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Abstract

The existence o f  em pty envelope excursions (EEE) brings error to the envelope approach o f  wave group statistics, which 
identifies w ave group by envelope upcrossing o f  a critical level. A  group num ber correction scheme is suggested in this paper to 
exclude EEE from  w ave group statistics. To this end, the D itlevson and Lindgren [J. Sound Vib. 122 (1988) 571] theory about 
the fraction o f  em pty excursion envelopes (FEEE) is exam ined to see i f  it fits for ocean waves. The sea waves are sim ulated 
w ith M onte Carlo m ethod and w ith P-M  and JONSW AP spectrums. The values o f  FEEE o f  the sim ulated waves are 
investigated and com pared w ith the theory o f  D itlevson and Lindgren. The com parison shows that, at the second-order 
approxim ation, theoretical predictions o f  FEEE are close to those derived from  simulations. This approxim ate analytical 
expression o f  FEEE is then em ployed to form  a group num ber correction scheme. Com parisons betw een num erical and 
theoretical results o f  w ave group properties show that this correction scheme is quite effective.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Wave grouping is an important behavior of ocean 
waves, especially of swells. It is known to play a 
principal part in a multitude o f coastal and ocean 
engineering problems. The statistical properties about 
wave groups are of interest, among them are the mean 
run length H  and the mean group length G. The run 
length is defined as the number of waves in a high run 
while the group length is defined as the number of 
waves between the beginnings of two successive high
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run. There are mainly two approaches to the analysis of 
these statistical properties. One may be referred to as 
the wave envelope approach, in which these properties 
are studied based on the envelope of wave elevation, as 
discussed by Ewing (1973), Vanmarcke (1975), Goda 
(1976), Longuet-Higgins (1984), Ochi and Sahinoglou 
(1989), Masson and Chandler (1993) among others. 
The other one may be referred to as the Markov chain 
method, in which the sequences of wave heights are 
treated as Markov chain, as discussed by Kimura 
(1980), Longuet-Higgins (1984), Battjes and van 
V ledder (1984), Dawson et al. (1996), Dawson 
(1997) among others.

The mean run length and mean group length 
derived from continuous wave envelope are different
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from the commonly used parameters based on the 
series o f discrete wave heights. In order to make the 
envelope approach adequately model group statistics, 
discrete correction scheme is needed to compensate the 
difference. Vanmarcke (1975), Goda (1976) and Lon­
guet-Higgins (1984) each suggested a discrete correc­
tion scheme. In Vanmarcke (1975 ) and Goda (1976), it 
is assumed that an envelope group with i< H < (i+  1), 
where z = 0, 1, 2, 3 . . .  corresponds to a run length j =  i 
or j  — i + l  with probability / '-  1 l l o x l l  i. Thus the 
mean number o f waves per group can be estimated as

i= 1
(a¿i +  eta) i

^ ( a n +  oca)
( 1)

with

a¿i =  

and

i  {H -  i + \)P{H )áH  
Ji-i

/
Z+l

( i + l - H ) P ( H ) á H

(2 )

(3)

where P(H) is the probability that a group be larger 
than H, which is approximated by a Poisson distribu­
tion. These assumptions lead to

j  =  "¡ 7777 (4)1 -  e~l!H

In Longuet-Higgins (1984), it is assumed that the 
probability that a high ran has a integer ran length j  >0 
is proportional to /^ |j^ |p (L 7 )d //. With P(H) approx­
imated by a Poisson distribution and truncated at 
H — 1/2, the following relationship is obtained,

j  = H +  0.5 (5)

Although these correction schemes achieved some 
success, Elgar et al. (1984) and Masson and Chandler 
(1993) found that (1) these authors had employed 
incorrect function o f P(H)for narrow spectra, hence 
yield incorrect results for narrow spectra waves and 
(2) for / /  • oo,H  and j  should be identical ( / /  • j) , in 
contrast with Eq. (5).

For a given wave record (sufficiently long), the 
mean ran length H  and the mean group length G o f it

may be interpreted as the ratio N/Ng and NmñJ N g, 
respectively, where Aniax is the number o f all the 
waves, N  is the number of the waves that exceed the 
critical level and N g the number o f wave groups. In the 
envelope approach, the number o f wave groups is 
represented by the number o f envelope upcrossings 
Nu. However, the two are usually not identical. From 
this point o f view, the main error in estimating H  and G 
through envelope approach arises from taking Nu to be 
Ng. In order to improve the prediction o f wave group 
statistics, a group number correction scheme is needed 
to exclude those upcrossings that do not correspond to 
real high rans. Vanmarcke (1975), Goda (1976) and 
Longuet-Higgins (1984) among others noted the exis­
tence o f such envelope excursions above a critical 
level that without there being any upcrossings o f the 
original processes during the time of these exclusions, 
as shown in Fig. 1. These envelope exclusions are 
named empty envelope exclusions (EEE) by Ditlevson 
and Lindgren (1988 ). Given the existence o f EEE, the 
group number shall be /Vg=(l — FEEE)V, where the 
FEEE (fraction o f empty exclusion envelopes) means 
the proportion o f EEE in the number o f wave envelope 
exclusions o f a given critical level. In Longuet-Hig­
gins (1984), those envelope exclusions with ran length 
less than 1/2 are taken to be EEEs. This assumption 
corresponds to FEEE = j ( 2P (H )d H . In Vanmarcke 
(1975) and Goda (1976), the probability that an 
envelope exclusion with a ran length / /  < 1 be associ­
ated w ith an EEE is assum ed to be 1 —H  and

1.5
EEE

g 0.5

-1.5,

time

Fig. 1. An example of empty excursion envelope. The straight line 
herein represents a critical level.
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FEEE = 1 —an.  An alternative analytical expression 
for FEEE was derived by Ditlevson and Lindgren 
(1988). They evaluated FEEE by use o f the Slepian 
model process method. The formula (Eq. (9)) in the 
next section of this paper obtained by them is an 
approximation that improves the assessments due to 
Vanmarcke (1975) and Longuet-Higgins (1984). 
Lindgren (1989) arrived at the same conclusion as 
Ditlevson and Lindgren through a simpler way.

In this paper, the Ditlevson and Lindgren (DL) 
formulae at different order o f approximation will be 
examined to see if  they fit the ocean waves well. For 
this aim, the ocean waves are simulated with Monte 
Carlo method using Longuet-Higgins linear wave 
model (see, for instance, Longuet-Higgins, 1984) 
together with available wave spectrums, and the 
FEEEs of the simulated waves are investigated and 
compared with DL theory. Comparison shows that the 
formula corresponding to second order approximation 
is suitable. This formula is then employed to improve 
the prediction o f wave group statistics.

It is worth noting that, besides EEE, the splitting 
phenomena (Masson and Chandler, 1993) also con­
tributes to the difference between N g and Nu. How­
ever, this effect is not considered in this paper. 
Further work shall be done in the future to know 
how often the splitting occius and to take this into 
the group number correction scheme. Another thing 
shall be noted is that, in this paper, the linear wave 
model (Eq. (6)) is used in numerical simulation. 
Although the sea waves are generally nonlinear, 
Elgar et al. (1984) demonstrated that the statistical 
characteristics o f wave groupiness derived (based on 
discrete counting) from linear simulations of ocean 
waves agree well with field data except for the very 
shallow water case. In this paper, we consider only 
the deepwater case. Therefore, it is reasonable to 
assume that the statistical characteristics derived 
from simulated waves represent those o f the real 
sea.

2. The FEEE of ocean waves

2.1. Wave envelope definition and DL theory

In order to facilitate the subsequent analysis, the 
Longuet-Higgins (1984) wave envelope definition

and DL theory are summarized in this section. 
The Longuet-Higgins model for sea siuface eleva­
tion process Ç(t) is,

oo

C(t) = ^ 2  c„cos(co„t +  £„), (6)
«=0

where to„ are angular frequencies, e„ are random 
phases distributed uniformly over [0, 27c], and the 
amplitudes c„ are such that

= S(a>)da>. (7)
dm

Here S(co) is the power spectra o f process fit). The 
envelope process o f Ç(t) denoted by a real function 
p(t ) is defined by

oo

=  ^c„ex p { /[(co  -  ci)t)t +  <?„]}, (8)
n= 0

where fj>(t) is a phase function, co is an average 
angular frequency defined as d>~ m pup,, mt is the 
zth order spectral moment, wz¿ =  /o°m!5'(m)dm. In 
the wave envelope theory, it is assumed that pit) 
corresponds to the continuous change o f  wave 
amplitude.

Suppose that the process fit) is a stationary and 
ergodic Gaussian process, then we can apply DL 
theory to it. In DL theory, the linear regression 
method is employed to estimate the conditional mean 
of the processes p(t) and (fit) given that the sample 
path at time t — 0 upcrosses the critical level pin) 
with (/>(0) = 0 and with given time derivatives p(0) 
and <f>(0). The two conditional mean processes 
shortly before and after the time t — 0 are represented 
by their Taylor expansions. The coefficients of the 
terms o f  order higher than 1 are all estimated 
through the regression method and expressed in 
terms of p(0), (ƒ>(0), (>(()). cf>(0) Therefore, the higher 
order approximations of the two conditional mean 
processes are not necessarily more acciuate than the 
lower order ones. By comparing their theory with 
numerical simulations o f random waves, Ditlevson 
and Lindgren found that the second order approxi­
mation worked well on the considered envelope 
problem. In the next section, this approximation will 
be found applicable to ocean waves too. The value
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of FEEE corresponding to this approximation, which 
is denoted by r, is

r(u, V, s =
; ( v/ i+e2/4+e/2)

, J u in )
y  l+ e2/4 —e/2 j

<I>(v k ( î c — t f + e û t ] ) / u ) — 1 /21 —\f2n
- eut]) fît

dz/

(9)

where <P(x) is the standard error fonction, « — u/in(l is 
the dimensionless critical level, £ and v are the 
spectra skewness and bandwidth parameter separate-

i /o   i 1 /2   3 /2ly, v = /i2 nii , z = ß 3,nio /z2 , /«,- is the /tli order
spectral moment about the mean frequency /q =  ƒ„' 
(co — (dys(co)dco. For v<0.4 and 1, a close 
approximation to r(i7, v, s) is

r(û, v, s) = r(ü , v, 0)

^(w) - 1 1-1 <p(ü)
( 10)

where cp(x) is the standard normal distribution func­
tion.

2.2. Ocean wave simulation and statistical results o f  
FEEE

We simulate sea waves with P-M and JONSWAP 
spectrum as target spectrums. The two spectrums, 
denoted by .S'[>_M(w) and S ¡(to) are, respectively

*Sp-m(®) =  ctg2(o 5exp 

and

S]((o) =  ag2m_5exp

5 /m o \ 4' 
4 V co ( H )

5 /COo \ 4' 

4 W o

exp ( to—to0 )2

( 12)

where a is the scale coefficient, coo is the peak 
frequency, y is the peak-enhanced factor ranging from

1.5 to 6.0 and a the peak-shape parameter which 
satisfies

a =  0.07, co<co0; =  0.09, co > co0 (13)

The JONSWAP spectra with different values o f y 
is used as target spectrum. Following Longuet-Hig­
gins (1984), the spectrums are truncated in the sim­
ulation at upper and lower cut-offs 1.5co0 and O.5co0- 
The simulation is done by use of Monte Carlo method 
and according to Eqs. (6)-(8). The random phase, 
which is assumed to be distributed uniformly within 
[0, 27c], are generated by the random number gener­
ating program which is incorporated in the software 
Matlab. The time step is set to be At = 7i/(10m0) and 
the overall time length is set to be 2n x 1 (Tw,, 1. The 
number o f random phase is IO5, which is sufficiently 
large for the simulation to be adequate for wave group 
statistics (Tucker et al., 1984; Eiger et al., 1985). For 
each target spectrum, the simulation is repeated for 10 
times and the value o f FEEE, as well as wave group 
param eters , is ob tained  as the m eans o f  the 
corresponding measurements o f the 10 processes. 
For two different critical levels, « =  \ j n / 2  and 
z/ = 2, results o f FEEE measured from these simulated 
processes rs are listed in Table 1 together with 
corresponding theoretical results rt that are calculated 
by Eq. (9). Table 1 shows that Eq. (9) predicts FEEE 
low er than sim ulated results. The m ean error 
£■[ I /-s — /'t |]  is 2.11% for û = \ J 7c/2 and 2.73% for 
z/ = 2. These errors will not cause much difference in 
group number correction. The third order approxima­
tion o f FEEE o f DL theory is also tested. Comparison 
shows that this approximation gives significantly 
larger values o f FEEE than simulations. Therefore, 
we take Eq. (9) to represent the FEEE o f ocean 
waves.

Table 1
Comparison between simulated and theoretical results of FEEE

Target spectrum U y f ï t f ï . ü  = 2

n  (%) Z's ( % ) n  (%) Z's ( % )

P-M spectra 4.14 6.46 12.78 16.23
JONSWAP spectra y = 1.5 4.42 6.61 12.90 15.65

y = 3.0 5.18 7.06 13.02 15.07
y = 4.5 5.01 7.24 12.74 15.20
y = 6.0 5.14 7.54 11.82 14.24
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3. The improvement of wave group statistics

For a given critical level u the numbers o f upcross­
ings per unit time by wave elevation ((/) and its 
envelope p(t) are, respectively (Longuet-Higgins, 
1984)

N  = (2n ) 1(m2/m 0)1/2exp(—ir /2 m 0) 

Nu =  (1íí2/27i)1/2z//(íí0e x p ( -z r /2 1íí0)

(14)

(15)

Based on these equations, Longuet-Higgins (1984) 
gave the following results:

(1) The mean distance between the beginnings o f two 
successive wave groups, IL, is

h 1 /N u

(2) The mean wave group length, GL is 

G \  =  / [ . . V i n a x

(16)

(17)

tion. We can see that the corrected formulae show 
better consistency with simulated results. Similar 
work may be done towards the mean number o f waves 
in a wave group. We omit it for simplicity.

Eq. (19) has avoided the illegitimacy o f Eq. (18) 
mentioned above. Numerical calculation shows that 
for finite magnitudes o f ii, the values o f H c are always 
bigger than 1. For the infinite value o f ii, ii ■ >o, it is 
easy to show that H c > 1 still persists. For sea waves 
after band-limited filtering, the spectra widths usually 
satisfy v<0.4. So when ù -'>\, the value o f FEEE can 
be approximated by Eq. (10). Using the well known 
approximation (e.g. Feller, 1968)

(x) =  1
1

\/27L
- é T ^ l + O O r 1)],

we easily get

lim H q = \ / 1 +  v2>  1.
U — > oo

(20)

(21)

(3) The mean run length, ll¡ , is

=  i _l V , 2 u +
2 nJ  v

(18)

From Eq. (18) we know that, unless for the case 
v —> 0, the value o f II ¡ can be less than 1 as the critical 
level u is high enough, and furthermore, íl¡ * 0 as 
u —y oo. These results are illogical and should be 
remedied by taking (1 —r)Nn rather than Nn as the 
number o f wave groups. Therefore, Eqs. (16)—( 18) 
should be corrected to become

lc = 1 — r 1 — r
HlH c =

1 — r
(19)

For those simulated ocean waves discussed in the 
preceding section, wave group characteristics are 
measured based on discrete wave heights. Compare 
Eq. (16) and Eq. (19) with these simulations, it is 
found that the mean relative error E [ \ HS — IÍ¡ \ /Hs] is 
4% for û =  \J n /2  and 13% for z7 = 2, whereas 
E[ I — H c I /Hs] is 1.5% for both critical levels. 
Another comparison is made among theoretical pre­
diction o f J¡ , /c and simulations. The relative differ­
ence is 10% for ii = s / n j l  and 15% for ii = 2 before 
correction and 5% for both critical levels after correc-

4. Conclusions

In this paper, a group number correction scheme is 
introduced to exclude EEE from wave group statistics. 
For this aim, the validity of DL theory to sea waves is 
examined through comparing it with simulated sea 
waves. The sea waves are represented by Longuet- 
Higgins wave model together with the JONSWAP or 
P-M spectrum and are simulated with Monte Carlo 
method. The FEEE o f the simulated waves is inves­
tigated and compared with DL theory. The compari­
son shows that Eq. (9) is applicable to sea waves. This 
equation is then used to improve the wave group 
statistics. Comparisons between simulated and theo­
retical results o f statistical characteristics o f wave 
groupiness show that the correction is effective, es­
pecially for high critical levels. Besides that, the 
corrected formulae have the following advantages:

(1 ) The values o f the mean number o f waves in a high 
run become never less than 1.

(2 ) Since FEEE increases rapidly with the broadening 
of spectral width and increasing of the critical 
level, the former theory are not able to give 
accurate predictions for not very narrow spectrum 
and high critical level. The group num ber
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correction scheme has reduced the error resulted 
by EEE, hence broaden the applicability o f the 
envelope approach.

(3 ) In the former theory, the characteristics I¡, G l and 
H l all depend only on the spectral width v at given 
dimensionless critical level ii. But physically they 
should also depend on other parameters character­
izing spectral distribution, say, the spectral skew­
ness, etc. Spectral skewness did appear in Eq. 
(19).
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