bioavailability of the
total Fe pool in the presence of such ligands. At the
other extreme, not all the iron in the experimental
medium may be truly dissolved and thus able to
diffuse to the cell surface and react with iron
transport ligands at the cell membrane. This is the
case for freshly precipitated ferrihydrite, grazed iron
and ferrihydrite sequestered within the iron storage
protein Dps (Figure 4). In this instance, the
parameter kin again provides an overall measure
of bioavailability, although the proportionality
between uptake rate and total Fe substrate concen-
tration may only obtain over a small concentration
range. Even in the presence of strong ligands, the
uptake rate may not be proportional to the substrate
concentration if the strong ligand is present in large
excess. As shown by Shaked et al. (2005), a ligand in
large excess can compete with uptake molecules for
the Fe(II) produced at the surface and decrease the
uptake rate.

Given the prevalence of reduction as an Fe uptake
strategy amongst eukaryotic phytoplankton (see
discussion above), the bioavailability of a given Fe
substrate must depend on its reducibility. When
bound in an extremely stable octahedral coordina-
tion with an hexadentate siderophore like FeDFB,
Fe(III) is much more difficult to reduce than
Fe(III) coordinated only to water and hydroxide
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(that is, Fe0). This likely accounts for the thousand
fold difference in the uptake rate constants between
Fe0and FeDFB (Figure 3). Although the current
knowledge on cell surface reductases in eukaryotic
phytoplankton is limited (Kustka et al., 2007; Allen
et al., 2008), it seems likely that both Fe0 and FeDFB
are reduced by the same surface reductase. Iron
substrates that share chemical characteristics with
FeDFB exhibit similarly low bioavailabilities
(Figure 4). Aerobactin, enterobactin, ferrioxamine E
and ferrichrome are all, like DFB, hexadentate
siderophores and the very low redox potential of
the Fe(III) bound within these ligands makes it
difficult to reduce (Pierre et al., 2002). Siderophores
that do not behave in a similar manner are
characterized by a lower denticity and coordination
number with regards to ferric iron and thus
potentially higher ‘reducibility’. These include the
bidentate gallotochetechin (CAT) and tetradentate
azotochelin (AZO).

How do Fe uptake rates of cyanobacteria compare with
those of eukaryotes?
The surprising similarity of S.A. normalized Fe0

uptake between cyanobacteria and eukaryotic phy-
toplankton (Figure 5) implies that similar factors
may be responsible for the upper limit on Fe uptake
in both. Indeed, recent studies support the presence
of a reductive step in Fe0 uptake by Fe-limited
cyanobacteria (Salmon et al., 2006; Lis and Shaked,
2009; Kranzler et al., 2011; Kranzler et al., 2014).
This is consistent with the idea that the upper limit
to iron uptake is fixed by the same maximum in the
rate of Fe(III) reduction per S.A. as in eukaryotic
phytoplankton. In contrast, the uptake rate of FeDFB
in cyanobacteria is considerably slower than in
eukaryotes of the same size (Figure 5). Interestingly,
FeDFB uptake rates still appear to be proportional to
cell S.A.. This observation is independent of the
organism’s ability to produce and/or transport side-
rophores. Out of the nine cyanobacterial strains
analyzed here, two are siderophore producers (Ana-
baena UTEX 2576 and Synechococcus PCC7002) and
three have known ferric–siderophore transporters
(Anabaena UTEX 2576, Synechosystis PCC6803 and
Synechococcus PCC7002). However, DFB is neither
produced by any of these cyanobacterial strains nor
is it structurally similar to their endogenous side-
rophores. Endogenous Fe–siderophore transport is
in fact faster than FeDFB uptake as can be seen in the
case of Fe–schizokinen transport by Anabaena
UTEX 2576 (starred circle, Figure 5). Thus, FeDFB
uptake probably depends on the reduction of Fe(III)
such that less effective reductases in cyanobacteria
than those in eukaryotes could conceivably be
responsible for the lower FeDFB uptake rate. A more
likely explanation stems from the necessity for Fe(III)
substrates to first penetrate through the outer
membrane of these Gram-negative bacteria before
undergoing reduction in the periplasmic space
(Kranzler et al., 2014). The bulky nature of the

FeDFB complex may prevent or severely impede its
passage through outer membrane porins, a process
whose upper limit is necessarily proportional to the
S.A. of the cells. In contrast, transport of Fe–
schizokinen by Anabaena spp. occurs via specific
ferric–siderophore transporters, allowing smooth
passage across the outer membrane (Lammers and
Sanders-Loehr, 1982).

Implications for Fe uptake in natural waters
Although laboratory based, the bioavailability envel-
ope provides an empirical framework within which
to assess iron availability in natural aquatic envir-
onments. The overwhelming majority (499%) of the
dissolved iron in the ocean is complexed by strong
but poorly characterized organic ligands (Gledhill
and Buck, 2012). Nonetheless, the kin of these Fe
substrates falls closer to the Fe0 than the FeDFB
trend line (Figure 4). One explanation for this
relatively high bioavailability of naturally occurring
Fe(III) complexes is their photolability and subse-
quent increase of the transient Fe0 pool. Maldonado
et al. (2005) showed that the uptake rates of
naturally occurring Fe substrates by in situ phyto-
plankton assemblages are significantly faster in the
light than in the dark. In addition, Barbeau et al.
(2001) proposed that photolabile Fe–siderophore
complexes enhance the pool of reactive iron species
in marine environments, thereby enhancing overall
iron bioavailability. Another possible explanation
for the relatively high bioavailability of naturally
occurring iron is the action of weak ligands which
may enhance metal uptake in the presence of strong
chelators as has been shown recently for Zn
(Aristilde et al., 2012). These two processes may
act individually or in synergy, resulting in enhanced
Fe bioavailability in natural environments.

The unique relationship observed empirically
between the uptake rate constants for Fe0 and the
S.A. of many phytoplankton species suggests that the
maximum uptake rate of Fe-limited phytoplankton
has reached a universal upper limit. If phytoplankton
cannot further increase uptake rates, a competitive
advantage in Fe-limited waters must be gained
through alternative means. This is commonly
achieved through a decrease in cell size and/or a
decrease in cellular Fe requirements. In general,
smaller cells have a clear advantage in meeting
cellular iron demands thanks to their high S.A. to
volume ratios. Accordingly, in situ observations show
that Fe-limited ocean regions are dominated by
smaller phytoplankton size classes (see, for example,
Gervais et al., 2002). However, small cell size may not
always prevent iron stress. Cyanobacterial iron
allocation is less efficient than that of eukaryotes as
evidenced by their disproportionally large Fe:C ratios
(Brand, 1991). As a result, open ocean cyanobacteria
such as Prochlorococcus may experience Fe limita-
tion despite their small size (Mann and Chisholm,
2000). On the other end of the size spectrum, very
large cells, such as certain diatom species in the
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Southern Ocean, may also be an exception in that
they are able to maintain relatively high growth rates
despite very low cellular Fe quotas (Strzepek et al.,
2011); the underlying physiology of this mechanism
being unknown as yet. Less conventional strategies
that may confer an advantage in iron-limited waters
are symbiotic relationships with bacteria (Amin
et al., 2009) or the utilization of iron from the
colloidal or particulate fraction (Nodwell and Price,
2001; Rubin et al., 2011).
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