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Abstract

Ecopath is mass-balance modeling approach that is widely used for incorporating ecosystem considerations into fisheries 
science. Up to now, users of Ecopath software who are constructing a model of a given area must carefully adjust input biomass, 
diets, and other parameters until the Ecopath parameterization is mass-balanced, a slow process leading to non-unique solutions. 
We present a new computer-automated iterative technique for mass-balancing Ecopath models which has the advantages of (1) 
reducing the lengthy process of and opportunity for encoding errors of the manual approach; (2) standardizing results for the same 
set of starting conditions; and (3) allowing exploration of alternative solutions, with consideration of the estimated confidence 
of each input parameter. Users can select random and/or gradient descent model perturbation of biomass and/or diet parameters, 
specify an objective (cost) function for optimization of the search, and modify decision logic, including simulated annealing. An 
objective function is defined to help target mass-balance solutions with minimum change to original input parameters. A Monte 
Carlo mode allows exploration of sensitivity to different starting conditions and random perturbations. The new procedure is 
implemented in the current version of the freely available Ecopath with Ecosim software (http://www.ecopath.org).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Based on an approach originally proposed by 
Polovina (1984), and further developed by Christensen 
and Pauly (1992a), the Ecopath approach relies on 
straightforward mass-balance constraints to define 
trophic fluxes between functional groups. This, and 
the existence of detailed manuals documenting the 
use of successive versions (Polovina and Ow, 1983; 
Christensen and Pauly, 1992b; Christensen et al.,
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2000; Christensen and Walters, 2004) have enabled 
the approach and its supporting software to find a wide 
dissemination as evidenced by close to two hundred 
published applications (see http://www.ecopath.org).

The recent addition of routines for simulating 
biomass change over time (Walters et al., 1997; 
Walters et al., 2000) and space (Walters et al., 1999) 
has increased the demand for reliable parameteriza­
tion of food webs constructed by Ecopath, an issue 
addressed through a quasi-Bayesian re-sampling tech­
nique (Christensen and Walters, 2004), and coded 
‘pedigrees,’ quantifying the uncertainty associated 
with Ecopath input (Pauly et al., 2000).

Here, we address an issue concerning the pa­
rameterization of Ecopath models, by providing an 
algorithm as an alternative to the informative, but
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subjective procedure so far involved in meeting the 
mass-balance requirements inherent in Ecopath. The 
new algorithm has been incorporated in the current 
version of the Ecopath with Ecosim software, freely 
available from http://www.ecopath.org.

In its simplest form, the master equation of Eco­
path defines the mass-balance between consumption, 
production, and net system exports over a given 
time period for each functional group {ij in an eco­
system:

ß ' ( D . EE ' = 7 ' + £ + ( ! ) DC/i (1)' j /

where Bj and Bj are biomasses (the latter pertaining to 
j ,  the consumers of i) ; PIB¡ is the production/biomass 
ratio, equivalent to total mortality under most circum­
stances (Allen, 1971: Mertz and Myers, 1998): EE,- is 
ecotrophic efficiency which is the fraction of produc­
tion (P = B(P/B)j that is consumed within, or caught 
from the system (by definition between 0 and 1): E is 
equal to the fisheries catch (i.e. Y = FB); QIBj is the 
food consumption per unit biomass of (j); and DC;v is 
the contribution of (ij to the diet of (ƒ), and the sum 
is over all predators (j). For simplicity, we have here 
excluded terms from the right hand side of Eq. (1) for 
biomass accumulation and migration in and out of the 
system.

Given appropriate input data, solving this system 
of linear equations is straightforward (Mackay, 1981). 
Once a solution is found, a quantified network of flows 
can be constructed from the biomass, production and 
consumption (Q = B (Q /B )) estimates, which can 
then be used to parameterize Ecosim and Ecospace 
models.

The problem, however, is that the estimates of 
biomass, P/B, QIB, and DC diet composition data 
available for any given system usually do not lead 
to estimates of EE constrained between 0 and 1, as 
required for mass-balance. Rather, some EE values 
will be estimated as exceeding unity, implying that 
predation and/or fisheries catches from the groups in 
question exceed biological production.

Balancing a model then consists of identifying such 
groups, and changing input values to Eq. (1) until the 
resulting EE satisfies 0 < EE < 1. In practice, this is 
usually achieved by modifying the diet composition 
of the ‘maximum predator’ of the most ‘unbalanced’

group (i.e. the predator having the greatest impact on 
the group with the highest EE), then solving Eq. (1) 
again, and identifying the next most unbalanced group, 
etc. until EE < 1 for all groups. The assumption here 
is that the fraction that a given group represents, on the 
average, in the diet of another one, is usually known 
with far less certainty than its biomass, which can be 
estimated directly for most groups, using various field 
methods. Best known, at least in principle, are the 
PI B  or QIB ratios, which are conservative, and largely 
predictable properties of animal species (Pauly, 1980: 
Palomares and Pauly, 1998).

This manual balancing procedure for Ecopath mod­
els, though so far, widely applied, has two several 
drawbacks:

• it is hard to teach and to learn, and some users never 
get the ‘hang’ of it: rather, they sometimes mod­
ify reliable inputs in their attempts to accommodate 
unreliable ones:

• it calls for knowledge and discipline to decide which 
changes to make and to keep track of the changes:

• the solutions reached are non-unique, and may not 
be reproducible.

A new automated parameter search procedure de­
scribed below addresses these problems. We stress 
though that the ‘manual’ balancing provides very 
important feedback to modelers, and that it should 
not be abandoned because of the option provided 
with the new ‘automatic’ routine. Gross errors due 
notably to unit conversion errors (which are very 
common as part of model construction), will not 
necessarily be picked-up by the automatic routine. 
Also, the manual mass-balance procedure can pro­
vide a structured approach to examine the data and 
ecological relationships of a model, and make mod­
elers reflect on the model definitions in a way that 
the automatic approach may well miss-out on. Why 
then have an automated approach at all? Notably, 
because it provides a well-structured way of getting 
from defined input data to a balanced model with 
clear-cut assumptions: given these data and assump­
tions, this is a physically possible mass-balance model 
with restricted changes to user input parameters, and 
how it is obtained is reproducible. The automatic 
mass-balance also facilitates database-driven model 
construction, a topic two of the authors are developing 
at present.

http://www.ecopath.org
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Fig. 1. Ecopath mass-balance automatic iterative feedback loop. Biomass and diets for unbalanced model are perturbed by small steps. 
Progress in reducing EE is monitored, along with a cost function measuring the amount of change to the model, are used to decide whether 
to accept or reject a step and when to exit the loop. Dotted lines indicate optional steps.

2. Methodology

Fig. 1 illustrates the software-controlled auto­
balancing algorithm. An initial Ecopath model is 
iteratively adjusted, via perturbations to the diet, DC, 
and biomass, B, terms, until a model with EE < 1 
for all species groups is obtained. At each iteration 
step, the ‘success’ of model adjustment is monitored 
by progress in reducing EE’s while keeping as low as 
possible the value of a cost function summarizing the

amount of change from the original model. The cost 
function is linked to the manner in which uncertainty 
is accounted for in Ecopath models.

2.1. Input parameter uncertainty and cost function 
design

Ecopath is designed such as to allow explicit con­
sideration of the uncertainty associated with input 
parameters. Specifically, users can either specify
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distributions (range, shape) around each input (B, PIB 
and QIB ratios, DC, etc.), or accept default distribu­
tion associated with ‘pedigrees’ expressed in qual­
itative terms. The probability distribution assumed 
for the confidence interval can be selected (typically 
Uniform or Gaussian).

The auto-balancing routine presented below relies 
on these confidence intervals to constrain the extent 
of parameter perturbations away from the original 
values. Thus, parameter adjustments are larger for 
poorly known parameters (wide confidence inter­
val), and conversely well-known parameters (narrow 
confidence interval) are allowed less adjustment.

An optimization search is generally guided by a 
cost function (or objective function), related to some 
measure of quality. We are looking for a model that 
achieves EE,- < 1 for all groups (r) but without exces­
sive changes to the DC, and B input parameters, partic­
ularly those with narrow confidence interval (i.e. those 
that have been estimated more reliably). In this initial 
version of the auto-mass balance routine we allow only 
DC and B  to be varied as these parameters are gener­
ally the most uncertain. However, we do, intend to in­
clude other parameters in later versions of the routine.

We choose to treat the EE < 1 objective as a ‘hard 
constraint’ for achieving mass-balance (either at each 
iteration step or as a final check for a balanced model) 
and minimize a cost function equal to the weighted 
Euclidean distance between the original and perturbed 
models:

Cost function

DC« -  DCpB -  Bf

where B'¡ is the adjusted biomass of (i), DCI 
adjusted diet component of (r) in the diet of (ƒ), Ub¡ are 
weights proportional to each B¡ uncertainty, and í/dc,- 
are weights proportional to the DC;v uncertainty (for 
example, the weights can be the standard deviation 
of the assumed uncertainty probability distribution for 
each parameter).

2.2. Model perturbation and optimization

At each iteration step, the model is perturbed by 
adjusting the biomass and diet components affecting

groups with EE > 1 (Fig. 1). Model perturbation, and 
identification of lower EE values may be performed 
in three different ways:
(1) Random lookup within confidence interval (no 

memory of current state).
(2) Random steps in the neighborhood of the current 

state.
(3) Gradient descent method.
Method (1) is similar to the Ecoranger routine of 
Ecopath (Christensen and Walters, 2004), except that 
we perturb only the parameters affecting groups with 
EE > 1 at each step, while Ecoranger changes all pa­
rameters at once. At each iteration step, the new model 
has no relation to the previous model step, except that 
other groups which do not consume the groups with 
EE > 1 are left untouched. This method is essentially 
an exhaustive random search of a pre defined param­
eter space at each step. The search space may be too 
large to obtain low cost balanced models in an accept­
able amount of computer time.

With method (2), parameters can be perturbed by a 
random amount in a small neighborhood surrounding 
the current parameter values. The decision logic can 
then choose to accept or reject the model at each step, 
depending on whether the objective function is moving 
in the desired direction. This method should have a 
faster convergence than method (1) but can get stuck at 
local minima or fail to converge, if the decision logic 
never accepts parameter perturbations causing worse 
values of the cost function.

Method (3) uses the 1st derivative of EE with re­
spect to the parameter to be perturbed (DC or QIB) 
to decide the direction and magnitude of perturba­
tion so as to move the model toward lower EE. This 
method will generally offer the fastest convergence to 
a mass-balance solution, but again, the solution may 
get stuck at a local minimum which may not be the 
lowest cost solution.

The auto balance routine allows methods (2) and 
(3) to be combined, i.e. the fast convergence behavior 
of gradient descent is combined with random neigh­
bourhood perturbations, to allow solutions other than 
the gradient descent local optimum.

The convergence behavior can be explored, and lo­
cal minima avoided, by:

• repeating iteration runs with randomly selected 
starting states (see below) :
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• varying perturbation step sizes;
• changing relative step size of random versus gradi­

ent descent perturbations;
• limiting perturbations to stay within the confidence 

intervals of the parameters (which may prevent con­
vergence) ;

• changing the decision logic to accept some param­
eter steps which may make the objective function 
worse, at least temporarily (see Section 2.3).

2.2.1. Gradient descent algorithm for calculating 
parameter changes

The primary objective of EE,- < 1 for all groups 
(i) can, e.g. be achieved through a directed gradi­
ent search procedure—the classic ‘hill-climbing’ tech­
nique (Gershenfeld, 1999). For our application, we 
choose a simple ‘local’ gradient search where param­
eters affecting each group with EE > 1 are iteratively 
adjusted in small steps in a direction determined by 
the negative gradient (first derivative) of the EE equa­
tion with respect to each adjusted parameter, so as to 
reduce EE.

For our purposes, the Ecopath master Eq. (1) can 
be rearranged so that EE is on the left side of the 
equation,

EE,- =
Y.jBj(Q/B)jüCß + yi

(3)

Restricting parameter changes to biomass and diet 
terms, we solve below for the appropriate gradient 
steps A B j  and ADC;,- to subtract from the current val­
ues at each iteration step. Taking the partial derivative 
of EE,- with respect to biomass Bj  we obtain:

SEEj  

SB i

(Q/BhDCii -EEj jP/Bh  
B i ( P / B ) i  

(Q/BhECjj  
B j ( P / B ) j

Typically the ‘self-predation’ term DC,-,- (e.g. adult 
fish eating juveniles of their own species for cases 
which are not split in ontogenic groups) is small, 
so A Bj is negative and EE,- reduces with increasing 
biomass B¡. For the case of predators j  ^  i, EE,- can 
be reduced by reducing the predator group (ƒ) biomass 
Bj  so that predator (ƒ) consumes less of group {!).

Similarly, taking the partial derivative of EE,- with 
respect to diet DC;,- we obtain:

SEE,- B j ( Q / B ) j

SDCj, [Bj (P/ B) j ]
for all living groups j (6)

Therefore, a decrease in EE,- by amount AEE,- is 
accomplished by decreasing predator (ƒ) diet DC;,- by:

AEE/B,-(P/B)/
ADC/,- = (7)

The above formulation is appropriate for living 
groups (r) and (ƒ). Detritus groups have different 
flow equations (see Kavanagh, 2002, for the gradi­
ent step derivation for detritus groups used in the 
present approach). We have noticed that balancing 
detritus groups can conflict with efforts to balance 
living groups, which illustrates the connected nature 
of ecological networks helps constraint the possible 
parameter space.

2.2.2. Step size 
The size of the adjustment steps should be small 

enough not to miss optimal solutions, yet large enough 
that the search is not unduly time-consuming. The gra­
dient descent adjustment terms above are calculated 
based on the excess EE, AEE,- =  EE, —1. The steps are

for group j  = i

for predator groups j  ^  i
(4)

Solving for 5Bj  and switching from 5 indicating 
infinitesimally small differential steps to A  indicating 
discrete steps A,

A B j  =

AEE iBj iP/Bh
( Q/ BhECu- EEdP/ Bh  
AEE ¡BdP/Bh

( Q / B ) j D C ß

for case j  = i

for predators j  ^  i
(5)



146 P. Kavanagh et al. /Ecological Modelling 172 (2004) 141-149

limited to a maximum step size specified by the user 
as some percentage of the original parameter value. 
As AEE; declines, the steps become finer, so as not to 
overstep the solution. The step size for random neigh­
borhood perturbations is set by specifying a standard 
deviation of the additive zero mean Gaussian random 
noise (expressed as a percentage of the original pa­
rameter value).

2.2.3. Diet redistribution and renormalization
If the diet for predator (j) of prey group (i) is per­

turbed by ADC;;, the other non-zero prey of predator 
(J) are adjusted by an amount,

so that the diet sum is maintained. That is, the diet 
perturbation is redistributed in proportion to the orig­
inal diet component size (which may cause the EE of 
other groups to increase).

2.2.4. Order o f parameter adjustment
Because changes designed to reduce the EE of a 

group may increase that of others, convergence to a 
system with EE < 1 for all groups will not necessar­
ily be achieved by changing the parameters for one 
group at a time. Indeed, the routine may enter into an 
oscillatory loop from which it cannot escape. Coun­
termeasures implemented in the approach are,

• perturb DC;-; and B j  and for all predators (j) of 
group (i);

• perturb DC;-; and Bj  only  for the predator with the 
maximum impact on (i) ;

• perturb DC;-; and Bj  impacting all groups (r) with 
EE’s exceeding unity;

• perturb DC;-; and Bj  impacting only  the highest EE 
group.

Typically, convergence is more rapid for the first 
and third of these strategies.

Another strategy is to constrain predator biomass 
changes to groups with EE < 1, so as to prevent further 
increases to EE for those groups.

2.3. Decision logic

At each iteration step, the auto-balancing algorithm 
chooses whether to accept or reject the change, de­

pending on the progress in EE reduction and the pa­
rameter change cost function.

The simplest decision logic is to accept all steps of 
an iteration, regardless of the outcome, and to keep it 
going until the final objective (all EE < 1) is reached. 
This may be adequate for the local gradient descent 
directed method, but may not converge if the needs 
of each group conflict with each other. With random 
perturbations, this method can take a long time to con­
verge depending on the size of the perturbations.

Another decision strategy is to accept only steps that 
lower the EE of the group for which the gradient steps 
are calculated. This method is not guaranteed to con­
verge, as it focuses on locally optimal steps, ignoring 
a possible better solution obtained by locally higher 
cost but globally lower cost (better economy may be 
achieved in the long run by selecting higher cost steps).

To avoid local minima, we can instead accept only 
steps that lower a global objective equal to the sum of 
excess EE’s. Again, convergence is not guaranteed, 
as the adjustments for different groups my conflict. 
Adding random noise perturbations can sometimes 
help.

In the above, we are ignoring the parameter change 
cost in the search. The decision logic can be modified 
so that the conflicting goals of both minimizing the ex­
cess EE sum and the parameter change are considered 
in the decision. Alternatively, one can constrain the 
parameter adjustments to specified uncertainty limits 
and then proceed with reducing the EE excess only.

2.3.1. Step reversal
If a step is rejected, the parameter values backtrack 

to the value before the step. A variation to the decision 
logic is to reverse the parameter step sign to see if a 
better outcome is obtained.

2.3.2. Adaptation (gear-shifting)
Iterative optimization algorithms can be improved 

(or perhaps needlessly complicated) by using the ob­
jective function progress (or lack thereof) as a crite­
rion for adapting the perturbation step size and the 
decision logic.

For the auto-balancing routine presented here, any 
such adaptation is ‘manual’: the user can run suc­
cessive iteration runs starting with the end values of 
the previous iteration run. The parameters for each 
run can be adjusted to try to improve the final cost
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profiles. Successive runs can be either run one by 
one, or in a batch Monte Carlo mode.

2.3.3. Simulated annealing
Simulated Annealing is a technique where some 

higher cost steps are accepted with some probability, 
which can be varied throughout the iteration, either 
in a pre defined or data adaptive method (Dowsland, 
1993; Press et al., 1994; Gershenfeld, 1999). Given 
cost function J„ at iteration (n) then the decision logic 
is to accept the step if A J  < 0 (lower cost) where 
A J  = If A J  > 0 (higher cost) then the step
is accepted with probability P = e~AJ^T”, where T„ is 
a user-defined ‘annealing temperature’. The higher the 
probability, the higher the chance of accepting a worse 
cost iteration step, but this may be what is needed to 
avoid local minima.

When beginning a search, the system is allowed 
high probabilities of accepting a larger portion of steps

with higher cost. Later, as the final objective is ap­
proached, the system is made to accept only lower 
probabilities. We have implemented only a very sim­
ple linear annealing schedule where the ‘temperature’ 
T„ is changed linearly between a start and finish tem­
perature over the iteration period. The probability for 
accepting step {n) is calculated as P„ = e~AJ^T”, so 
the higher temperature T„ the greater the chance of ac­
cepting a higher cost step A J. It is usually best to start 
with a high temperature (P„ high) and end, hopefully 
near convergence, with a low temperature (P„ low).

3. Application and discussion

Fig. 2 illustrates a typical iteration history for 
the auto-balancing of an Ecopath model for the 
Newfoundland-Labrador shelf (Bundy et al., 2000). 
The default gradient descent method was used, with
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Fig. 2. Example auto mass-balancing for Ecopath model. Begins with an unbalanced Ecopath model for the Newfoundland-Labrador shelf 
(Bundy et al., 2000) with 12 out of 31 groups with EE > 1. Iteration history is shown for a gradient descent search accepting steps with 
reduced sum of EE over all groups (a) number of groups with EE > 1 versus iteration number, (b) maximum EE at each iteration step, and 
(c) overall cost of balancing expressed as the Euclidean sum of the root mean square changes in the biomass B  and diet DC parameters 
with respect to assumed ±20% confidence intervals.
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steps limited to 10% of the original B  and DC pa­
rameter values and steps accepted which reduce the 
total sum of EE excess. The balanced model is quite 
different from the model defined by the raw inputs: 
biomass values changed up to 100% and diet fractions 
by up to 41% of their original values.

The order of parameter adjustment, noise perturba­
tion, limits to confidence intervals, and decision logic 
were modified, to see if it was possible to balance 
the model with less change from the original pa­
rameter settings. In most cases, the gradient descent 
method achieved the fastest convergence compared 
to random perturbations, and the smallest differences 
between original and final values of the DC and B. 
Simulated annealing often does not improve on the 
gradient descent solution. Moreover, constraining 
the gradient descent parameter adjustments to some 
percentage of the confidence intervals was better 
at finding lower cost solutions than were repeated 
random runs. The fully random parameter selection 
(not in the neighborhood of last step) was found to 
have least chance of converging to a solution with 
all EE < 1.

We find that balancing can be difficult to achieve 
for some models, probably because the needs of each 
group conflict with others. In these cases adding ran­
dom noise and using simulated annealing can assist in 
the balancing and lead to improved results.

We intend to follow up on this research, notably by 
allowing parameters other than the diet compositions 
and the biomasses to be adjusted, by offering various 
additional constraints to acceptable solutions (e.g. 
0.1 < P/Q < 0.3, respiration > 0, or even Ecosim 
runs with pre defined features), and by incorporating 
fuzzy logic instead of formal confidence intervals to 
describe the uncertainty inherent in certain data sets, 
notably the diet composition in FishBase (Froese and 
Pauly, 2000), a major data source of parameteriza­
tion of Ecopath models. We also invite researchers 
working with EwE to participate in the further devel­
opment of the approach presented here, as well as for 
EwE in general.
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