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ABSTRACT
Aim: To assess global sampling coverage of sea anemones and global species richness across four different spatial resolutions, 
and analyse these along latitudinal gradients to investigate true bimodality and the extent to which these patterns have been 
influenced by uneven sampling efforts.
Location: The study encompasses a global scale.
Time Period: Occurrence data included in this study were collected from 1900 to present.
Taxon: Sea anemones (Actiniaria).
Methods: Using 247,542 global occurrence records, we estimated species richness and sampling coverage across four resolutions 
of grid cells: 800 km, 600 km, 400 km and 200 km. We employed a standardised rarefaction-extrapolation approach to mitigate 
biases introduced by uneven sampling efforts and to ensure comparability across spatial scales, then compared these species 
richness estimates across latitudes.
Results: Across all resolutions, we find a discernible peak in species richness in temperate latitudes, however, the latitudinal 
peak in diversity shifts dependent on the resolution; our coarsest resolution reveals the most pronounced bimodality, with peaks 
especially pronounced around 40° N and 40° S, while our finest resolution reveals species richness peaks at 40°–60° N and a 
subtler increase around 40° S. We find highest observed species richness consistently in temperate regions across resolutions, 
particularly in southern California, United States and northern Europe. Across all resolutions, we find a discernible peak in 
species richness in temperate latitudes, however, the latitudinal peak in diversity shifts dependent on the resolution; our coarsest 
resolution reveals the most pronounced bimodality, with peaks especially pronounced around 40° N and 40° S, while our finest 
resolution reveals species richness peaks at 40°–60° N and a subtler increase around 40° S.
Main Conclusions: Sea anemones display an asymmetrically bimodal pattern of global diversity and display the highest species 
richness at temperate latitudes around 40° N and 40° S. Our study underscores the need for targeted exploration in undersam-
pled environments and understudied marine invertebrates to continue refining biogeographic theories, such as the frequency of 
bimodal distribution patterns.

1   |   Introduction

Sea anemones (Actiniaria, Hexacorallia, Anthozoa, Cnidaria) 
are a widely ecologically successful and diverse clade, with 

approximately 1200 species that occur across all latitudinal gra-
dients, from polar regions to mid-latitudinal temperate zones to 
equatorial latitudes in tropical zones (see Rodríguez et al. 2025). 
Members of this order also occur at all ocean depths. Many sea 
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anemones function as essential members of tidepool communi-
ties (e.g., Bedgood et al. 2023) and have adaptations inferred to 
be useful in these variable, often extreme environments (e.g., 
Hart and Crowe 1977; Shick et al. 1979; Shick and Dykens 1984; 
Zamer 1986; Amado et al. 2011; Bingham et al. 2011; Cubillos 
et al. 2023; Clarke et al. 2024). Conversely, a large amount of sea 
anemone diversity exists in the deep ocean and many species 
are adapted to survive in extreme conditions such as high pres-
sure, low temperatures, lack of sunlight and even hydrothermal 
vent systems (Rodríguez et al. 2008; Zelnio et al. 2009; Goffredi 
et al. 2021; Zhou et al. 2023). Many sea anemones show high 
phenotypic plasticity and diversity (e.g., Chomsky et al. 2009; 
Hoeksema and Crowther  2011; González-Muñoz et  al.  2015; 
Glon et  al. 2020; Porro et  al.  2020; Clarke et  al.  2024), which 
may contribute to broad geographic and bathymetric geo-
graphic ranges.

The broad global pattern of increasing species diversity from 
the poles towards the equator, the well-established latitudi-
nal diversity gradient (LDG), is defined by unimodality with 
a tropical peak (Jablonski et al. 2006). However, increasingly, 
vertebrate and invertebrate taxa have demonstrated contrast-
ing patterns; vertebrates tend to hold true to the LDG and have 
increased diversity near the equator, whereas invertebrate 
species richness tends to peak in temperate regions (Edgar 
et al. 2017). The picture becomes more complicated in marine 
systems, with many marine lineages including sea anemones 
(see Fautin et al. 2013), largely showing a trend of bimodality 
with a distinct dip near the equator. These bimodal distribu-
tions, defined as a type of interruption in the distribution of 
taxa in both hemispheres and characterised by their absence 
in the tropics (Chaudhary et al. 2016; Rodríguez et al. 2009), 
have been well documented across diverse marine lineages. 
For example, bimodality has been observed in spiny dogfish 
(Veríssimo et  al.  2010), copepods (Havermans et  al.  2013), 
planktonic foraminifera, bivalves, razor clams, ophiuroidea 
and brachiopoda, among others. Further, the acceleration 
of climate change-induced ecological changes is already re-
shaping species distributions and community compositions 
(Moullec et al. 2022).

The current picture of global patterns of diversity in sea 
anemones is built on previous studies that are regionally fo-
cused (e.g., Manuel  1988; Häussermann and Försterra  2005; 
Fautin et al. 2005, 2015; Rodríguez et al. 2007; Kostina 2011; 
González-Muñoz et al. 2016; Laird and Griffiths 2016; Targino 
and Gomes  2020; Gusmão and Rodríguez  2021; Anushma 
et  al.  2022; Ramírez-Orellana et  al.  2024) lineage specific 
(e.g., Grajales and Rodriguez 2014; Hancock et al. 2017; Titus 
et al. 2019; Bennett-Smith et al. 2021; Izumi and Fujii 2021; 
Glon et  al.  2023; Barragán et  al.  2024) or otherwise limited 
in terms of comprehensiveness and number of data points. 
Because these studies are not synthetic or comparative across 
regions, drawing holistic conclusions about biodiversity 
trends from them is challenging. The only previous global as-
sessment of sea anemone distribution found that sea anem-
one diversity peaks in richness at 30°–40° N and S, with lower 
numbers at the tropical latitudes and fewest species in polar 
areas; however, these results lacked the benefit of many re-
cently described sea anemones and included relatively few oc-
currence points (Fautin et al. 2013).

In this study, we utilise publicly available species occur-
rence records and standardise these data with a combined 
rarefaction-extrapolation method (Chao et  al.  2014) to eval-
uate global sampling coverage for sea anemones and assess 
species richness at four different spatial resolutions. We then 
analyse these results along latitudinal gradients to determine 
whether a true bimodal distribution exists and the extent to 
which these patterns have been influenced by uneven sam-
pling efforts. Finally, we revisit the latitudinal diversity gra-
dient and other scale-dependent geographic patterns of sea 
anemone diversity to deepen our understanding of their global 
biodiversity.

2   |   Methods

2.1   |   Occurrence Data

Occurrence data were obtained from the Global Biodiversity 
Information Facility (GBIF) using the R package ‘rgbif’ and from 
the Ocean Biodiversity Information System (OBIS). The data-
set underwent a series of cleaning steps to ensure data quality 
and relevance using the R package ‘CoordinateCleaner’ (Zizka 
et al. 2019). We first retained only occurrences identified to the 
species level to prioritise accuracy in identification, then stan-
dardised species names following the World Register of Marine 
Species (WoRMS, 2025).

Filtering included removing all occurrences recorded before the 
year 1900 to ensure accurate identifications. To ensure a level 
of spatial accuracy, occurrences were filtered to include only 
those with coordinate precision less than 0.01° and occurrences 
where precision information was not available were excluded. 
Furthermore, occurrences were only included if the coordinate 
uncertainty was less than 10,000 m. Occurrences with coordi-
nate uncertainties of 301, 3036, 999 and 9999 m were removed, 
as these specific values often indicate systematic errors or place-
holders not based on actual measurements. Additionally, oc-
currences with zero values for either latitude or longitude were 
discarded. To further refine the dataset, country centroids within 
a 2 km buffer and capital centroids within a 2 km buffer around 
each occurrence were removed. All terrestrial coordinates were 
removed to focus on marine occurrences. Considering the inter-
tidal nature of many sea anemone lineages, we used the Natural 
Earth land shapefile to adjust the coastline inwards by a 10 km 
buffer to retain all coastal occurrence points. After these clean-
ing procedures, our final dataset comprised 247,542 occurrence 
data points.

2.2   |   Defining Species Incidences

To avoid the potential problem of underrepresentation of com-
mon species and overrepresentation of rare species, a possible re-
sult of the heterogenous nature of our raw occurrence sampling 
data, we converted the species occurrence records into species 
incidence data for downstream processing. We first transformed 
our occurrence data into species incidence data at the scale of 
approximately 2 km-by-2 km cells using the Behrmann projec-
tion. For generating our incidence-frequency data, we treated 
each grid cell as an ‘assemblage’ and each sub-grid cell as 
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a ‘sampling unit.’ We opt for use of the Behrmann projection 
following Kusumoto et al. 2023, favouring the equal-area pro-
jection to minimise area distortions in temperate and polar re-
gions, allowing for accurate comparisons across geographies. 
Sea anemones are cosmopolitan and exist in every marine en-
vironment and so have occurrence data for every latitude. We 
then define four coarser grids at 200 km-by-200 km, 400 km-
by-400 km, 600 km-by-600 km and 800 km-by-800 km resolu-
tion. To obtain reliable estimates of species diversity, we filtered 
grid cells with few occurrence records from analysis, removing 
cells if the observed number of species (Sobs) was < 2, the num-
ber of sub-gridded cells with at least one incidence (T) was < 3, 
or the total number of species incidences (U) was equal to the 
number of unique species (Q1—species that are each detected in 
only one sub-grid cell).

2.3   |   Diversity Estimation

We assessed the sample coverage and species diversities of 
our coarse grid cells (200 km-by-200 km, 400 km-by-400 km, 
600 km-by-600 km and 800 km-by-800 km) by using the 2 km-
by-2 km sub-grid cell as the fundamental unit for incidence fre-
quency. We calculated incidence-based species diversities, q = 0, 
1 and 2, corresponding to species richness, Shannon diversity 
and Simpson diversity, respectively, in each grid cell. The pa-
rameter ‘q’ determines the sensitivity to species incidence fre-
quencies. For the purposes of this study, we focus on species 
richness. Species richness (q = 0) counts the number of different 
species present in an assemblage, only accounting for number of 
species and not including abundance or evenness.

Empirical diversity estimates depend on a combination of sam-
pling effort and sample completeness, so we then estimated 
diversity using a combination of rarefaction and extrapolation 
based on our standardised sample completeness. We used the 
sample coverage in each coarse grid cell as a measure of sample 
completeness. Based on incidence data, sample coverage is the 
proportion of detected species occurrences relative to the total 
(detected and undetected) occurrences in that grid cell.

2.4   |   Sampling Coverage

To ensure fair comparisons of diversity across grid cells, we 
then standardised our species richness (q = 0) by sampling 
coverage (SC). This ensures comparability and reduces the ef-
fects introduced by uneven sampling effort and the tendency 
to overrepresent diversity at certain localities. The inherently 
uneven sampling efforts for sea anemones can lead to inflated 
diversity estimates in well-sampled areas, like the Pacific 
coast of the United States, and underestimation of diversity in 
poorly sampled areas, like Western Africa. We standardised 
by SC by first calculating seven different percentiles; 0.01, 
0.05, 0.10, 0.20, 0.30, 0.40, 0.50, then recalculating diversity 
estimates using the R package ‘iNEXT’ version 2.0.20 (Hseih 
et  al.  2020) at each of these values. Using an extremely low 
standard, such as an SC of 0.01, leads to far too few species in-
cluded at each grid cell, while using an SC too high, such as 1, 
can lead to a severe negative bias of true diversity. To mitigate 

these effects, we compared our observed species richness 
(obs.D0), and our SC standardised richness at 0.05 (SC2.D0), 
0.20 (SC4.D0) and 0.50 (SC7.D0). These three bracket a real-
istic range of sampling conditions while displaying enough 
variance to be informative and have been previously used in 
macroecological studies,

2.5   |   Biogeographical Patterns

We mapped sample coverage (SC) and diversity estimates at dif-
ferent spatial resolutions and examined geographical patterns. 
We then investigated patterns of diversity estimates across a 
latitudinal gradient with LOWESS (locally weighted scatterplot 
smoothing) curves, using both observed and extrapolated spe-
cies richness estimates at each of our four resolutions (800 km, 
600 km, 400 km, 200 km) for obs.D0, SC2.D0, SC4.D0 and 
SC7.D0.

3   |   Results

3.1   |   Global Sampling Coverage

Sampling completeness (measured here by sampling coverage or 
SC) was consistent across our four spatial resolutions, averaging 
0.85 (Figure 1). We recovered the highest SC at our finest resolu-
tion (SC = 0.861 at 200 km) and our lowest SC (0.830) at 400 km, 
with the intermediate value of 0.846 at 800 km. Observed SC was 
especially high along particular coastal areas and overlapped 
with some areas of higher observed species richness, such as 
Northern Europe and the Pacific coast of the United States. Our 
average SC value indicates a reasonably good representation 
of the diversity captured in our grids where samples occurred; 
however, there remain rare or elusive species not represented by 
this sampling.

3.2   |   Global Species Richness

Across resolutions, temperate areas in the Northern 
Hemisphere consistently emerge as centres of sea anemone 
species richness. At our coarsest resolutions 800 km and 
600 km (highest grid Sobs of 64 and 61, respectively), high-
est species richness was observed along the southern coast 
of California extending northward along the eastern Pacific 
coast, as well as in cells spanning the United Kingdom, 
Ireland, Denmark and Sweden. Finer resolutions 400 km and 
200 km (highest grid Sobs of 64 and 50, respectively) provided 
more granular detail: the southern California coast, in partic-
ular the Channel Islands, remained a notable hotspot, along 
with the northern Pacific coast and Salish sea. The United 
Kingdom and Ireland, especially the Celtic Sea, Irish Sea and 
English Channel, also exhibited high species richness. At our 
finest level of granularity (200 km), local hotspots became 
particularly evident in southern England, the San Francisco 
Bay and Monterey Bay areas and southeastern Sweden in the 
Kattegat Sea. The species richness estimates standardised 
for sampling completeness (Figures 1 and 2) closely matched 
observed patterns, with the fluctuations in species richness 
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aligning as anticipated based on the standardised percentile 
calculations.

3.3   |   Latitudinal Diversity Trends

The LOWESS curves for our finest-scale resolution at 200 km 
are the flattest, revealing the most noticeable peak in species 
richness between 40°–60° N and a slight increase around 40° S. 
This trend becomes more noticeable at increasing resolutions, 
while the peak shifts slightly south; our 400 km and 600 km res-
olutions both reveal more pronounced peaks at 40° North and 
South. Our coarsest resolution, 800 km grid, shows a peak in 
species richness between 30°–40° N and 40° S.

4   |   Discussion

The observed latitudinal patterns in species richness in sea 
anemones reveal a clear peak in temperate latitudes, although 
the latitude for the peak differs across scales. We find latitu-
dinal diversity gradients more pronounced at coarser spatial 
resolutions than our finer resolutions (Figure  3). At a 200 km 
resolution, the LOWESS curve for species richness is relatively 
flat, showing a noticeable peak around 40°–60° N and a subtler 
increase at about 40° S. At intermediate resolutions (400 km and 
600 km), these peaks become especially pronounced around 
40° N and 40° S, while at the coarsest resolution (800 km), the 
peak occurs between 30°–40° N and near 40° S. Taken together, 
these results reinforce the notion of an asymmetric bimodality 

FIGURE 1    |    Global maps of sampling coverage (SC) at four different spatial resolutions: 200 km, 400 km, 600 km and 800 km grid sizes.

FIGURE 2    |    Geographical patterns of sea anemone (Actiniaria) species richness (Hill's number order q = 0) at four different spatial resolutions 
(left to right: 200 km, 400 km, 600 km and 800 km grid cells). Species richness is estimated at four different sampling coverages (SC): Observed SC (top 
row), 5% percentile of SC values (second row), 20% percentile of SC values (third row) and 50% percentile of SC values (bottom row).
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in sea anemone diversity with preference for temperate environ-
ments, emphasise the scale-dependence of such patterns, and 
underscore how uneven sampling efforts in certain regions may 
affect the visibility of these peaks.

Although the temperate peaks appear robust, coverage-
standardisation partly addresses—but cannot fully elim-
inate—biases introduced by more intensive sampling in 
certain temperate zones, especially present in the Northern 
Hemisphere. Sea anemones have long been interpreted to have 
mid-latitudinal increases in species richness, a result initially 
demonstrated from a smaller observance record dataset of 
around 11,662 (Fautin et  al.  2013) and now reinforced by our 
study. Past studies have also noted that a higher proportion of sea 
anemone taxa follow bimodal distributions at family or genus 
levels (Rodríguez et al. 2009). More recent examinations of spe-
cies richness of diverse marine lineages at a global scale found 
this bimodality to be asymmetric, with a noticeable dip between 
10°–15° S (Chaudhary et al. 2016). Our findings are consistent 
with those observations, as we find asymmetric bimodality for 
sea anemones at most grid scales, although the exact latitudinal 
position of the peaks shifts slightly depending on resolution.

Viewed within the framework of the latitudinal diversity gradi-
ent (LDG), these results highlight a departure from the often-
assumed tropical peak. Sea anemones show a pattern that more 

closely aligns with what has been observed for other marine in-
vertebrates, such as spiny dogfish (Veríssimo et al. 2010) and co-
pepods (Havermans et al. 2013), in which richness is higher in 
mid-latitudes and dips near the equator. Multiple factors could 
underlie this phenomenon. For instance, the high species rich-
ness we consistently observe in rocky coastal habitats could be 
owed to habitat heterogeneity (Sanciangco et al. 2013). It is also 
possible that tropical underestimation arises from historically 
incomplete sampling (especially when compared with densely 
sampled regions such as northern Europe and the southern 
California coast), an issue that may be especially pronounced 
off the coasts of western Africa, certain parts of Southeast Asia 
and in the deep sea. By merging smaller-scale habitat hetero-
geneity into large grid cells, coarser resolution can artificially 
inflate species counts and mask local hotspots, whereas finer 
grids can reveal nuanced peaks but fail to capture less-sampled 
regions accurately.

Biodiversity estimation is an amalgamation of occurrence re-
cords, which are inherently reflective of sampling effort, sam-
pling completeness, true biodiversity and the reliability of the 
methods to estimate this biodiversity (Kusumoto et  al.  2020). 
Consequently, it is challenging to discern how much of these 
identified patterns are artefacts of sampling biases and meth-
odological limitations or reflect the actual distribution and di-
versity of their respective taxa. Menegotto and Rengel  (2018) 

FIGURE 3    |    Latitudinal patterns of sea anemone (Actiniaria) species richness (Hill number q = 0) at four different spatial resolutions: 800 km, 
600 km, 400 km and 200 km grid cell sizes. LOWESS curves are displayed for observed species richness (obs.D0), 5% percentile of SC values (SC2.D0), 
20% percentile of SC values (SC4.D0) and 50% percentile of SC values (SC7.D0).
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proposed that in some cases, this pattern may be an artefact of 
low sampling efforts in the tropics and could actually indicate a 
Wallacean Shortfall (sensu Lomolino 2004) rather than a latitu-
dinal gradient of species absences. Previous research in sclerac-
tinian distribution and diversity has found that while taxonomic 
errors (Linnaean shortfall) are significant, genus-level diversity 
estimates showed consistent diversity patterns across the data, 
indicating that observed biogeographical patterns of diversity 
were stable and less afflicted by potential errors in species-level 
taxonomy. Both Wallacean and Linnean shortfalls are possible 
confounding issues for understanding actiniarian biogeography 
and diversity.

In addition to biases in geographic coverage, variation also ex-
ists in sampling effort across depth, with the largest ecosystem 
on Earth, the deep pelagic ocean, understandably undersampled 
(Webb et al. 2010). In the marine realm, depth and distance from 
shore add an additional element to patterns of diversity. Previous 
research into the global species richness of brittle stars found 
richness in the deep-sea peaking at mid-to-high latitudes, unlike 
shallower regions (Woolley et al. 2016). Across the Tree of Life, 
sampling events are most numerous in mid-latitudes, mostly the 
Northern hemisphere and the fewest in equatorial regions. The 
increased concentration of sampling at mid-latitudes in both 
hemispheres is likely reflective of higher funding and prioritising 
of marine research by these countries (Mora et al. 2008).

The study of global trends of sea anemone diversity is hindered 
by several factors, and the reliance on occurrence data poses 
specific challenges. In our analysis, we used the two major bi-
ological occurrence databases GBIF and OBIS; however, there 
are other occurrence data sources not yet digitised and included 
in larger databases (Page et al. 2015). Furthermore, data assem-
bled from diverse sources may not be directly useful in elucidat-
ing distribution patterns, and errors could be attributable to the 
fact that sea anemones in some parts of the world are just poorly 
inventoried. Inventories in northern latitudes, particularly in 
the northern Atlantic and around the British Isles, are consid-
erably more complete compared to those in southern regions. 
Inventory completeness is variable by region, attributable to the 
stringency of collecting laws and permits. For example, much of 
the mid-African continent and India lack comprehensive repre-
sentation, which is not reflective of a lack of diversity in these 
areas. Further influencing the completeness of these invento-
ries is the lack of representation for difficult-to-sample environ-
ments, such as the deep sea. Previous studies have demonstrated 
high levels of endemism for deep-sea, polar and chemosynthetic 
environments (Rodríguez et al. 2007; Rodríguez and Daly 2010). 
The deep sea is the largest inhabitable environment on Earth; 
however, our basic knowledge of its biodiversity remains lim-
ited due to the logistical challenges of exploration. The absence 
of these data, which are likely to be significant for global di-
versity assessments, complicates our understanding of holistic 
diversity patterns.

Additionally, the comprehensiveness of the sea anemone in-
ventories along latitudinal gradients may be skewed by several 
factors. The number of species in each latitudinal band is not 
necessarily proportional to sea surface area and coastline length 
for that band. Respective sampling effort represents a significant 
potential bias, as expeditions and varied collection efforts are 

unavoidable when analysing such a diverse dataset. Uniformity 
in collections is further hindered by a predominance of inter-
tidal occurrence data compared to open ocean data. Although 
sea anemones often dominate certain intertidal environments 
and many lineages require hard substratum for anchorage, this 
bias does not reflect their overall distribution.

However, previous studies have demonstrated that while some 
taxa have biases in sampling records towards larger, more con-
spicuous individuals with larger geographical ranges; this may 
not be the case for sea anemones. Fautin et al. (2013) found 60% 
of species are known from only a single 10° band, indicating 
Actiniaria is not biased in favour of species with large geograph-
ical ranges. They further found that conspicuousness seems not 
to be a factor in sea anemones, owed to the occurrence repre-
sentation of many records for small burrowing species such as 
Triactis producta.

We mitigated much of this by converting raw occurrence data to 
incidence-based coverage (SC) and standardising our analyses 
at various sampling completeness thresholds. Following meth-
odologies by Kusumoto et  al.  (2020) and others, we assessed 
incidence-based sample coverage to ensure fairer comparisons 
across differently sampled regions; however, there is no way to 
entirely eliminate the effect of relative abundance from diver-
sity estimates (Roswell et al. 2021). Further, sea anemone tax-
onomy remains in flux; new species, synonymies and ongoing 
discoveries may continue to reshape the clade's overall diversity 
patterns. Standardisation in such a way allows for fairer com-
parisons of species diversity between areas with disparities in 
sampling effort. This reality underscores why the larger trend, 
rather than exact species counts, is often the most reliable signal 
for understanding global biogeographic patterns.

Overall, these results join a growing body of evidence that the 
once-canonical unimodal tropical peak does not encompass the 
diversity patterns of all marine taxa. Sea anemones, like other ma-
rine invertebrates, appear to show robust mid-latitude peaks that 
vary slightly with spatial scale, highlighting how a single global 
narrative for marine biodiversity can be incomplete. Ultimately, 
ongoing data collection and careful standardisation, coupled with 
deeper exploration of historically undersampled habitats, will be 
crucial in building a more precise understanding of sea anemone 
diversity and, by extension, overall marine biodiversity.

5   |   Conclusion

Species richness of sea anemones along latitudinal gradients 
demonstrates scale-dependence between coarse and fine reso-
lutions, highlighting gaps in our knowledge and methodological 
shortcomings of biodiversity estimates. Continuing data collec-
tion and thoughtful standardisation are vital to resolving the 
full picture of sea anemone diversity, and by extension, marine 
biodiversity as a whole. Targeted efforts in identified undersam-
pled regions will contribute to more robust diversity findings. 
As global ocean conditions continue to change through climate 
change, habitat destruction and pollution, a more nuanced un-
derstanding of global diversity gradients will be essential for 
understanding historical patterns of species diversity to better 
anticipate their changes.
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