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Abstract

We investigate a set of adaptive-stencil, finite-volume schemes used to capture sharp fronts and shocks in a wide range of fields. 
Our objective is to determine the most promising methods available from this set for solving sharp-front advective-dispersive 
transport problems. Schemes are evaluated for a range of initial conditions, and for Peclet and Courant numbers. Based upon results 
from this work, we identify the most promising schemes based on efficiency and robustness. © 2000 Elsevier Science Ltd. All rights 
reserved.

1. Introduction

The processes of solute and energy transport in nat­
ural systems are most often described using an advec­
tive-dispersive equation (ADE) with additional terms 
for sources, reactions, and interphase exchange of mass 
or energy [34]. For many problems, especially those in­
volving multiple species, ADE solutions can be a sub­
stantial part of the computational effort involved for a 
given flow and transport simulator. Economical solution 
of this equation is still elusive for cases in which sharp 
fronts in space and/or time develop. Dozens of ap­
proaches have appeared in the literature in a wide 
variety of fields, including water resources and envi­
ronmental engineering [2,29,66], chemical and petro­
leum engineering [10,54], atmospheric science [43], 
applied mathematics, and gas dynamics [11,37].

Most current subsurface transport codes use fixed- 
grid Eulerian methods, method of characteristics, or 
particle tracking approaches -  each of which has its own 
limitations. For example, conventional low-order finite- 
difference or finite-element methods are widely used, but 
known to be overly diffusive, subject to phase error, 
undershoot, peak depression, and oscillations [37]. 
Combining the advantages of Eulerian and Lagrangian 
approaches, method of characteristic approaches can be
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efficient for solving relatively simple advective-domi- 
nated problems. These approaches, however, can pose 
mass conservation problems, are not well suited for 
problems with multiple sources and non-linear mass 
transfer terms, and can be diffusive and oscillatory 
[3,19,38,44].

Over the last decade, simulators in the water re­
sources field have employed so-called high-resolution 
methods more and more for discretizing the advective 
portion of the ADE [6,9,20,25,30,35,40,51,52,61,67]. By 
high-resolution methods, we mean a class of adaptive- 
stencil methods, usually explicit in time, for resolving 
sharp fronts. This class has been actively investigated in 
the fields of gas dynamics and applied mathematics over 
the last two decades [14,15,18,22,24,28,32,42,45,48,49, 
53,57,59,64].

Some issues should be considered before directly 
applying high-resolution schemes from the gas dynamics 
and applied math literature to the ADE. Much of the 
work in these fields is primarily concerned with how well 
the schemes resolve solutions arising from non-linear 
equations or systems of equations (e.g., Burgers’ equa­
tion or the Euler equations) whose fronts are usually 
combinations of self-sharpening shocks, rarefaction 
waves, and contact discontinuities in the presence of 
negligible physical dispersion [11,28,49]. In many re­
spects, the ADE is much simpler and often serves as a 
useful initial test problem. However, the ability to re­
solve sharp fronts for linear advective-dispersive prob­
lems is not the chief criterion for determining the overall
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Notation

C concentration
C higher-order approximation (ULT), Eq. (45)
Cb extrapolated constraint bound (ULT), Eq. (46)
CL cell reconstruction approached from left

side of cell face (PPM)
CR cell reconstruction approached from right

side of cell face (PPM)
Cp higher-order approximation (PPM), Eq. (49)
D dispersion coefficient
F\ lower-order numerical flux, Eq. (18)
Fh higher-order numerical flux, Eq. (18)
,M minmod operator, Eq. (24)
Nx number of cells along x-axis
Pe mesh Peclet number {Pe = uAx/D )
S  numerical slope, Eq. (17)
Sf sign of higher-order flux correction (FCT),

Eq. (33)
a starting spatial coordinate for semi-ellipse

profile, Table 4 
b final spatial coordinate for semi-ellipse

profile, Table 4 
z'c center cell number for semi-ellipse profile,

Table 4
if final cell number for semi-ellipse profile,

Table 4
4 initial cell number for semi-ellipse profile,

Table 4
zw half cell-width for semi-ellipse profile, Table 4
qk 4th ENO stencil (WENO), Eqs. (64)-(66)
t time coordinate
u interstitial velocity
X spatial coordinate

Greek symbols
Aj second-order difference, Eq. (13)
AC general higher-order flux correction, Eq. (19)
Af  higher-order flux correction (FCT), Eq. (34)
Q spatial domain under consideration
ak weighting fraction for 4th ENO stencil

(WENO), Eq. (68) 
ßk smoothness monitor for 4th ENO stencil

(WENO), Eqs. (69)-(71) 
ßc compression coefficient (COX), Eq. (38)
ßu compression coefficient (COX), Eq. (38)
Sj first-order difference (<57 =  C¡ — C7_i)
Sj centered first-order difference, Eq. (27)
S*J+1 /2  first-order difference (ô*j+1,2=Cf+1/2-C f_  1/2)

(PPM)

<5/ limited higher-order flux correction (FCT), 
Eq. (32)
term (pj = Cj -  er*+1/2/2) (PPM)

ek ideal weight for 4th ENO stencil 
(WENO)

4 Courant-Friedrichs-Lewy number
( 4  =  u  At /Ax)

£ normalized spatial coordinate
( £  =  (x  - x7_ 1/2) / A x  e  [x7_ 1 /2 , x7+1/2])

ffj+l/2 sum (<t*+1/2 =  C7l+1/2 +  Cf_1/2) (PPM)
ai sum (<t7 =  C7+i +  Cj)
C local spatial truncation error
9 flux-limiter function, Eq. (20)
CO weighting parameter (COX)
Ü2k final weighting applied to 4th ENO stencil 

(WENO), Eq. (67)

Subscripts and superscripts
i spatial grid cell identifier (subscript)
n time level identifier (superscript)

Abbreviations
ADE advective-dispersive equation
ASO alternating split operator
CFL Courant-Friedrichs-Lewy number
COX Cox and Nishikawa transport scheme
CPU total elapsed CPU time
ENO essentially non-oscillatory
FCT flux-corrected transport
HARM harmonic transport scheme
LIU Liu et al. transport scheme
MMOD minmod transport scheme
MUSCL monotone upstream-centered scheme for 

conservation laws
PPM piecewise parabolic method
Ref primary literature source(s) for method, 

Table 1
SBEE superbee transport scheme
TV total variation, Eq. (1)
TVD total variation diminishing, Eq. (2)
ULT ultimate transport scheme
UNO uniformly non-oscillatory
U N 02 second-order uniformly non-oscillatory 

transport scheme
WENO weighted essentially non-oscillatory
ZDL Zaidel transport scheme
1-PT one-point upstream weighting
2-PT two-point upstream weighting
flop floating point operation
hpm hardware performance monitor
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quality of a scheme in the gas dynamics or applied
mathematics fields.

The objectives of this work are:
1. to review evolving classes of high-resolution finite- 

volume methods that hold promise for the water re­
sources field;

2. to summarize a significant set of high-resolution 
methods;

3. to compare the efficiency and robustness of a broad 
set of methods for solving the ADE;

4. to recommend approaches for applications and 
extension to other cases.

2. Background

The challenge for modeling sharp fronts in advective- 
dominated problems is to resolve the front over rela­
tively few computational cells without introducing 
spurious oscillations in the solution. The scheme should 
provide higher-order accuracy in smooth regions of the 
solution as well. Godunov’s original scheme (simple 
upwinding) [12] produces a monotone solution from 
monotone initial data but introduces excessive numeri­
cal diffusion, losing the sharp nature of the physical 
solution. Godunov also showed that any linear scheme 
of second or higher-order necessarily introduces oscil­
lations in the numerical solution. M odern high-resolu­
tion schemes have circumvented this barrier because 
they are non-linear. That is, they use an approximation 
that is at least second-order in smooth regions but then 
adapt their discretization to add sufficient numerical 
diffusion around sharp fronts to avoid oscillations while 
still maintaining good resolution. Early examples of 
modern high-resolution schemes can be found in the 
work of Van Leer [53], Zalesak [63], Colella [8], and 
Sweby [48].

These methods can be categorized in several different 
ways. For example, one can divide adaptive schemes 
based on the principle, algebraic or geometric, used to 
determine intercell values [57,64]. Detailed explanations 
of these approaches are available in the literature 
[11,28,49,50]. Briefly, geometric schemes can be viewed 
as extensions of Godunov’s original method [12] that 
employ adaptive higher-order reconstructions to ap­
proximate cell interface values. The basic idea behind 
algebraic schemes is to combine low- and higher-order 
fluxes. The higher-order flux provides better resolution 
than the low-order solution, while the scheme reverts to 
the low-order flux to prevent oscillations around sharp 
fronts. Generally, this is done by summing the low-order 
flux with an “anti-diffusive” correction, which is just a 
limited difference between higher- and lower-order 
fluxes. The limiting procedure enforces some algebraic 
constraint on the numerical solution. In a great many 
schemes, this condition is that the total variation

t v (c-) =  e i c ,+1- c , i (!)
j

of the solution is non-increasing [27,48,64], i.e.

TV(C"+1)<T V (C "). (2)

Appropriately, these schemes are known as total varia­
tion diminishing (TVD).

The notion of total variation leads to another classi­
fication of high-resolution methods that is closely tied to 
their accuracy at smooth local extrema. TVD schemes 
necessarily degrade to first-order at local extrema [11]. In 
[18], the TVD criterion was replaced by the uniformly 
non-oscillatory (UNO) property. UNO schemes insure 
that the number of local extrema does not increase rather 
than enforcing the stricter TVD condition, which 
requires that local extrema are damped at each time step. 
As a result, the second-order UNO scheme presented in 
[18] maintains its formal accuracy at smooth local ex­
trema. The notion of essentially non-oscillatory (ENO) 
methods presented in [17] represents a further general­
ization. ENO schemes allow local extrema to be in­
creased at times but guarantee that the total variation 
increase is on the order of the grid spacing.

T V tr+ 'X T V tC O  +  O tA x ^ 1) for p >  0. (3)

As a result, ENO schemes also maintain higher-order 
accuracy around smooth extrema.

Schemes can also be categorized according to the 
order of interpolation and extrapolation used to ap­
proximate the intercell face values. To a certain extent, 
classification along order of interpolation and extra­
polation reflects the reviewed schemes’ complexity and 
traces the historical development of methods in the field.

Before the introduction of adaptive-stencil methods, 
the only monotonicity-preserving schemes were first- 
order. The first modern, adaptive high-resolution 
methods [4,53] sought to employ piecewise linear ap­
proximations wherever possible while maintaining the 
monotonicity of a solution. From  there, the next step 
was the development of schemes such as the piecewise 
parabolic method (PPM) [8] and versions of flux- 
corrected transport (FCT) [63], which used higher-order 
approximations while reverting to lower order to 
maintain monotonicity.

The next logical extensions were the UNO and ENO 
schemes, which were specifically designed to employ 
reconstructions of arbitrary order without reverting to 
lower-order approximations. The relevance of inter­
polation and extrapolation is based on the simple view 
that a successful scheme is one that consistently provides 
accurate approximation for intercell face values. Of 
course, the quality of an approximation is influenced by 
several factors besides the formal order. For example, 
the information used for constructing these values 
should come from the same side of a discontinuity. This
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idea has a simple physical interpretation from the 
principle of spreading information along characteristics 
for pure advection processes. Even though interpolation 
may be more accurate for intercell reconstruction, ex­
trapolation should be employed when a discontinuity 
falls onto an interpolating stencil. It follows that suc­
cessful adaptive methods should also include efficient, 
robust detection of steep gradients and discontinuities in 
order to guide the switch between interpolation and 
extrapolation.

One could also distinguish these methods based on 
the time discretization used. For the most part, adap­
tive-stencil schemes are explicit in time. Implicit ver­
sions can, however, be found in [51,58,60]. Most 
schemes match the accuracy of the temporal and spatial 
discretizations [50]. For example, a well-known second- 
order Lax-Wendroff type discretization is used in many 
second-order TVD schemes [48,53]. Third- and fourth- 
order TVD Runge-K utta time discretizations have been 
commonly employed in ENO schemes [14,31,45].

As mentioned above, high-resolution schemes have 
been available in the water resources literature for some 
time [9,30,40] and are becoming more common
[35.51.61.67]. The introduction of adaptive-stencil 
schemes into the water resources field has mirrored their 
development in the original fields. Second-order TVD 
schemes were used early on [9,40,51], while later works 
have tended to use higher-order TVD or ENO schemes
[35.61.67]. However, a limited number of schemes has 
been considered in the water resources field, and no 
comparison of these schemes exists. If the current trend 
towards higher-order methods continues, it seems ap­
propriate that the most promising schemes from this 
class be identified to guide future work.

There has been a series of comparisons of selected 
schemes for individual test problems in other fields 
[14,39,48,64,57]. These comparisons are insufficient for 
our purposes, since either the test problems are inap­
plicable or too few approaches are considered, making 
comparison among methods difficult. For example, [57] 
provides a wide survey of shock capturing methods 
(including TVD, FCT, and ENO schemes) but only 
considers Burgers’ equation with initial data that led to 
solutions with shock waves and rarefaction fans. Also, 
these studies do not usually address computational ef­
ficiency, which is relevant concern, since these methods 
involve adaptive discretizations.

For the water resources field, the most useful com­
parison considered numerical efficiency for a one-di­
mensional non-linear ADE problem arising from 
transport with non-linear sorption (Langmuir isotherm) 
[39]. While the physical dispersion (diffusion) insures a 
smooth solution, the sharp front in this problem is self- 
sharpening. That is, even initially smooth profiles can 
develop steep gradients. This type of problem poses 
somewhat different challenges than linear transport with

contact discontinuities, where no sharpening mechanism 
competes with numerical and physical dispersion. In 
addition, only a small subset of high-resolution schemes 
described above was considered: a Taylor Galerkin, an 
Eulerian-Lagrangian, and a random choice scheme.

3. Approach

3.1. Scope

As outlined in Section 2, high-resolution methods can 
be grouped in several ways including the use of the 
TVD, UNO, and ENO classes. Within these three cat­
egories, a wide range of specific schemes have been ad­
vanced, which vary in the order of both spatial and 
temporal truncation error of the approximation.

Because of the large number of schemes that exist, 
limits must be drawn for any comparative investigation, 
especially because we intend to perform a thorough 
comparison of the schemes’ efficiency and robustness. 
First, we limit our investigation to one-dimensional 
approaches. This is reasonable, since one-dimensional 
methods are often extended to multiple dimensions 
within an operator splitting framework [7,36,49], and 
schemes that are ineffective in one dimension are not apt 
to be competitive in higher dimensions.

Second, we limit the scope of the approaches consid­
ered in this work by restricting ourselves to approxima­
tions which are, in general, less than or equal to third 
order; many of the schemes that we consider are second- 
order in space and/or time. This restriction limits the 
schemes considered in both number and in complexity of 
the stencils needed to form the approximations. While a 
detailed consideration of higher-order methods is a rea­
sonable goal for future work, higher-order accuracy is 
achieved for such schemes only for sufficiently smooth 
solutions. Rather, the largest potential benefit from using 
higher-order schemes for a discontinuous solution is not 
more rapid convergence in some error norm but sharper 
resolution of the discontinuity [23].

3.2. Formulation

Our test problem is the one-dimensional ADE

ac  f ' r  f r  .
—— =  D — vr — m—-, for X e  Q X t e  0, T]
at ox2 0x

with boundary conditions 

C(O,0 =  Co,

a e
0X

0
X\ , t

and initial condition

C(x, 0) =  C°(x),

(4)

(5)

(6)

(7 )
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where C is the concentration, t the time, x  the spatial 
coordinate, D the dispersion coefficient, u >  0 the ve­
locity, and Q e  [0, xi] is the spatial domain.

Following a typical cell-centered finite-volume, or 
equivalently in one dimension, a finite-difference dis­
cretization of Eq. (4), C” will represent an approxima­
tion of the cell average of C(x, t) over the y'th cell 
[x7_ 1 /2 , x7+1/2] at time t”

1 rxi+1/2 
C " = —  /  C(x, tn)dx  

J Ax 2
(8)

where Ax and At are the spatial and time increments, 
xj = /Ay the center of the /th cell of the uniform grid, 
x7_!/2 andx7+1/2 are cell boundaries or faces, and f  = nAt.

3.3. Algorithm

To decouple the approximation of the dispersive and 
advective portions of the ADE, we use an alternating 
split operator (ASO) approach, which has a truncation 
error of order At2 [1]. In the ASO algorithm, a three-step 
approach is used to advance a time level. The first step is 
the solution of the linear dispersion equation over a half 
time step, At/2:

W  = D W -  ^ { > V  +  Ä'/2}  (9)

with the solution at t” as the initial condition. The sec­
ond step is the solution of the linear advection equation 
over a full time step, At, using the solution from Eq. (9) 
as the initial condition

0 C  0 C  i n n  A ~1—  — , t e { t , t + A t } ( 10)

and the third step again solves the linear dispersion 
equation over a half time step

a e  a 2c
et D ^ ,  t e { C  + A t/2 ,C  + At}, (11)

using the solution from (10) for its initial value.
We approximate Eqs. (9) and (11) using a standard 

centered discretization in space and a Crank-Nicolson 
discretization in time, which are both second-order 
approximations. For Eq. (9), for example, these 
approximations yield

rH + 1/2C’

where

Cn +  ( A
j 4 Ax2 V J

n+l/2

a ” =  c ;+1 -  2 c ; c:7-1 •

( 12)

(13)

3.4. Temporal discretization

A variety of explicit time discretizations are used by 
the schemes considered in this work. With one excep­

tion, they are all subject to a stability constraint on the 
time step of, uAt < Ax. The exception is the scheme in­
troduced by Liu et al. [30], which has the tighter bound 
of mA/< Ax/2. Most of the methods, including the tra­
ditional second-order TVD schemes [27,48], are based 
on a time discretization originally found in the fixed- 
stencil Lax-Wendroff scheme. Basically, a time correc­
tion is added to cancel the leading error term from a 
forward Euler time discretization. This correction 
achieves second-order accuracy, assuming the under­
lying spatial discretization is second-order accurate 
[27,28,50]. There are a number of ways to present this 
temporal approximation, including a two-step form

C,n+l/2
7+1/2 c

7 + 1 / 2
■MC7 + 1 / 2  ■

Q

c ;m+1 c . i ( c <n+\¡2 
7 + 1 / 2  '

r̂c+1/2  ̂
7—1/2 J '

When combined into one step, this leads to

q + l  =  q - ^ J + i ß  +  k \ 8 } + l ß - 8 } ) ,

(14)

(15)

(16)

where

{Cj — Cj-1), X = u At j  Ax7"
is the Courant-Friedrichs-Lewy (CFL) number, and 
C/+1/2 is a cell interface concentration value for 
x7+i/ 2  =  (j +  1/2)Ax. The Lax-Wendroff type discreti­
zation for Eq. (4) is simple and can be applied to a wide 
variety of spatial discretization schemes used to compute 
the cell face concentrations. We note that the two-step 
form is written in terms of a conservative difference, 
Eq. (15) [49]. This property is, in fact, shared by each 
discretization we consider.

3.5. Spatial discretization

For the methods considered in this work, the ap­
proach used to determine intercell values, C7+i/2, plays 
the central role in the spatial discretization of Eq. (4). 
Several classes of these schemes for computing face 
values were reviewed in Section 2. The schemes we 
consider can be placed into four classes:
1. Fixed-stencil schemes, which use the same approxi­

mation at all interior locations.
2. Traditional adaptive second-order TVD schemes, 

which select among linear stencils and have a spatial 
truncation error xs <  0[(Ax)2].

3. Adaptive extensions of second-order TVD schemes, 
which select among variable-order stencils such that 
xs <  0[(Ax)3].

4. Adaptive UNO or ENO schemes for which the spa­
tial truncation error is at least second-order accurate 
(ts ^  0[(Ax)2]).

The local truncation error results cited here are valid 
only for sufficiently smooth regions. Again, there are
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several factors including the formal order of a specific 
approximation that dictate the quality and accuracy of a 
scheme for a given range of sharp front problems. The 
set of spatial discretization schemes considered is sum­
marized in Table 1. The orders shown are the minimum 
and maximum formal, local truncation error (in space 
and time) for smooth regions. In order to simplify our 
notation, we omit the time index, n, where possible.

Spatial discretization methods considered in the 
fixed-stencil and second-order TVD groups can be put 
into and interpreted in multiple forms. Specifically, the 
two-step time discretization, Eqs. (14) and (15), is often 
combined with either a slope- or flux-limiting approach. 
From  a geometric perspective, the slope-limiter form 
replaces a piecewise constant representation of the 
solution from Godunov’s method with a piecewise linear 
representation. In the flux-limiter form, intercell fluxes 
are computed so as to preserve some property such as 
assuring the solution is TVD. For the linear problem we 
focus on here, either of these two conceptual approaches 
can be used as a framework for the two groups of 
methods noted above. In the slope-limiter form, the cell 
interface values can be expressed as

C.7 + 1/2 Cj I SjAx/2, (17)

where Sj is the slope, or concentration gradient, for the 
y'th cell. The approach used to assign Sj varies with the 
scheme. For linear advection, determining the correct 
interface value then reverts to tracing back along char­
acteristics (x =  ut) in the upstream direction.

In flux-limiter form, the cell interface values can be 
expressed as

uC7+ 1/2 : Ti +  (Fh -T i) , (18)

where F\ is a low-order flux, and Fh is a higher-order flux 
[28]. For the linear transport problem with constant 
velocity that we consider here, we give the concentration 
form for the case in which the low-order concentration

is computed using one-point upstream weighting. It can 
be expressed as

Cj+i/2 = Cj + ÁCj+\/2, (19)

where AC7+i/2 is a higher-order correction, which de­
pends upon the scheme.

The flux-limiter schemes are often written in the form

C.7+ 1/2 Cj + cpj¿j+1/2, (20)

where <57+1 =  C7+1 — C}.
Sweby [48] specified regions that the function <¡¡>. 

should occupy in order to be TVD as well as TVD and 
second-order. The various members of this family differ 
only in the portion of this TVD region that they occupy. 
Detailed descriptions of these schemes and limiters can 
be found in many places, e.g., [28,48,64].

For the problem and schemes considered here, the 
equivalence of the slope-limiter and flux-limiter ap­
proaches clearly requires that

SjAx/2 = A Cj7+ 1/2 (pjôJ+ï/2. (21)

3.5.1. Fixed-stencil schemes
Fixed-stencil schemes have been commonly used in 

the water resources literature [13,41,47,55,65] and are 
included here as a point of reference for those unfamiliar 
with the adaptive-stencil schemes that are the primary 
focus of this work. We consider two fixed-stencil 
methods: the one- and two-point upstream weighted 
schemes. These schemes use the same stencil and ap­
proximation regardless of the local features of the nu­
merical solution. We present both schemes using the 
two-step temporal discretization given in Eqs. (14) and 
(15). Of course, 1-PT is only first-order accurate in time, 
since its underlying spatial approximation is first-order 
and the assumptions for the time correction are not met.

The one-point upstream weighting (1-PT) scheme is

Cj+1/2 =  Cj. (22)

Table 1
Spatial discretization schemes

Scheme Description Class Order (x) Order (i) Ref.

1-PT One-point upstream weighting TVD 1 1 [21]
2-PT Two-point upstream weighting - 2 2 [21]
MMOD Minmod TVD 1,2 1,2 [15,28]
MUSCL Musei TVD 1,2 1,2 [49,53]
SBEE Superbee TVD 1,2 1,2 [28,42]
HARM Harmonic TVD 1,2 1,2 [48,53]
FCT Flux-corrected transport TVD 1,2 1,2 [33]
LIU Liu et al. TVD 1,3 1,2 [30]
COX Cox TVD 1,3a 1,3a [9]
ULT Ultimate TVD 1,3 1,3 [27]
PPM Piecewise parabolic TVD l,3b 1,3 [8,14]
UN02 Uniformly non-oscillatory UNO 2 2 [18]
ZDL Zaidel ENO 3 2 [62]
WENO Weighted ENO ENO 3,5 3 [24]

“With appropriate parameter choice co =  (1 + i) /3 , otherwise order is 2. 
bIn limit At —» 0 order is 4.
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The 1-PT scheme is monotonie, TVD, and when X = 1 it 
provides the exact solution for advection of concentra­
tion along characteristics for the strictly hyperbolic 
problem (point-to-point transfer). 1-PT has a spatial 
truncation error of xs =  O(Ax). The well-known cost of 
the one-point upstream weighting scheme is excessive 
numerical diffusion [49].

The two-point upstream weighting (2-PT) scheme is

Cj+1/2 =  Cj + Sj/2. (23)

The 2-PT scheme has oscillatory behavior in the vicinity 
of contact discontinuities and steep gradients (see [43]) -  
a fact shown to be true in general for any fixed-stencil 
method that has xs ^  0[(Ax)2] [21]; the 2-PT scheme has 
xs =  0[(Ax)2].

3.5.2. Second-order TVD schemes
The schemes considered in this section are based on 

the use of adaptive stencils where intercell values are 
computed as linear approximations of cell averages. 
They are second-order accurate on smooth solutions 
and degrade to first-order accuracy at local extrema, a 
feature common to TVD schemes [11]. They are second- 
order accurate in time over sufficiently smooth regions 
(away from local extrema) and, with the exception of 
FCT, employ the standard two-step time discretization 
given by Eqs. (14) and (15).

The MMOD scheme [15,22,28,64] is a common, 
simple scheme of the form

AC,

Cj+l/2 -  Cj + J ((ô j+uôj)/2, 

where the two-term minmod function is 

J f(m u m2) = [sign(ffîi) +  sign(m2)] 

x m i n d i i ,  \m2\)/2.

(24)

(25)

MUSCL uses the second-order, centered slope except 
when this choice introduces a new extremum [50,53]

Cj+i /2  =  Cj  +  J i ( ö j + i , ö j ,  ô j / 4 ) ,  

where 

àj = ôj+1 +  Sj = Cj+i -  Cj-1

and the three-term minmod function is

Jt(n ii, m2, m2) = [s ig n ^ j) +  sign(m2)]

x m i n d i i ,  \m2\, \m3\)/2.

(26)

(27)

(28)

Superbee (SBEE) [42] occupies the upper bound of the 
second-order TVD region [48] and can be shown to re­
duce to

Cj+i/ 2  = Cj +  [sign(<57+1) +  sign (¿y-) ]
x max[min(|<57+11,2 1<5y-1), 

min(2|<57+11, |<57|)]/4. (29)

_  /  (ßj+\Sj) /  (Sj+\ +  Sj) if Sj+\Sj >  0 
;+1/2 - \ 0  if <5y+1<5y <  0. (30)

Flux-corrected transport (FCT) [4,5] is a TVD scheme. 
A general algorithm, it can be applied using a variety of 
specific spatial and temporal discretization approaches
[33,63]. In general, the FCT algorithm consists of:
1. computing a low-order solution that is guaranteed to 

be monotonie;
2. computing a higher-order correction;
3. computing upper and lower bounds on the correction 

using the low-order solution;
4. limiting the higher-order correction to ensure con­

formance with the bounds on the solution; and
5. advancing a time step by computing the sum of the 

low-order solution and the limited corrector.
We implemented a version of FCT that is second- 

order in space and time [33]. This version was superior 
to the original scheme [57] which exhibited a staircasing 
pattern for linear advection of a semi-ellipse profile. 
FCT is often expressed as a two-step procedure, since 
the higher-order correction is limited against values of a 
preliminary low-order solution at the current time step. 
A simpler way of presenting the FCT scheme for our 
problem, however, is in the form of one-point upstream 
weighting modified with an up-and-downstream limited 
higher-order correction

c ;+1 =  c ;  -  xs* -  x ( S f j + 1 / 2  -  ¿/,_1/2) (3i)

Sfj+1/2 =  Sfj+i/ 2  max jo ,  min |A/7+1/2|, SfJ+1/2

j ( l  -  X)SnJ+2 + 2<5"+1 j , Sfj+i/2 

( ( l - ^  +  A ^ ) ] } ,  (32)

V/+1/2 sign(A/7+1/2),

A/7+1/2=  ( 2 - 3  X)Snj +XSnj_1 /4.

(33)

(34)

Harmonic [53] (HARM) is a second-order TVD scheme 
with a smoother limiter function than SBEE:

3.5.3. Adaptive, variable-order TVD extensions
These methods represent extensions to classic second- 

order TVD schemes. They introduce higher-order 
approximations, while still reverting to lower-order 
reconstructions to maintain monotonicity.

Liu et al. [30] introduced a scheme (LIU) that ad­
vances the flux-limiter approach in [48], using a cubic 
stencil from [26] and a CFL-dependent limiting proce­
dure
Cj+i/ 2  = C7+[sign(<57+1) +  sign(<57)]

min[2|<57+1|,|<57+1|( 2 /2 - 2 ) ,
(2|<57-+11 +  l<57l)/3 ,2 1<57-1, \Sj\{2/X — 2)]/4.

(35)
The LIU scheme employs a slightly different time 
discretization
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C"+1 =  C" -  2.57 + 1 / 2  ■ - A l " /  2 (36)

which is second-order when C7+1/2 is at least second- 
order. When the upstream or downstream stencils are 
chosen (C7+1/2 =  ©  or C7+1/2 =  ©  +  ¿7+i), comparing 
Eqs. (14) and (15) with Eq. (36) using simple modified 
equation analysis shows that the magnitude of the 
leading, diffusive (or anti-diffusive) error terms is larger 
with LIU ’s time discretization. The leading error terms, 
however, are smaller with the third-order stencil.

The scheme introduced by Cox and Nishikawa [9] 
(COX) uses a flux-limiter that is a weighted sum of 
central and upwind differences of the form

©+1/2 =  Cj + [mJi{ßu0j+\,0j) +  (1 — (o)JÎ{ôj+\, ßcSj)\/2,
(37)

where cu e  [0,1] is a weighting factor, and ßu, and ßc are 
CFL-dependent compression parameters.

COX attempts to improve the traditional second- 
order TVD methodology by making advantageous 
choices for the parameters. The optimal values of the 
parameters ßu, ßc, and m depend on the dimensionality 
of the problem and whether or not dispersion is included 
[9]. For example, if m = ( \ + X ) ß ,  then the COX 
scheme achieves formal third-order spatial accuracy in 
smooth regions. In the presence of physical dispersion, 
the following parameter values were suggested

ß c

ß u

1 +
1

(1 -© >

2 - 2
Pe{ 1 - X ) ( l  - t o ) '

\ + - f l + X
œ V 1 — X

(38)

Pe{ 1 - X ) c o ’

where Pe = uAx/D  is the mesh Peclet number. While we 
use these values for our analysis, we note that they are 
not optimal for other cases, such as multidimensional 
problems with variable velocity fields [9].

Leonard [27] analyzed a family of upwind and cen­
tered difference schemes from low- to high-order and 
extended the TVD analysis of Sweby [48] to a more 
general, less restrictive form, and gave a variety of al­
gorithms. We investigated the simplified ultimate limiter 
scheme (ULT) based upon the cubic QUICKEST stencil 
and a universal limiter that is independent of the stencil 
used, but dependent upon the CFL number [27]. A 
similar approach has also recently been implemented in 
the popular MT3DMS code [67]. The universal limiter is 
extended to be non-linear in both the solution, C", and 
the Courant number. With this approach, one discards 
the higher-order stencil only if the value it generates 
violates CFL-dependent constraints designed to main­
tain monotonicity (assuming the solution is monotonie 
in a given region). The ULT approach generates a 
solution at C ^ ljl  directly, which is in turn used in (15). 
When the QUICKEST stencil is used, this approxima­
tion is third-order in both space and time [27].

The ULT scheme implemented in this work for 
determining with constant positive velocity is
described algorithmically as:

© i f  141 <  0.61 <57-1, then the solution is monotonie and 
sufficiently smooth, so use

(39)✓V2+1/2 _ 1 /2
S ’+1/2 “  y+1/2

(ii) else if |d7 | ^  |<57 |, then the solution is non-mono­
tonic, so set

(40)w ¡ + l / 2    ^ „
7+1/2 — ©

(iii) else if Sj >  0, then the solution is a monotonie 
increasing function, so enforce the constraint

n n+1/2  m a x  ( Cn+i/2 Cny+1/2 — mdA /  ©+1/2 i ©

and then
W i +  l / 2  _  ■ /  W i+ 1 /2  Q!
© + 1 / 2  —  111111 y  7+ 1 /2  i © + 1 / 2 ’ © 7 + 1

(41)

(42)

(iv) else since <57 <  0, the solution is a monotonie 
decreasing function, so enforce the constraint

© A ,2 =  min (  © A ,2, C- 7 + 1 / 2  

and then

-7+1/2 ’ 7 (43)

w i + l / 2  _  [ w i+ 1 /2  j-m
©+1/2 ~  " ldA I ©+1/2 i ©+1/2’ ©+1 (44)

where the third-order QUICKEST approximation is

C;++i/22 =  [3(<t7+1 -  X6J+i) -  (1 -  Xz)Aj\ / 6 

and the extrapolated constraint bound is

q _1 + Sj/xc
7 + 1 / 2

and

f f 7 + l  =  C 7 + l  +  C l -

The PPM [8,14] improves upon MUSCL by intro­
ducing a quadratic reconstruction over each cell of the 
form

(45)

(46)

(47)

Cn(x) = Cf_1/2 + S 

where

7̂+1/2 ‘ 6(1 -  ¿)m (48)

7 + 1 / 2  

©

CL
7+ 1/2

© 7 + 1 / 2

C*i/2’

A
.R
7 - 1 / 2 ’7+1/2 -  7+1/2

Í  =  (x  - x7_ 1/2) / A x  e  [x7_ 1/2 , x7+1/2],

and the superscripts R  and L indicate the limits ap­
proached from the right and left side of the cell face, 
respectively.
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The PPM algorithm for a positive velocity is:
(i) Form  the higher-order, limited interpolated value

(49)

(50)

as

£7 +1/2 =  < W 2 - ( S / + 1 -  Sj) /6,  

where

Sj =  2J f ( ô j + u ôj , ôj / 4) .

(ii) Assign C7l+1/2 =  CpJ+l/2 and Cf_1/2 =  Cj_1/2.
(iii) Ensure that no new local extrema at cell centers 

are generated from the reconstruction

if (Cj^1/2 — Cj)(Cj — C* 1/2) <  0 then 

£>-1/2 = Cj,
C f , n  =  c,,7+1/2 -  Vú

(51)

(52)

(iv) Make sure that the reconstruction does take on 
extreme values beyond C¡ and C]+\ [50],

else if Sj+1/2rij > (<5*+1/2)2/6 , then

7-1/2 =  3 C, -  1C,7+1/2

(v) else if ö*]+lßr\j <  -(<5*+1/2)2/ 6, then

CJ7+1/2 =  3C7 -  2 C7-1/2-

(53)

(54)

(vi) Using the constrained values for C* 1/2 and C)L+1/2, 
form

C / 2  =  < £ 1 /2  -  ^(5+1/2 -  2(3 -  2X)Vj) / 2 .  (55)

This value for C " ^ ^  is then used directly in Eq. (15). In 
general, the final PPM approximation is third-order 
accurate in space and time for smooth regions. In the 
limit as At —> 0, however, it is fourth-order accurate [8]. 
The PPM scheme can also be extended to the case in 
which a cell falls over a contact discontinuity. This is 
similar to the subcell resolution approach in [16]. Ad­
ditionally, the detection of the discontinuity requires the 
use of problem-dependent parameters. As with artificial 
compression and subcell resolution with the WENO 
scheme, we do not use this approach in our compari­
sons.

3.5.4. Adaptive, uniformly higher-order schemes
These methods extend the classic second-order TVD 

schemes to higher-order approximations without re­
verting to lower-order reconstructions. We implemented 
a UNO method [18] which insures that the number of 
local extrema does not increase. It employs the time 
discretization in Eqs. (14) and (15) together with a linear 
reconstruction of the form

£ 7 + 1 /2  — C j  +  , Æ \ ô j + \ — A j ) / 2 ,

J^zl^O /21/2. (56)

The Zaidel scheme (ZDL) [62] implemented uses the 
time discretization in Eq. (16) with either third-order

interpolation or extrapolation stencil based upon a test 
of smoothness. This yields

£7+ 1/2 =
r (3C,+1 +  6Cj -  C j - f / 8 if  \SJ+i I <  maxQSjl  I), 

i  (15C, -  lOCy-i +  3Cy_2) /8  if  \8J+11 >  max(|<57.|, I V j  |).

(57)

Weighted ENO schemes [24] (WENO) are designed to 
perform well on vector computing platforms and to 
provide higher-order accuracy in smooth regions. The 
WENO scheme implemented here can be summarized 
using a method of lines approach
f i r
- ^ = m ,  ( 5 8 )

L(C) = —uöj+iß/Ax (59)

and a TVD R unge-K utta temporal integration scheme 
[45,46] of the form

C(1) =  C” + AtL(C”), (60)
C(2) = Cn + Aí[¿(c") +  T(C(1))]/4, (61)

c „+i = c n + At[L(C”) + L(C{r>) + 4T(C(2))]/6. (62)

There are various advantages and disadvantages of
method of lines approach compared to other temporal 
integration methods that we have used. For example, 
Eq. (16) is relatively simple and cheap. When 2 = 1 ,  the 
first step provides the point-to-point transfer property. 
On the other hand, decoupling the spatial and temporal 
discretizations can be useful when moving to higher 
dimensions [28]. It also makes it relatively easy to in­
crease the temporal accuracy of the overall scheme. 
However, the R unge-K utta discretization requires two 
more flux evaluations than Eq. (16). These flux evalua­
tions represent most of the computational work associ­
ated with these methods.

WENO schemes use a convex combination of the r 
candidate ENO stencils, where r is the order of the ENO 
base for the weighted scheme. The weights for the 
stencils are chosen so that in smooth regions the com­
bination approaches a discretization that is formally 
(2r — l)th order accurate. The WENO scheme imple­
mented in this work is technically fifth-order accurate in 
ideal situations. At a discontinuity, the weights are de­
signed to neglect stencils that contain the discontinuity. 
In this way, the behavior of the base ENO scheme is 
recreated. For u > 0,

2

£ 7 + 1 /2  =  y ^ w k q k ,
k= 0

where

<7o =  ( 1 1  C'y — 7 C /- 1  +  2 C / _ 2) / 6 ,

<71 =  (2 C /+ 1  +  5 C )  -  C y - 0 / 6 ,

<?2 =  (—Cy + 2 A 5Cy+l A 2Cy)/6,

(63)

(64)
(65)
(66)
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Wk = ak¡ (a2 +  aí +  ao), (67)

ctk = J T T ß J -  (68)

Here, 6k is the weight for the kth ENO stencil required in 
order to achieve fifth-order accuracy. The values are 0.1,
0.6, and 0.3 for k  =  0,1,2, respectively. Following [24], 
we use e  =  1.0 x 1(U6 and p  = 2 in our computations. 
The smoothness monitors, ßk, are

ß0 = (3Sj -  «Vi)2/4  +  13(4 _ !)2/ 12, (69)

A = á J / 4 + 1 3 ( d y)2/12, (70)

/?2 =  («57+2 -  3<5y+1 )2/ 4 +  13(d7+1)2/12. (71)

Techniques such as subcell resolution [16] and artifi­
cial compression [56] can improve resolution of contact 
discontinuities for WENO schemes [24]. This technique, 
however, requires the use of problem-dependent 
parameters. Moreover, neither subcell resolution nor 
artificial compression are restricted to ENO schemes
[8,63]. For these reasons, we restrict ourselves to the 
base scheme in our comparisons.

4. Results

The goal of this work is to compare the efficiency of 
the candidate set of methods described above for solving 
advective-dispersive transport problems. We are also 
interested in evaluating the robustness, or the level of 
performance across a range of problems, of the candi­
date methods. We define efficiency as the computational 
effort needed to achieve a given accuracy of a numerical 
solution. Such comparisons can be approached in a 
variety of ways. We consider two main approaches:
1. An analytical comparison of algorithms based upon 

the order of accuracy in space and time, operations 
needed to advance a time step, and the relative cost 
of those operations.

2. A significant set of numerical experiments for a range 
of initial conditions and spatial and temporal discret­
izations.

4.1. Algorithm analysis

As with any numerical efficiency comparison, one 
would expect the computational expense associated with 
the various methods to be sensitive to their implemen­
tation. This is especially true for the adaptive schemes 
we consider whose speed is dictated largely by the pro­
cess used to pick a given stencil based on the numerical 
solution at the previous time step. For instance, the 
TVD schemes presented above rely on a limiting pro­
cedure, such as the minmod function J l ,  in which the 
scheme goes through a selection process for some rele­
vant quantity when the solution is monotonic around

the current cell face. Otherwise, the approximation re­
verts to one-point upstream. There are a number of 
different ways to implement this limiting process that 
appear in the literature. Most differ only in the way they 
determine whether or not the solution is monotonic 
around a given cell. If the solution is locally non­
monotonic, the extra computational work associated 
with choosing slopes or fluxes is not required, and some 
expense can be saved. Using a conditional, or “i f ’ 
statement, to distinguish the monotonic region is po­
tentially more difficult to optimize, however. This can 
lead to poorer performance when the solution is 
monotonic and diminish the potential savings gained by 
avoiding the full limiting procedure for the non-mono­
tonic region. In either case, the relative performance of a 
scheme will depend on the choice of implementation for 
this limiting process. The speed of a given implementa­
tion will, in turn, depend on the compiler and platform 
used for a code and how well they optimize the specific 
intrinsic operations used in the limiting process.

To provide an even comparison, we used the same 
basic limiting approach and implementation (wherever 
applicable) for each scheme. Before choosing which 
scheme to implement, we compared the performance of 
four different approaches on three different computa­
tional platforms (machine/compiler combinations), 
which are summarized in Table 2.

The four candidate implementations we tested can be 
illustrated using the MUSCL scheme. For the first three, 
the MUSCL slope SjAx  would be

S A  r = I  2 s ig n (<57 + l)m in [l<57+ll> l<U Ñ / 4 ]  i f  SJ+1SJ >  0 
\ 0  if Sj+1S j ^ 0 ,

(72)

SjAx  =  [sign(d7+1) +  sign(<57)]

x min[|d7+11, |<57], |<57]/4], (73)

SjAx  =  2sign(<57+1)

x max{0,min[|<57+1|, sign(<57+1) <57, |<57|/4]}. (74)

The fourth approach uses no sign functions and can be 
given in algorithm form by

Table 2
Computational platforms

Hardware Operating
system

Compiler/opt. level

Cray T-90 UNICOS Cray CF90
(10.0.0.2) (3.2.1.0)/03

HP C160 (PA-RISC 2.2 ) HPUX HP Í77 (10.10)/02
(10.20)

Pentium III (450 mHz) LINUX g77
(2.2.5) (egcs-2.91.66)/02
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(i) If  ôj+iôj < 0, then SjAx =  0
(ii) Otherwise S jAx =  25¡

(a) if |<5y+1| <  |<5y|, then Sj A x  =  2Sj+1 (75)
(b) if \Sj+1+ ô j \ / 2 < \ S j A x \ ,

then SjAx  =  (t>7+1 +  S j)/2

The method given by Eq. (72) [8] and Eq. (75) avoid the 
extra steps in the MUSCL limiting procedure if the 
solution is non-monotonic, while Eq. (73) [28] and (74) 
[9] do not. In implementation Eq. (75) the minimum 
slope is chosen based upon “i f ’ statements rather than 
relying on the sign and min intrinsics.

First, a pair of simple trials were performed on HPUX 
C 160 and Pentium III workstations. The above calcula­
tions for SjAx were performed on an array of random 
values. In the first test, SjAx was calculated using values 
for Sj and Sj+1 that agreed in sign for each cell. In the 
second test, 10% of the calculations were performed on 
values that disagreed in sign. In general, we expect the 
number of cells for which the solution is non-monotonic 
to be a small fraction of the total domain, since this is 
defined using the solution value over only three cells. It is 
certainly the case for the test profiles we use in our in­
vestigation. The calculations were performed a total of 
10000 times for a vector of length 100000, and the re­
sultant CPU times were recorded using the FORTRAN 
subroutine i  t i m e  in the U77 library.

To test the performance on a vector platform, a 
similar test was run on a Cray T-90 vector supercom­
puter (see Table 2). For this test, the ADE equation was 
solved using the MUSCL scheme for a 1000 cell simu­
lation, and X =  0.05. The total CPU time accumulated 
in the MUSCL loop was recorded using the hardware 
performance m onitor (hpm).

The four implementations were comparable in per­
formance for the Pentium III, while Eq. (75) was be­
tween 3.75 and 4.6 times faster than all other methods

for both tests on the HP C160. As would be expected, 
the two implementations without conditionals Eqs. (73) 
and (74) were superior for the vector platform, obtain­
ing 667 and 746 megaflops, respectively. Implementation 
Eq. (72) still performed well, however (568 megaflops). 
The version that relied solely on conditionals, Eq. (75), 
lagged far behind (234 megaflops).

The best implementation clearly depends on the 
platform. The only approach that was obviously inad­
equate for any of the tested platforms was Eq. (75) on 
the Cray T-90. Since it was fairly consistent in our tests, 
finishing no worse than second for any run, implemen­
tation Eq. (73) was used in our formulation and in the 
efficiency comparisons below. The exceptions are the 
HARM  and ULT schemes. Implementation Eq. (72) 
was used with HARM  to avoid a potential divide by 0, 
while ULT contains a filter for monotonicity (if 
|d"| <  Id,]) which is significantly different in flavor from 
the other four we considered. Modifying this would 
have significantly altered Leonard’s original algorithm.

In our work, the final measure of computational ex­
pense is the total CPU time required to complete a given 
run, but we also provide a careful analysis of the number 
and type of operations required by each scheme we 
consider. This analysis complements the CPU time 
measurements in a number of ways. It expresses the 
work associated with the various schemes through a set 
of basic, common operations. This provides a frame­
work that is largely independent of platform and im­
plementation (of these core operations) through which 
the computational expense of the various schemes can 
be compared. It also clarifies the implementation of the 
schemes and provides a rational basis for the total CPU 
time results we show.

Table 3 presents the total number of operations re­
quired to advance the advective solution over a time step 
for an interior cell j. Interior cells are those for which 
enough neighbor cells exist to apply the widest stencil 
for a given scheme. Whenever a stencil crosses a physical

Table 3
Summary of operation counts

Scheme x ± y x *y x/y X Max/mina Sign If Total
1-PT 2 1 0 0 0 0 0 3
2-PT 4 2 0 0 0 0 0 6
MMOD 5 4 0 1 1(2) 1 0 12
MUSCL 6 4 0 2 1(3) 1 0 14
SBEE 5 6 0 1 3(2) 1 0 16
HARM 5 3 1 0 0 0 1 10
FCT 6 8 0 1 1(2), 1(3) 1 0 18
LIU 7 11 0 1 1(5) 1 0 21
COX 6 8 0 2 2(2) 1 0 19
ULT (A/B) 8/9 5/6 0 2 0/1(2), 1(3) 0 1/3 16/22
PPM 19 16 0 2 1(3) 1 3 42
UN02 9 8 0 3 2(2) 3 0 25
ZDL 6 6 0 1 1(2) 0 1 15
WENO 81 85 15 0 0 0 0 181

a Number in parenthesis is the number of terms in min or max.
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boundary, a scheme reverts to one-point upstream. For 
the schemes we consider, the number of boundary cells 
which use one-point upstream ranges from none to two. 
The operation counts reflect an implementation in­
tended for a scalar architecture. They assume that a loop 
through consecutive interior cells is made so that certain 
values can be reused from iteration to iteration (e.g., 
sign(<57+1) becomes sign(<57)).

The operation counts reflect the implementation of 
the candidate schemes as formulated in Section 3. Since 
the expense incurred by the limiting process in the 
monotonic region better reflects the true expense asso­
ciated with these schemes, we do not include the non­
monotonic region case in Table 3 for HARM  and ULT. 
The latter does contain another switch, however, which 
significantly impacts the scheme’s overall computational 
cost. If  \A” \ <  0.6|d7| no other limiting is required. This is 
ULT (A) in Table 3, while the full limiting operation 
count is ULT (B). We include both the cases to illustrate 
the whole range of expense associated with ULT. For 
PPM, we present the maximum possible operations 
where all three constraints are evaluated and one is 
found true, since this should occur in smooth regions 
where the higher-order interpolation is used. The float­
ing point operations required when a constraint is true 
are included as well, since this is an insignificant portion 
of the overall expense.

As mentioned above, the historical development of 
adaptive-stencil methods can be loosely tied to the 
pursuit of higher-order monotonic approximations. 
Higher-order methods might be expected, in turn, to 
increase complexity and computational expense. Table 3 
shows a general trend connecting increased order of 
approximation with an increased operation count. There 
are, of course, exceptions such as ZDL. Higher formal 
order does not necessarily imply either higher quality 
results or greater computational expense, so we rely 
ultimately on actual numerical results for accuracy and 
computational expense. An initial look at Table 3 does 
lead to a few useful observations. We base these obser­
vations on the assumption that floating point multiplies 
and additions are measurably cheaper than logical op­
erations, such as conditionals, sign, max or min calcu­
lations:
1. The linear upstream weighted schemes should be 

much cheaper than any of the adaptive methods.
2. The number of floating point operations required by 

PPM and WENO is much greater than the other 
schemes. PPM is much closer to the other methods than 
WENO but still contains three conditional statements.

3. The amount of work for ULT (A) should be about 
the same as that of ZDL, while the full limiting pro­
cess is much more expensive.

4. The performance of FCT, COX, LIU, U N 02, and 
the traditional second-order TVD schemes should 
be fairly similar, with HARM  occupying the low

end of the range. The variation arising should be 
based on how well a compiler/platform can optimize 
the sign and max/min intrinsics and conditionals. 

Given these conclusions, the issue of computational ef­
ficiency should be decided largely by the answer to the 
following questions:
1. Are any of the lower order TVD methods accurate 

enough to compete with the higher-order methods?
2. How do LIU, COX ULT, U N 02, and ZDL compare 

in terms of efficiency?
3. Is PPM sufficiently more accurate than the other 

methods of similar order to compensate for the ad­
ditional computational effort needed to implement 
the method?

4. Can WENO be accurate enough to compensate, on 
any computational platform, for the fact that its com­
putational burden is substantially greater than all the 
other methods considered?

4.2. Numerical experiments

Given our preliminary consideration of the candidate 
numerical methods and their algorithms, we performed 
a set of numerical experiments to investigate the effi­
ciency of the various schemes for a range of computa­
tional conditions. The experiments were run on a 
Pentium III workstation (see Table 2) for a range of 
initial conditions and discretization patterns. For each 
of the problems, measures of accuracy and computa­
tional expense were taken. The candidate methods were 
then compared to find those which consistently required 
the least computational effort to achieve given levels of 
accuracy over the set of experiments.

4.2.1. Work and error measures
For each problem in our investigation, a numerical 

result from the PPM scheme was used to determine an 
accurate solution against which to measure error. The 
result was obtained on a dense grid with 10000 cells with 
2 =  0.5. Error was measured as the norm  of the differ­
ence between numerical and dense-grid solutions. We 
calculated error values in the discrete ¿ 1,2,00 norms. The 
relative performance of the schemes was similar for the 
various norms used, and so we show results for the L\ 
norm only.

Our basic measure of computational expense was the 
total elapsed CPU time required for the each simulation. 
For our initial set of runs we also recorded the total 
CPU time spent evaluating the advective fluxes. As be­
fore, the times were obtained using the i  t i m e  intrinsic 
after a number of loops through the appropriate calcu­
lations. We then compared the two different timings to 
validate our methodology and use of total elapsed CPU 
time to compare the efficiency of the numerical schemes. 
The differences between the advective flux evaluation 
and total simulation times for the considered schemes
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Table 4
Initial condition

Initial condition C° (pc)

Semi-ellipse A
C"(iAr) =  i  t / 1 “  if “  ¿cl < 

[ 0 otherwise.

Semi-ellipse B
where / — 4 (4  +  4), 4  — 4 — 4 — 4 — 4, 4 =  V  ■ a, 4 =  Nx ■ b, a =  0.1, b =  0.3 
Same as A except b = 0.22

Square C f l  if x e [0.1,0.22], 
(  0 otherwise.

Triangle D f l  — 16.6 |jc — 0.16 if r e  [0.1,0.22], 
[ 0 otherwise.

were consistent for the initial runs. We also checked that 
the timings scaled appropriately. For example, when 
both the number of time steps and cells were doubled, 
we expected an increase of four in CPU time, since the 
advective flux evaluations and the Thomas algorithm 
used for the dispersion solve are of linear complexity. 
The average ratio (across schemes) determined from our 
initial runs was 3.96 with a coefficient of variation of 
5.22 x 1(U2. We verified our implementations of the 
various schemes by comparing them with the results 
from the original sources. Unfortunately, the literature 
tends to show results for relatively few initial conditions 
and CFL numbers, but we compared our error norms 
with those presented where possible.

4.2.2. Problems considered
The one-dimensional model problems used in our 

investigation involved various initial conditions, grid 
sizes, CFL numbers, and Pe. The four traditional initial 
profiles are given in Table 4. The spatial and temporal 
domain was (x, t) e  [0,1] x [0,0.5]. The number of cells, 
Nx, ranged from 50 to 1000. The choice of one-dimen­
sional grids was weighted towards coarse discretizations, 
since computational resources still limit the vast m a­
jority of numerical simulations for three-dimensional 
applications to grids with not much more than a 100 
cells per coordinate axis. Homogeneous Dirichlet and 
Neumann boundary conditions were applied at the left 
and right boundaries, respectively. The various numer­
ical calculations were performed with X = 0.05 or 
2 =  0.5. The details of the runs performed are given in 
Table 5.

4.2.3. Baseline comparisons
In order to eliminate poor schemes from further 

consideration and to refine the questions posed at the 
end of Section 4.1, we first performed an initial screening 
test (Runs l a - l f  in Table 5). We considered the model 
problem relatively easy, since the dispersion coefficient 
was held fixed at D = 0.001 so that the largest Pe = 20. 
The semi-ellipse initial condition was also spread over a 
relatively large number of cells (11) on the coarsest grid.

Table 5
Simulation summary

Run C°(x) Pe CFL

la A 20 0.5
lb A 20 0.05
le A 10 0.5
Id A 10 0.05
le A 5 0.5
If A 5 0.05
lg A 1 0.05
2, 3, 4[a] B, C, D 100 0.5
2, 3, 4[b] B, C, D 100 0.05
2, 3, 4[c] B, C, D 50 0.5
2, 3, 4[d] B, C, D 50 0.05
2, 3, 4[e] B, C, D 25 0.5
2, 3, 4[f] B, C, D 25 0.05
2, 3, 4[g] B, C, D 5 0.5
2, 3, 4[h] B, C, D 5 0.05

This is still a narrower profile than is often presented in 
the literature, however [24,46,63]. The results from the 
screening run are summarized in Tables 6 and 7, in 
which we show global L\ error and total CPU time 
(normalized by the number of times the calculations 
were repeated).

Low accuracy for Runs l a - l f  could generally be at­
tributed to oscillation, over-compression, or excessive 
numerical diffusion. These are well known problems for 
advection schemes [49,50]. Too much numerical diffu­
sion leads to fronts so smeared that the basic character 
of the true solution is lost. On the other hand, a given 
scheme may under-represent the amount of dispersion in 
an attempt to reduce numerical diffusion. This over­
compression leads to squared, non-physical solutions. 
As expected, the fixed-stencil schemes were not 
competitive. 1-PT was too diffusive while 2-PT was os­
cillatory. For the traditional TVD schemes, SBEE was 
over-compressive, and MMOD was excessively diffusive. 
These phenomena can be easily seen in Fig. 1. FCT 
produced smeared profiles similar to MMOD. COX 
followed by MUSCL were the two most accurate 
schemes from the group MM OD, MUSCL, SBEE, 
HARM , LIU, COX, U N 02, and FCT (see Fig. 1), while
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Table 6
Screening runs results for À =  0.5

Scheme la le le

Error CPU (s) Error CPU (s) Error CPU (s)

1-PT 6.40e—02 4.90e—04 3.85e—02 1.87e—03 2.18e—02 7.50e—03
2-PT 2.29e—02 5.20e—04 6.83e—03 2.00e—03 1.79e—03 7.50e—03
MMOD 1.95e—02 6.80e—04 6.23e—03 2.63e—03 1.76e—03 1.05e—02
MUSCL 5.79e—03 7.60e—04 1.82e—03 3.00e—03 6.01e—04 1.15e—02
SBEE 7.06e—03 7.90e—04 5.36e—03 3.13e—03 1.64e—03 1.25e—02
HARM 9.44e—03 6.60e—04 2.38e—03 2.50e—03 6.38e—04 1.00e—02
FCT 2.29e—02 8.30e—04 8.55e—03 3.25e—03 3.27e—03 1.30e—02
LIU 1.21e—02 9.70e—04 2.64e—03 3.75e—03 7.34e—04 1.50e—02
COX 5.59e—03 7.40e—04 1.83e—03 2.87e—03 6.00e—04 1.15e—02
ULT 5.59e—03 9.00e—04 1.83e—03 3.37e—03 6.00e—04 1.35e—02
PPM 5.18e—03 1.21e—03 1.82e—03 4.75e—03 5.98e—04 1.90e—02
UN02 9.74e—03 9.30e—04 2.55e—03 3.63e—03 6.69e—04 1.50e—02
ZDL 8.27e—03 6.90e—04 2.74e—03 2.75e—03 8.65e—04 1.05e—02
WENO 8.42e—03 4.30e—03 2.03e—03 2.00e—02 6.03e—04 7.00e—02

Table 7
Screening runs results for X = 0.05

Scheme lb Id If
Error CPU (s) Error CPU (s) Error CPU (s)

1-PT 9.39e—02 4.80e—03 6.18e—02 1.84e—02 3.72e—02 7.40e—02
2-PT 4.57e—02 5.00e—03 1.50e—02 1.96e—02 4.48e—03 7.80e—02
MMOD 3.28e—02 6.60e—03 1.08e—02 2.58e—02 3.25e—03 1.04e—01
MUSCL 1.10e—02 7.20e—03 3.51e—03 2.88e—02 1.26e—03 1.14e—01
SBEE 6.54e—03 7.60e—03 7.Ole—03 3.00e—02 2.98e—03 1.20e—01
HARM 1.63e—02 6.30e—03 4.04e—03 2.54e—02 1.30e—03 1.00e—01
FCT 3.60e—02 8.00e—03 9.78e—03 3.30e—02 4. I le —03 1.30e—01
LIU 9.02e—03 9.40e—03 1.99e—03 3.72e—02 6.74e—04 1.48e—01
COX 7.32e—03 7.20e—03 1.89e—03 2.88e—02 6.40e—04 1.16e—01
ULT 7.34e—03 8.80e—03 1.88e—03 3.44e—02 6.35e—04 1.36e—01
PPM 5.35e—03 1.18e—02 1.91e—03 4.78e—02 6.88e—04 1.90e—01
UN02 1.43e—02 9.00e—03 3.97e—03 3.62e—02 1.30e—03 1.46e—01
ZDL 1.07e—02 6.80e—03 2.82e—03 2.64e—02 8.Ole—04 1.06e—01
WENO 8.37e—03 4.15e—02 2.06e—03 1.70e—01 6.42e—04 7.00e—01

HARM  performing better for the high CFL number and 
LIU maintaining higher accuracy for the low CFL 
number. Across the runs, however, they were not as 
accurate as MUSCL, nor was HARM  sufficiently cheap 
to be more efficient than MUSCL. ULT and COX 
produced almost identical error values and proved to be 
consistently accurate for each of the Runs la - lf .  The 
higher-order formal accuracy for ZDL, PPM, and 
WENO also translated into more accurate numerical 
solutions compared in general to the low-order schemes. 
The low-error provided by PPM did in fact come at 
noticeably lower cost than WENO. PPM was between 
1.60 and 1.67 times as slow as MUSCL for Runs l a - l f  
while WENO was another 3.51 to 4.21 times slower than 
PPM.

4.2.4. Detailed comparisons
HARM  was the fastest. U N 02, HARM  and LIU After the initial tests, we were able to narrow our
exhibited similar, adequate error values with U N 0 2  and focus and select a subset of the adaptive schemes for
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V MMOD 
° MUSCL 
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Fig. 1. Solution profiles for Run Id.



M. W. Farthing, C. T. Miller / Advances in Water Resources 24 (2001) 29M8 43

V MUSCL 
« COX 
° ZDL 
—  exact

0.6

o

0.4

0.2

0.5 0.6 0.7
X

0.9

* ULT
* PPM
□ WENO 
—  exact

0.6

o

0.4

0.2

0.4 0.5 0.6 0.7 0.9
X

Fig. 2. Solution profiles Run 2a. Fig. 3. Solution profiles Run 2b.

further comparison. Given the results of Runs l a - l f  and 
the analysis from Section 4.1, we chose the MUSCL, 
COX, ZDL, ULT, PPM, and WENO schemes for ad­
ditional investigation.

In an effort to distinguish the remaining schemes, we 
increased the difficulty of the second set of tests. We 
decreased the dispersion coefficient D = 0.0002 and ex­
tended the range of Pe to 25-100. In addition to the 
semi-ellipse profile used in Runs la - lf ,  we considered 
square and triangular wave initial conditions, choosing 
narrower slugs that spanned only seven cells on the 
coarsest grid.

Comparison of the numerical solutions for the nar­
rower semi-ellipse profile in Figs. 2 and 3 with those in 
Fig. 1 confirms the added severity of the second tests. 
Despite the variation across the initial conditions, we 
can discern several general trends from Figs. 2 and 3 and 
Tables 8 and 9:
1. The solutions provided by COX and ULT were es­

sentially the same, although the COX solution was 
achieved with about 20% less computational effort.

2. ZDL tended to resolve peaks’ value well but was also 
asymmetric, showing a strong upwind bias.

3. MUSCL was symmetric but more diffusive than 
ZDL, especially for X = 0.05.

4. PPM and WENO were typically the most accurate 
schemes, and PPM was usually more accurate and 
always much less expensive than WENO.

5. The L\ error values for the 1000 cell grids (Runs 2g- 
2h) were identical for ULT, COX, PPM, and WENO, 
suggesting that error was essentially due to the oper­
ator splitting and dispersion discretization. ZDL, 
however, lagged in L\ error for both values of X, while 
MUSCL was less accurate for X = 0.05 only.

Tables 10 and 11 report the L\ and CPU values for the 
square wave initial condition. As with Runs 2a-2h, COX 
and ULT were basically identical, while MUSCL was the 
most diffusive. The solutions from both ENO schemes, 
ZDL and WENO contained peak values slightly greater 
than the exact solution on the coarse grids. PPM ’s ad­
vantage in terms of L\ error was diminished especially 
for the grids with more than 100 cells. In fact, the 
accuracy of all of the schemes considered was similar for 
the finest grid (Runs 3g-3h). Tables 12 and 13 contain 
the results for the triangle initial condition. This proved 
to be the most severe of the numerical experiments with 
clear variation among the schemes still evident for the 
100 cell grid computations. In contrast to the other 
profiles, WENO was more accurate than PPM, espe­
cially for the low CFL computations while ZD L’s 
upwind bias produced poorer results (see Fig. 4).

Table 8
Results for narrow semi-ellipse profile with X = 0.5

Scheme 2a 2c 2e
Error CPU (s) Error CPU (s) Error CPU (s)

MUSCL 2.10e—02 7.50e—04 4.23e—03 2.87e—03 1.19e—03 1.18e—02
COX 1.70e—02 7.40e—04 4.03e—03 2.87e—03 1.13e—03 1.24e—02
ULT 1.70e—02 9.30e—04 4.02e—03 3.75e—03 1.13e—03 1.44e—02
PPM 9.19e—03 1.21e—03 2.77e—03 4.87e—03 9. I le —04 1.92e—02
ZDL 1.90e—02 7.00e—04 6.08e—03 2.75e—03 2.23e—03 1.08e—02
WENO 2.02e—02 4.20e—03 5.87e—03 1.80e—02 1.21e—03 7.20e—02
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Table 9
Results for narrow semi-ellipse profile with X = 0.05

Scheme 2b 2d 2f

Error CPU (s) Error CPU (s) Error CPU (s)

MUSCL 3.14e—02 7.20e—03 8.29e—03 2.88e—02 3.31e—03 1.19e—01
COX 2.42e—02 7.30e—03 5.69e—03 2.90e—02 1.64e—03 1.24e—01
ULT 2.42e—02 9.00e—03 5.69e—03 3.60e—02 1.64e—03 1.61e—01
PPM 1.48e—02 1.19e—02 3.02e—03 4.76e—02 1.15e—03 1.96e—01
ZDL 2.19e—02 6.80e—03 8.00e—03 2.68e—02 2.32e—03 1.07e—01
WENO 1.96e—02 4.20e—02 5.82e—03 1.72e—01 1.23e—03 7.04e—01

Table 10
Results for square profile with X = 0.5

Scheme 3a 3c 3e

Error CPU (s) Error CPU (s) Error CPU (s)

MUSCL 2.97e—02 7.50e—04 1.14e—02 2.87e—03 4.90e—03 1.16e—02
COX 2.66e—02 7.40e—04 1.08e—02 2.87e—03 4.94e—03 1.16e—02
ULT 2.66e—02 9.20e—04 1.08e—02 3.75e—03 4.94e—03 1.46e—02
PPM 2.17e—02 1.22e—03 9.90e—03 4.87e—03 4.90e—03 1.94e—02
ZDL 2.76e—02 7.00e—04 1.32e—02 2.75e—03 5.65e—03 1.08e—02
WENO 3.06e—02 4.20e—03 1.35e—02 2.00e—02 5.25e—03 7.00e—02

Table 11
Results for square profile with X = 0.05

Scheme 3b 3d 3f

Error CPU (s) Error CPU (s) Error CPU (s)

MUSCL 3.71e—02 7.20e—03 1.52e—02 2.98e—02 6.34e—03 1.19e—01
COX 3.12e—02 7.40e—03 1.27e—02 2.92e—02 5.07e—03 1.24e—01
ULT 3.12e—02 8.90e—03 1.27e—02 3.62e—02 5.07e—03 1.61e—01
PPM 2.49e—02 1.19e—02 1.Ole—02 4.80e—02 4.93e—03 1.97e—01
ZDL 3.00e—02 6.70e—03 1.66e—02 2.66e—02 6.36e—03 1.07e—01
WENO 3.04e—02 4.20e—02 1.35e—02 1.80e—01 5.29e—03 7.00e—01

Table 12
Results for triangle profile with X = 0.5

Scheme 4a 4c 4e

Error CPU (s) Error CPU (s) Error CPU (s)
MUSCL 2.21e—02 7.40e—04 4.10e—03 3.00e—03 7.16e—04 1.16e—02
COX 1.94e—02 7.30e—04 3.13e—03 3.00e—03 5.06e—04 1.16e—02
ULT 1.94e—02 9.60e—04 3.13e—03 3.63e—03 5.06e—04 1.46e—02
PPM 1.72e—02 1.19e—03 2.Ole—03 4.75e—03 3.21e—04 1.94e—02
ZDL 3.48e—02 6.80e—04 8.53e—03 2.63e—03 2.76e—03 1.08e—02
WENO 2.46e—02 4.10e—03 1.89e—03 1.70e—02 3.10e—04 7.10e—02

Table 13
Results for triangle profile with X = 0.05

Scheme 4b 4d 4f

Error CPU (s) Error CPU (s) Error CPU (s)
MUSCL 2.63e—02 7.30e—03 8.00e—03 2.88e—02 2.65e—03 1.19e—01
COX 2.14e—02 7.30e—03 4.94e—03 2.90e—02 8.27e—04 1.25e—01
ULT 2.14e—02 9.00e—03 4.94e—03 3.62e—02 8.28e—04 1.62e—01
PPM 1.66e—02 1.19e—02 3.75e—03 4.78e—02 7.47e—04 1.96e—01
ZDL 2.13e—02 6.70e—03 6.79e—03 2.68e—02 2.38e—03 1.07e—01
WENO 1.79e—02 4.10e—02 1.89e—03 1.72e—01 3.48e—04 7.04e—01
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Fig. 6. Efficiency for triangle initial condition, X = 0.05.

To examine efficiency, we recorded log error-CPU 
results from the second set of numerical tests. Fig. 5 is 
representative of the results from the semi-ellipse and 
square wave initial condition tests. In general, the 
trends from the initial experiments carry over. ZDL, 
MUSCL, and COX had comparable CPU times and 
were consistently the cheapest schemes. ULT was 
consistently slower. PPM was again slower than ULT 
but was sufficiently accurate, particularly on the 
coarser grids, to make it competitive in terms of effi­
ciency. On the other hand, WENO was measurably 
slower than the other methods and no more accurate 
than PPM. The exception to this were computations 
with the triangle initial condition and X = 0.05 (see 
Fig. 6). Here, WENO was more accurate than PPM 
and so more competitive for the 100 and 200 cell grids. 
While ZDL and MUSCL were the least accurate
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Fig. 5. Efficiency for square initial condition, X = 0.5.
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schemes in general, Fig. 6 also represents the test for 
which the deficiency in their accuracy was the most 
severe.

5. Discussion

We began our numerical experiments with the goal of 
identifying the most efficient and robust methods from 
those introduced in Section 3.5. We chose a set of model 
problems designed to test the basic properties necessary 
for the accurate solution ADE problems. The initial, 
baseline tests were run at low values of Pe number with 
sharp fronts resolved over a relatively large number of 
cells. These tests produced a significant subset of the 
candidate schemes that can be expected to perform well 
under less demanding conditions. The subsequent, more 
difficult numerical experiments allowed us to differenti­
ate further among a narrower group of the most 
promising adaptive-stencil schemes. While the per­
formance of each of the remaining methods: MUSCL, 
COX, ULT, PPM, ZDL, and WENO was generally 
good for the final tests, several distinctions can still be 
made.

The accuracy of COX and ULT was identical. The 
advantage of COX in terms of computational expense 
was about 20% which made it the most efficient scheme 
for the test problems considered. Thus for one-dimen­
sional problems of the type considered in this work, 
COX is an attractive method. If, however, multidimen­
sional problems with variable velocity fields are the 
target application, some caution is in order before 
choosing COX, since:
1. The coefficients used in this work depend upon X and 

Pe and thus need to be recalculated at each computa­
tional point, which adds to the computational ex­
pense.
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2. The third-order accuracy is lost for the case of vari­
able velocity fields.

3. The form of the optimal parameter forms was deter­
mined for one-dimensional problems and would like­
ly not be optimal for multidimensional cases [9].

It should also be cautioned that the relative efficiency of 
methods may vary from platform to platform, so the 
difference between COX and ULT may not be very 
significant.

WENO was markedly slower than the other methods, 
and its accuracy for these problems did not offset the 
added computational expense. If  numerical efficiency is 
a concern, WENO would then be an unwise choice as an 
advection discretization. It has been shown, however, 
that there are problems in gas dynamics where the 
characteristics of the solution are well suited to WENO 
[14,24].

Both ZDL and MUSCL proved to be relatively 
simple and inexpensive. Each encountered conditions 
where its relative accuracy was severely degraded, 
however. The asymmetry of ZDL proved was a signifi­
cant problem for the triangle initial condition, while 
MUSCL was much more diffusive than the other five 
methods for X = 0.05. Both of these situations represent, 
in some sense, extreme cases but should be considered 
before using either ZDL or MUSCL.

Aside from our comments above about COX, the 
most efficient, reliable methods were ULT and PPM. 
ULT was consistently accurate with moderate expense. 
PPM was slower, but it proved to be the most accurate 
of the reviewed schemes. This reduced error, especially 
on the coarser grids, compensated for the increased 
CPU times.

While we have tried to make our methodology and 
conclusions as insensitive as possible to computational 
platform, there are questions that can arise based on 
platform-specific behavior. The WENO scheme, for 
example, was originally designed with vector architec­
tures in mind. While the importance of vector com­
puters has perhaps diminished in recent years, 
performance on these platforms is still relevant for 
numerical simulation in the water resources field. We 
thus evaluated the speed of WENO, PPM, and M US­
CL on a Cray T-90 (see Table 2) for a simple model 
problem (Run lg in Table 5). The WENO scheme 
vectorized extremely well, achieving 1139 megaflops. 
The original MUSCL implementation also performed 
well, however, achieving 667 megaflops and required 
about one-third of the total time used by WENO. On 
the other hand, the original PPM scheme did not 
vectorize well. This problem was alleviated by using the 
sign intrinsic to replace the conditionals used in the 
three constraints. This was done simply by replacing 
if (a), then x = y  with x =  x[\ + sign (a)]/2 +  y[l — 
sign(a)]/2. The modified implementation of PPM 
achieved 1077 megaflops and required about two-thirds

less total CPU time than WENO. This exercise indi­
cates that WENO is still no more competitive than 
PPM on a vector platform for which it was originally 
designed. Furthermore, the same basic modifications 
applied to PPM are applicable for the other adaptive- 
stencil methods reviewed here.

There are a number of issues relevant to the solution 
of realistic ADE problems with adaptive-stencil meth­
ods that fell outside the scope of this work. As men­
tioned in Section 3, there are several ways to extend 
these methods to multiple space dimensions. These are 
often based on core operations that are one-dimensional 
[7,36,49], suggesting that the most promising one-di­
mensional schemes are a wise starting point for work in 
two and three dimensions.

A number of higher-order methods were not included 
in our comparisons. For example, higher-order ENO 
schemes are possible, and an eighth-order version of 
FCT is used in [63]. Leonard also combines the universal 
limiter with third-, seventh-, and ninth-order approxi­
mations via an adaptive-stencil expansion technique
[27]. Our results suggest that one interested in imple­
menting a higher-order method should compare the re­
sults with PPM or ULT to gauge its value.

Many processes of interest to the water resources field 
can be described by non-linear PD E’s with sharp front 
solutions (e.g., the ADE with non-linear reactive terms, 
multiphase flow). Solution of these problems presents its 
own set of difficulties that are not directly addressed by 
our work. We note only that the solution of scalar non­
linear hyperbolic problems as well as non-linear hyper­
bolic systems is much better established for the MUSCL, 
PPM, and WENO schemes than it is for ZDL, ULT, or 
COX.

Lastly, the time discretizations employed in our work 
were explicit. There are problems for which an implicit 
discretization of the ADE is preferable, however. The 
combination of implicit time discretizations with adap­
tive-stencil methods requires consideration of ad­
ditional issues not considered in this work [51,58,60] and 
warrants further investigation.

6. Conclusions

Based upon our consideration of 14 different explicit- 
in-time, finite-volume discretization methods for solving 
the ADE drawn from several scientific fields, we make 
the following conclusions:
1. A variety of alternatives to standard discretization 

schemes used to solve the ADE in the water resources 
field can result in more efficient solutions.

2. The improvement in efficiency of a solution is ob­
tained by using computational stencils that adapt de­
pending upon the profile of the dependent variable, 
including the existence of local extrema.
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3. Operation counts and local truncation analysis can 
provide some guidance for method selection, but ex­
tensive numerical experiments are important as well.

4. Stencil adaption and order of approximation varies 
from scheme to scheme and poses computational effi­
ciency implementation challenges that depend upon 
the computational platform being used.

5. A method’s efficiency varies with the initial condition 
and discretization pattern, making it necessary to 
consider a broad class of problems typical of those 
of interest in real applications.

6. ULT and PPM are two higher-order TVD schemes 
that performed well for the test problems considered 
and in general were more efficient than the best lower 
order TVD method (MUSCL) and the three UNO 
and ENO schemes evaluated.

7. Issues associated with the extension of this work to 
other problems in the field are considered.
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