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This article studies the effect o f airborne lidar (surface) elevation data on the clas­
sification o f multispectral IKONOS images over a coastal area. The lidar data and 
¡KONOS images are treated as independent multiple bands to conduct the classifica­
tion. To do so, the lidar elevation data is first resampled to the same ground spacing 
interval and stretched to the same radiometric range as the IKONOS images. An un­
supervised classification based on the ISODATA algorithm is then used to determine a 
class schema o f six classes: road, water, marsh, roof, tree, and sand. Training sites and 
checking sites are selected over the lidar-IKONOS merged data set fo r  the subsequent 
supervised classification and quality evaluation. The complete confusion matrices and 
average quality indices are presented to assess and compare the classification results. It 
is shown that the inclusion o f the lidar elevation data benefits the separation o f classes 
that have similar spectral characteristics, such as roof and road, water and marsh. The 
overall classification errors, especially the false positive errors, are reduced by up to 
50%. Moreover, by using the lidar elevation data, the classification results show more 
realistic and homogeneous distribution o f  geographic features. This property will benefit 
the subsequent vectorization o f  the classification maps and the integration o f the vector 
data into a geographical information system.

Keywords lidar, satellite image, classification, coastal mapping

Costal zone mapping (or in short, coastal mapping) has been a major application field for 
modern surveying and mapping technologies. As a rapid, efficient, and cost-effective rep­
resentative of these technologies, multispectral (including hyperspectral) remote sensing 
imagery and laser altimetry (or bathymetry) are of the primary interest for both theoreti­
cal study and practical applications. The use of multispectral images for coastal mapping 
is, in general, based on image classification principles. Braud and Feng (1997) utilize 
the popular Landsat TM imagery for semiautomatic coastline reconstruction. Studies on 
the use of airborne hyperspectral images are presented by Nichols et al. (2000) using 
Airborne Terrestrial Applications Sensor (ATLS, 14 bands), by Siciliano et al. (2000) us­
ing HyMap sensor (126 bands), and by Lee et al. (2000) using Airborne Visible-Infrared 
Imaging Spectrometer (AVIRIS, 222 bands). These airborne images are at a higher spatial 
resolution of 1-3 meters and a higher spectral resolution with a minimum of 14 bands. 
They provide not only more accurate cartographic products but also detailed information
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about the human-nature interaction process and its effects. As another advanced technol­
ogy, airborne laser altimeter along with the on-board GPS (Global Positioning System) 
and INS (Inertial Navigation System) can provide the three-dimensional (3-D) location 
of the laser beam footprint on the ground or water bottom. Equipment with multiple re­
turn capability is able to separate water surface from water bottom in such a way that 
laser bathymetry becomes possible. Irish and Lillycrop (1999) present the technical princi­
ples of the SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) system 
and the experience gained in coastal mapping over the past years. Successful applications 
of this system in U.S. coastal mapping can be found at http://shoals.sam.usace.army.mil/ 
(online).

However, no single type of data can provide reliable and automatic solutions to a com­
plicated mapping task. Misclassification often exists among spectrally similar materials 
such as (building) roofs and roads, or water and marsh. Therefore, inclusion of additional 
independent information is needed, which leads to image fusion as described in Pohl and 
van Gendern (1998). Our study is focused on the combination of IKONOS images and lidar 
data. This is motivated by the following three reasons. First, current IKONOS-2 satellite 
imagery provides a high resolution of up to one meter which is compatible with airborne 
remote sensing data. Therefore, the combined use of those two data sources could poten­
tially benefit each other. Recent study (Dial 2000) shows that IKONOS images can be used 
to produce large-scale topographic maps at the scale of 1:4,800. Li et al. (2000) report 
their study using simulated IKONOS panchromatic images for precision positioning with 
focus on coastline mapping application. Second, airborne lidar data has become one of the 
most effective data sources for topographic mapping. The National Ocean and Atmospheric 
Administration (NOAA) has been using lidar technology over the last few years to collect 
elevation data to document the topographic changes along the shorelines. Under this mis­
sion, lidar data has been collected for a large percentage of the east and west shorelines in 
the U.S. and made available to the public at http://www.csc.noaa.gov/crs/tcm/index.html 
(online). Third, the different nature of the lidar and image data will provide information 
complementary to each other. Lidar data in nature are geometric range measurements, 
while IKONOS imagery records the spectral reflectance of the ground. Therefore, the 
combination of these two will provide both geometric and spectral information about the 
ground which otherwise will not be available. A recent study from Smith et al. (2000) 
presents the concept and system composition for fusing their compact hyperspectral im­
ages and SHOALS bathymetry/altimetry data for coastal mapping applications. With this 
integrated system, it is expected that more complete hydrographic surveys can be achieved 
more efficiently than with traditional single sensor-based approaches (Smith et al. 2000). 
Similar research using airborne lidar data and airborne color images have been reported 
(Park et al. 2001), where lidar elevation and intensity data are used as additional bands 
to participate in the classification of color images. It is concluded that the best classifi­
cation can be achieved by using the combination of red image, lidar elevation, and lidar 
intensity.

This article will study the combination of airborne lidar altimetry data with IKONOS 
multispectral images and its benefit in the classification for coastal mapping applications. 
The study area is located at Camp Lejeune, North Carolina and its surroundings. We will 
first show that the use of properly preprocessed lidar data will enhance image appearance 
and thus benefit the training site selection process, which is highly operator-dependent 
and perceptual in image classification. A class schema of six classes is then chosen for 
mapping purpose over this coastal area. Next, supervised image classifications are carried 
out with and without the use of lidar data, respectively. In order to evaluate and compare the 
classification results, we present detailed statistics represented by the confusion matrix and

http://shoals.sam.usace.army.mil/
http://www.csc.noaa.gov/crs/tcm/index.html
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overall accuracy indices. Comparative graphics are presented to illustrate the benefit gained 
in fusing lidar data with IKONOS images. It is concluded that the inclusion of the lidar data 
can significantly reduce the false alarm rate in image classification, greatly improve the 
separation of spectrally similar features, such as water and marsh, or roof and road, which 
would otherwise be misclassified. It is also found that by using the lidar elevation data the 
classification results present a more realistic and homogeneous distribution of geographic 
feature classes.

The remaining part of this article is organized as follows. The next section presents a 
brief introduction of the IKONOS images and lidar data used in this study. Class schema 
and supervised classification results along with graphic and tabular samples obtained with 
and without the use of lidar data are shown in the sections which follow the data section. 
This provides an intuitive and comprehensive evaluation on the classification results. There, 
a thorough analysis, based on the resultant statistics, is presented with quantitative com­
parisons and elaboration. The final section summarizes the article with concluding remarks 
and a prospect on future efforts.

Data for the Study Area
The study area is located along the coastal area south of Camp Lejeune, North Carolina, 
and multiple IKONOS panchromatic and multispectral images of the entire region are 
available. However, only a narrow strip of airborne lidar data along the Atlantic coast 
is available for this study. The common area (about 10.1 x 8.1 square km) covered by 
both IKONOS images and the lidar data was used for our study. Figure 1 displays the 
multispectral IKONOS images with IR (infrared) band for red channel, green band for 
green channel, and blue band for blue channel, whereas the lidar elevation data is displayed 
as a black and white image. The properties of IKONOS image and lidar data are listed 
below.

IKONOS multispectral images:

•  Spectral resolution—4 bands (Near IR/R/G/B), 11 bits/pixel;
•  Spatial resolution—4 meters x 4 meters/pixel (trimmed to 2521 x 2028 pixels);
•  Preprocessing from Space Imaging, Inc.—Standard Geometrically Corrected, Mosaicked;
•  Horizontal positional accuracy (root mean square error)—25 meters; and
•  Map projection—UTMZone 18, WGS-84.

(a) (b)

FIGURE 1 Data for the study area: (a) IKONOS, (b) lidar elevation.
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Lidar elevation data:

•  Spatial resolution (cell size)—3 m x 3 m;
•  Horizontal positional accuracy—The ATM (Airborne Topographie Mapper) lidar eleva­

tion points are known to be horizontally accurate to + / — 0.8 m at an aircraft altitude of 
700 m;

•  The ATM lidar elevation measurements have been found to be within + / — 15 cm of each 
other in successive and overlapping passes of the same area;

•  Map projection—UTM Zone 18, WGS-84; and
•  Elevation reference—The vertical values in this data set have been converted to reference 

NGVD29, using the VERTCON software provided by the National Geodetic Survey.

Fusion and Classification
The supervised classification involves the design of class schema, selection of training sites, 
selection of checking (test) sites, and assessment of the classification results. This section 
will present the IKONOS image classification results and statistics for the with-lidar and 
without-lidar cases.

Fusion

The inclusion of lidar data into IKONOS imagery attempts to benefit the visual selection 
of training sites and to improve the quality of the classification. Unlike existing methods 
that include the digital elevation data in a postclassification process (Bolstad and Lillesand 
1992; Harris and Ventura 1995), for which a series of rules have to be established and 
extra postprocessing steps are needed, we propose to use the lidar elevation within the 
classification process.

The lidar data must be preprocessed before it can be fused with IKONOS images. 
First, it is resampled to the same ground sample interval as the IKONOS images, namely 
resampled from 3 m to 4 m cell size. Second, the lidar data is linearly stretched to map its 
original elevation range (—1 to 38.4 m) to the 11-bit data range of the IKONOS images 
(0-2047). To display the lidar data along with the IKONOS images, we use IKONOS NIR 
band for red channel, green band for green channel, and processed lidar data for blue channel. 
The registration of lidar and IKONOS data needs to be evaluated before classification as 
any misregistration among the participant data may affect the classification quality. To do 
so, we measured six evenly distributed feature points on the lidar data and IKONOS image. 
These features include road intersection, house comer, bridge corner, and distinct point 
feature. The standard deviation of the positional differences for those six feature points is 
0.61 pixel on the image (1 pixel =  4 m). Therefore, it is concluded that the lidar data and 
IKONOS image are well coregistered and no further registration refinement is applied. A 
portion of the original IKONOS image and the fused result are shown in Figure 2. The 
four-band IKONOS image and the processed lidar data over the same area are then stored 
as a five-band multispectral image containing IKONOS NIR, red, green, blue band, and the 
lidar elevation data for the following classification operation.

Supervised Classifications

As shown in Figure 1, the test area contains a large percentage of water bodies as well 
as a variety of other geographic features in a coastal area. In order to design the class 
schema, namely, to determine what classes should be used for the study, an unsupervised
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FIGURE 2 IKONOS image (left) and its fusion with lidar elevation (right).

classification (clustering) based on the ISODATA (Iterative Self-Organizing Data Analysis 
Techniques Algorithm) (Mather 1999) is carried out. A maximum of 12 clusters is specified 
for the clustering. A visual inspection of the clustering results leads to six primary classes: 
Road, Water, Marsh, Roof, Tree, and Sand. The class Road is used for roads comprised 
of grayish and white or bluish-white pixels. The class Roof is used for gray, white, and 
light blue rooftop pixels. The class Marsh is used for the reddish-brown areas adjacent to 
waterways.

The supervised classifications are then performed respectively for the original IKONOS 
four-band images and the five-band combined images using the maximum likelihood clas­
sifier (Landgrebe 2000; Mather 1999). To do so, evenly distributed pixel groups of above 
selected six classes need to be selected as training sites. These training sites are used by 
the classifier as a reference to calculate the class statistics that are then used to assign each 
pixel in the image to a corresponding class category (Biehl and Landgrebe 2002). In order to 
evaluate the classification results, a number of checking sites are also selected. The pixels in 
the checking sites do not contribute to the training and classification process. Instead, they 
are used as ground truth to check the classification results. In our study, the training sites 
and checking sites are selected visually in the fused data set. Some of the selected training 
sites are shown by the small white rectangles on the fused image in Figure 2. Classifications 
are carried out, respectively, without and with the lidar data. For comparison purposes, both 
classifications use the same training sites and checking sites. Table 1 lists the number of

TABLE 1 Number of Pixels for Training and Checking Sites

Class name

Number of pixels

Training sites Checking sites

Road 120 164
Water 494 594
Marsh 142 156
Roof 53 42
Tree 210 208
Sand 102 182
Total 1121 1346
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(a) < b)
B  Road ■  W al« ■  Mash H i Rod ■  T ie«  ■  Sand

FIGURE 3 Comparison of classification results: (a) without lidar, (b) with lidar.

pixels selected for training sites and checking sites. Figure 3 presents a zoomed-in portion 
of the two classification results. The complete statistics for the classification results are 
tabulated in Tables 2 and 3.

Analysis and Evaluation
Table 2 contains all the primary statistics for the classification results presented in the form 
of the confusion matrix (Mather 1999; Smits et al. 1999). Its first column gives the class 
names of the ground truth, followed in the second column by the number of pixels selected 
either in the training sites (Table 2a) or checking sites (Table 2b) of a class. The third to 
eighth columns are the number of pixels identified by the classifier as the corresponding 
classes. The diagonal elements of the confusion matrix contain the number of pixels that 
are correctly labeled by the classifier, while the off-diagonal elements stand for the number 
of wrongly labeled pixels. Ideally, a perfect classification should yield a confusion matrix 
with all off-diagonal elements equal to zero and diagonal elements equal to the number of 
pixels of each ground truth class. The last column in the table, accuracy, is the percentage 
of the correctly labeled pixels in a ground truth class. It is essentially the ratio of a diagonal 
element over the number of pixels of the corresponding ground truth (the second column). 
The ninth row of the table, reliability, describes another quality index for the classification 
outcome. It is defined as the percentage of correct pixels in a labeled class. It is in fact the 
ratio between a diagonal element and the number of pixels in the corresponding identified 
class (the eighth row). These definitions are expressed in Equations (1) and (2). In order to 
present an overall quality index, the algebraic averages for accuracy and reliability for all 
six classes are listed in the last row of the table.

„  number o f  correctly identified pixels in class i
Accuracy for class i (%) = ------------ -------------  f------- -------------------- ; ( 1 )

total number o f  pixels in class i

„ , ... .  , number o f  correctly identified pixels in class i
Reliability for class /(%) = ------------     -----   . (2)

total number o f  pixels in the labeled class i

To facilitate the analysis and visualize the classification quality, we further define two types 
of classification errors associated with accuracy and reliability. The first one is omission or



>%

¡g
o<

T3
C
eS

00

D

tí#o
CS
o

«tí

eS

u
0)

(4M
o
X

' £
eS

S
c
o

c
0

u

es
w

á
1

fe-o

£
•£>
d
otí

3V5
OUn
tí

‘t í
eS
O

« t í

</>
Jtí
13
c

<D
X
‘5-
<*-
o
Un

Jä
etí

z

oí

tí
t/3
fe

s

D•w

I

-o
es
O

Oí

1!  I &

eS

G

un

O n

o O O o O8 8 o 8 o
Os

0 0
un

un
O n 8 88 0 0 ÇN r - —4 1—4

m í n è un un Ti­ ON NC
O n e s 0 0 c n un e s e s 0 0
O n ON ON 0 0 O n r - ON ON

CS un  
O  Oro _  _  O _  -h

O  o  ^-» oCS —<

Ä o  O
o  O  S  O  —  o-H CM

e n
o  _  _  un  — o
ü  o  o  > •  o  ^ 5—H 0*\ —H

es
T t

o  o  P  o  o  o
Tt

O  T fos
rí-

O Tf es 
<S Os  Tt
h  r f  - n

bí)
C

-o
es - O W c  Ü .£ ¿S O a 

H 04 ^  S  Oí H

O
f“H
e s

O O O O

O  <S 
— • O  
e s  —i

T3tí
eS
CO

un
Os
Os

00
Os

Os
Os

cn
iO

e s
T f

tj-
Os
Ti­

e s

e s

<D
OJO
2
o

« i

r-*
S ¿
Os

Os

O)
\>
Os

£

O
esUntí
u

' fe
D
OJO
eSUn
U

3

e s
NO

00
O n

00

^  O O 5  oNO e n  W O On

0 0 un
e s o NO
m ~  e s  Ä e s

O ' - - ©c n un 0 0
T t O Tt

e s e s

e s  e s
o | ° °  IOs  O

m  un

tj-
e s

o  o  o

ON
s o
un

sO
«O

o  o  o  o

so
Tj-

o  o  o

no e s  oo  
«O r t  o1-4 es

e s
00

0Û
c

Un  *tío T3 
<ü eS

• t í  O  O  t í  eS

_  ü  «S « 4 -  „ x  T 5^ g 3  s g g s

r -
o  __
ÇN
IO ^
o  §  
Os —1 

o o  
o o

^  ¿ro o  g \

£  *  
es ftí
00 t í  es

13
P  O  Q 00 O es
^ fe 
q >¡ 00 ^  
r -

T f
e s

O
T f

ON
NO
Un

NO
«O

e n
« o

e s
Tj*

o
o
o

o
00

NOTfren

^  Sçn en
«o 5
o  2  
ON o  

O n

£
5no
eSUntíO
ä
<UW>
es
fe

S

tí
.2
13
ct

tí
tí

esO
« t í

C
3tío
3
■a>

123

is 
wi

th
ou

t 
lid

ar
 

va
lu

e/
wi

th
 

lid
ar

 
va

lu
e.

 I
f 

on
ly 

on
e 

va
lu

e 
ex

ist
s, 

the
n 

it 
ap

pl
ies

 
to 

bo
th 

cl
as

sif
ica

tio
n 

re
su

lts
. 

De
ta

ile
d 

ex
pl

an
at

io
ns

 
can

 
be

 
fou

nd
 

in 
the

 
se

cti
on

 
of 

th
is 

ar
tic

le 
on 

an
al

ys
is 

an
d 

ev
al

ua
tio

n.



124 D. S. Lee and J. Shan

TABLE 3 Error Matrix of the Classification Results

Training sites Checking sites

Class
Omission 
(FN, %)

Commission 
(FP, %)

Omission 
(FN, %)

Commission 
(FP, %)

Road 2.5 3.3/0.0 16.5/11.0 3.5/4.6
Water 0.0 0.0 4.5/4.2 0.0
Marsh 0.7/0.0 0.0 27.6/20.5 19.3/0.0
Roof 7.5/0.0 3.9/0.0 7.1/0.0 22.0/0.0
Tree 0.0 0.5/0.0 1.4/0.0 17.3/21.5
Sand 2.0/0.0 2.912.9 1.1/3.8 9.5/9.3
Average 2.1/0.4 1.8/0.5 9.7/6.6 11.9/5.9

Note: In the above table, each cell lists two resultant values obtained from the 
classifications without and with lidar data. The format is without lidar value/with 
lidar value. If only one value exists, then it applies to both classifications. FN:
False negative; FP: False positive or false alarm.

false negative (FN) error, which means the percentage of wrongly labeled pixels in a given 
ground truth class. The second one is commission or false positive (FP or false alarm) error, 
which stands for the percentage of wrongly labeled pixels in an identified class. They can 
be calculated with the following formulas:

Omission (%) or false negative for class i =  100% — accuracy fo r  class /; (3)

Commission (%) or false positive for class i =  100% — reliability fo r  class i. (4)

In a similar way, the average omission and average commission can be respectively defined 
as the average of omission (FN) and commission (FP) errors for all the classes. Using 
Equations (3) and (4) the two types of errors in the classifications for both without and with 
lidar data are calculated in Table 3, which is then charted as shown in Figure 4.

As shown in Table 3 and Figure 4, proper inclusion of the lidar data can reduce the 
omission (FN) and commission (FP) errors for almost all the classes and the overall error

■without lidar

Road Water Marsh Roof Tree Sand Average

FIGURE 4a Classification errors of training sites for each class. The left two bars are 
omission error, the right ones are commission error.
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FIGURE 4b Classification errors of checking sites. For each class, the left two bars are 
omission error, the right two ones are commission error.

rates are remarkably reduced, which means both classification accuracy and reliability are 
improved. As shown in Figure 4a, the inclusion of lidar data greatly reduces classification 
errors of almost all training sites and no deterioration occurs. For some training sites, 
classification errors vanish (no vertical bars are shown in the chart). As for checking site 
errors, Figure 4b shows the classes that most benefited from the combination of lidar 
and IKONOS images are roof, marsh, and road. Roofs can be totally correctly (accuracy) 
classified and separated (reliability) from other classes. The omission and commission 
errors for roofs have vanished. As for the marsh class, omission error is reduced about 1% 
(from 27.6% to 20.5%) when lidar data is used; while commission error is eliminated (from 
19.3% to 0), which means no nonmarsh pixels are wrongly labeled as marsh class. For the 
road class, Table 3 and Figure 4b show the use of lidar data causes about 5% more road 
pixels correctly labeled (error rate from 16.5% to 11.0%). As a result of using lidar data, 
the average false negative error is reduced from 9.7% to 6.6%, and 11.9% to 5.9% for the 
average false positive error, which means a significant 50% drop of the error rate.

Perhaps the most significant benefit of including lidar in the classification is the im­
proved separability between roof and road classes. Since both roof and road are often 
composed of asphalt materials, they can have similar spectral characteristics that make 
discrimination more difficult if only IKONOS images are used. Misclassification between 
road and roof pixels is a common experience. The ability to separate two similar materials 
is also influenced by the number of spectral bands available. Having too few spectral bands 
means that the spectral space may have too few dimensions to separate similar materi­
als. Thus in the case of IKONOS imagery, the misclassification problem is intensified due 
to the difficulty in separating similar materials using only four spectral bands. Adding lidar 
data as an independent and heterogeneous data source improves the discrimination between 
roof and road significantly. As shown in Table 2b for the multispectral-only classification 
of checking sites, the reliability accuracy for the roof class is 78%. Of the roof pixels that 
are misclassified, all are incorrectly assigned to the road class. With the addition of lidar 
data as the fifth band, reliability accuracy improves from 78% to 100% for the roof class. 
The accuracy improvement in roof classification has important ramifications for feature 
extraction algorithms guided by thematic classes. By eliminating misclassification between 
road and roof, a better initial approximation to building delineations is achieved and false 
positives are drastically reduced (Lee et al. 2002).

Although a downside of combining lidar data with IKONOS images is found in this 
study, it is marginal. The use of lidar data causes more (from 17.3% to 21.5%) nontree pixels 
wrongly classified as the tree class. Table 2b reveals that these nontree pixels are actually

■without lidar 
□  with Mar
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water and marsh pixels, which suggests a certain separability problem among these three 
classes. A similar effect is also observed in road and sand classes. This is likely caused 
by the insufficient horizontal and vertical resolution of the lidar data such that it cannot 
contribute to the separation of the classes that may not be distinct in elevation. Accordingly, 
the simple inclusion of the lidar data in the classification without properly considering 
its accuracy and its topographic properties, such as average elevation, slope, and aspect, 
may degrade the results for these classes. It should be noted that this minor degradation is 
consistent with earlier findings in image classification studies. It has long been known that 
that the classification quality may decrease if more bands are included in the conventional 
classification process (Hughes 1968; Shahshahani and Landgrebe 1994). To overcome this 
so-called Hughes effect or phenomenon, certain preprocessing needs to be performed to 
select features or subspace in the original data before classification. However, this topic is 
not within the scope of our current study and will be addressed elsewhere in the future.

Since the above quantitative analysis cannot show the pattern and distribution of errors 
of the geographic features in the classification results, an evaluation based on the classified 
thematic maps is necessary. Compared to Figure 2, the roof class (in yellow) in Figure 3b is 
located at the actual building rooftops, while in the IKONOS-only map areas of the beach, 
the road and bridge crossing the intercoastal waterway and several other areas that are not 
rooftop are misclassified as roof. The effect is that the yellow pixels in Figure 3a present 
an unrealistic pattern and distribution of roofs. A similar observation can also be made 
about the water, marsh, and tree classes. Furthermore, a comparison of the two maps in 
Figure 3 indicates that the water, marsh, tree, and sand classes in Figure 3b show a more 
realistic and homogeneous distribution than in Figure 3a. The “salt and pepper” scattering 
effect of isolated pixels in Figure 3a is significantly removed in Figure 3b when lidar data 
is used. Semantic conflicts, such as a small number of roof pixels surrounded by roads, 
marsh by water and trees, and roofs by sand, are limited. This more realistic distribution 
will certainly benefit the subsequent vectorization process in costal mapping and vector 
database integration.

Conclusions
The complexity of coastal mapping tasks requires the combination of multiple, indepen­
dently collected, and preferably heterogeneous remote sensing data. Recently available 
high-resolution satellite imagery makes it possible and beneficial to merge the imagery 
with lidar elevation data for coastal classification mapping. It is shown that, via simple 
preprocessing, the lidar elevation data can be treated as an extra band to be combined with 
multispectral IKONOS images. The integration significantly improves the classification ac­
curacy and reliability of geographic feature classes with similar spectral characteristics, such 
as roof and road, water and marsh. By including lidar data, the average classification errors, 
especially the false positive (commission) errors, are reduced by as much as 50% (from 
11.9% to 5.9%). Moreover, the classification results of the lidar-enhanced data show much 
more realistic and homogeneous distribution of geographic features than the without-lidar 
results. This property will benefit the subsequent vectorization of the classification maps 
and the integration of the vector data into a geographical information system. A Hughes 
effect is observed in this study in that the classification error (from 17.3% to 21.5%) for 
the tree class is slightly increased due to its mixture with marsh and water. Future studies 
will be focused on a modified use of lidar data to take into consideration the local terrain 
properties, such as average elevation, slope and aspect, and thus benefit the separation of 
geographic feature classes at both similar and different elevations.
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