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T ota l biom ass and biom ass o f  large taxonom ic groups (polychaetes, molluscs, crus
taceans, echinoderm s) an d  species diversity o f  the m acrofauna were determ ined for 
alm ost 200 N orth  Sea sta tions sam pled synoptically by seven vessels during  Spring 1986 
and for 120 add itional sta tions sam pled in earlier years by the M arine L abora to ry  in 
A berdeen. There exists a  clear and  significant decreasing trend  in biom ass with latitude, 
bo th  in to tal biom ass and for the different taxonom ic groups. A part from  latitude, 
sediment com position  and  chlorophyll a content o f  the sediment also infuence to tal 
bi om ass and biom ass o f  m ost groups sign ificantly. Bi om ass increases consisten tly i n finer 
sedim ents and sedim ents w ith a higher chlorophyll a  con ten t. T he same trends are found 
for the results w ithin laboratories. Some in teraction  exists, indicating weak laboratory  
and zonal effects. D iversity, as m easured by H ill’s diversity index N ¡ =  (exp H ') show s a 
clear and significant trend with latitude. Tow ards the no rth  o f  the N orth  Sea diversity 
increases considerably. T he trend is also found for laboratories separately and is every
where equally strong. A lso longitude and depth  show  an effect on diversity. Sediment 
variables have no clear influence on diversity. O ther diversity m easures show the same 
trend bu t are m ore variable than  N ,.  T o ta l density tends to  increase tow ards the north , 
but sedim ent related variables have a  larger influence. M ean individual weight becomes 
considerably sm aller tow ards the  northern  p a rt o f  the  N orth  Sea.
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Introduction

Macrobenthos o f the North Sea has been the subject 
o f investigation since the early years o f  the century, 
when Gilson (1907) and Petersen (1914) studied Belgian 
and Danish coastal waters respectively. The studies o f  
Petersen have had an especially important impact on 
marine ecology in general, mainly through the introduc
tion o f the concept o f  marine communities. This concept 
has found wide application in ecological monitoring. 
The fact that spatially coherent species assemblages can 
be delimited using objective methods has proved to be

o f great significance in monitoring the impact on the 
sedimentary environment o f  human activities through 
pollution by oil and sewage, dredging, beam trawling 
and sand and gravel exploitation. Whether these 
species assemblages are structured through species inter
actions or by common environmental requirements has 
been the subject o f  a long and intense debate, but is 
immaterial in the context o f monitoring. The question 
that arises is whether such patterns are sufficiently 
constant to serve as yardsticks against which the mag
nitude and sign o f changes can be evaluated. However, 
elucidation o f the causal factors will strengthen the
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explanatory power o f these synecological, multivariate 
analyses.

Besides changes in species assemblages, human activity 
also causes changes in other community attributes such as 
density, biomass and diversity. An intermediate disturb
ance seems to raise both biomass (e.g. Beukema & Cadée, 
1986; Cederwall & Elmgren, 1980) and diversity (e.g. 
Lanrbshead, 1986; Pearson et al., 1983). As the magnitude 
o f the disturbance further increases, dramatic changes in 
the benthos may occur in which species diversity decreases 
but abundance o f smaller species increases, until with still 
further increasing disturbance a total collapse occurs (e.g. 
Pearson & Rosenberg, 1978; Rosenberg, 1985; Niermann 
et al., 1990). Monitoring the benthos gives a direct way of 
quantifying these effects.

Changes in benthic communities may occur on differ
ent spatial (and temporal) scales, perhaps varying from 
one to hundreds o f kilometres, and may be anthropogenic 
or due to natural causes. In the marine environment 
changes due to human activity are in most cases restricted 
to spatial scales that are much smaller than those dealt 
with in this study, i.e. the whole o f the North Sea. If 
patterns in species distribution and community attributes 
exist on these scales, they are most likely linked with natu
ral processes. The measurement o f benthic abundance 
and biomass is also important for more fundamental 
studies o f  energy flow through ecosystems. A direct link 
between surface primary production and benthic metab
olism in shallow' water (Hargrave, 1973) and between 
the proportion o f  primary produced organic matter 
reaching the sea floor and depth (Suess, 1980) is now well 
documented.

This paper describes patterns in biomass, density and 
diversity o f the macrobenthic infauna o f  the whole North 
Sea with a characteristic length scale o f the order o f  tens o f  
hundreds o f kilometres. Kiinitzer et al. (in press) describe 
the faunal assemblages from the same samples and both 
papers should be consulted together.

M aterials and m ethods

Sampling

The present results are part o f the North Sea Benthos 
Survey executed in April-M ay 1986 when 197 stations 
were sampled covering the ICES grid from 5 l°N  to 58°N 
and from 2"30'W to 8°l5'E. At each o f these stations five 
box cores if possible, but sometimes Van Veen grabs, were 
taken. The complete list o f replicates, dates, samples and 
stations has been reported to ICES (Anonymous, 1986) 
and is available from the first author on request. Most 
o f the stations were analysed for macrofauna biomass, 
density and species composition, for mciofauna density 
and copepod species composition, for sediment grain size 
analysis, protein content, plant pigment content, organic

matter and a series o f  heavy metals. Most o f these data are 
published elsewhere in this volume.

The data from the northern North Sea have been gath
ered during eight cruises from 1980 to 1985, always in 
spring or early summer (Basford & Eleftheriou, 1988; 
Basford et al., 1989; Eleftheriou & Basford. 1989). The 
area covered extends between 56°l5'N and 60°45'N and 
3°30'W and 7C30'E. A total o f 119 stations were sampled 
for macrofauna (Basford et al., 1990).

The data presented here are based on 175 stations 
sampled o f the ICES North Sea Benthos Survey (48 o f  
them sampled by two different laboratories), and 61 
stations o f  the northern North Sea, viz. those stations 
lying on an extrapolated ICES grid (seven o f them over
lapping with ICES stations). Thus, total density, total 
biomass and diversity has been determined for 229 
stations. On stations sampled twice, the average o f  the 
values o f  the two laboratories was used.

Intercalibration

Tw'o intercalibration exercises have been performed, the 
results o f both have been presented to ICES (Heip et al., 
1985; Duineveld & Witte, 1987) and will be briefly 
repeated here.

The first intercalibration exercise aimed at inter- 
comparison o f sampling gear and processing methods 
(sieving, washing, fixation etc.). Samples were taken at 
two stations. Molengat (53"01 .S'lN and 4'41.4'E, depth 
8.5 m, sand) and Meta II (53°42.2'N and 4<:30'E, depth 
37 m, muddy sand) with the usual gear o f  each institute 
and with one standardized set. The routinely used gear 
varied from 30 kg Van Veen grabs to 700 kg box-corers. 
The processing o f the sample on board o f the vessel was 
also very different (fixation prior to sieving or not, 
round woven holes or square punched holes in the sieve 
etc.). The results clearly showed that the different pro
cedures used by different laboratories resulted in differ
ent results even when the same macrofauna community 
was sampled (drift o f the ship while sampling may have 
caused some o f these differences). Differences when 
using one’s own gear were also very significant. In the 
case o f total density, the penetration o f the gear was 
clearly the crucial factor in the sandy station Molengat. 
Neither density nor biomass estimates differed signifi
cantly in the muddy sand station Meta II, irrespective o f 
using a 30 kg Van Veen or a 700 kg box-corer. Measures 
o f diversity depend on taxonomic skill but also on gear 
used. The small Rcineck box-corer consistently gave 
lower estimates o f  species number. When it was elimi
nated from the analysis the results for Molengat did not 
differ significantly, but the difference for Meta II 
remained very highly significant. This was due to taxo
nomic processing and to different sieving methods. The 
results from this intercalibration exercise clearly showed
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that comparisons o f macrofauna data are very difficult 
and that standardization o f gear and processing as well 
as taxonomic intercalibration will be essential for future 
comparative studies.

Ash-free dry weight was standardized after an intercali
bration exercise which again clearly showed the necessity 
of a standardized method. When the different methods 
traditionally used in each laboratory were applied to 
samples o f the mollusc M acoma balthica, both the slope 
and the intercept o f the regression line betw'een weight and 
length w'ere significantly different. When the standard 
methods proposed by the Benthos Ecology Working 
Group o f ICES (Rumohr, 1990) were used, results 
between laboratories did not differ (Duineveld & Witte, 
1987).

D iversity

As measures o f faunal diversities the following Hill's 
diversity numbers (Hill, 1973) were used:

N0 = Number o f species (species richness)
Nj =exp(H ') where H' is the Shan non-W iener diver
sity (calculated with natural logarithms)
N , =  1 /SI where SI is Simpson’s dominance index 
(calculated with the revised formula o f Pielou, 1969 -  
sec Heip et ah, 1988)
N y =  1/DI where DI is the dominance index (relative 
abundance o f the most common species)

These diversity indices were calculated on the raw, 
purified (see Kiinitzer et al., 1992) data set. However, as 
sample size influences the different measures in a different 
way (Soetaert and Heip, 1990) they were also calculated 
for a standard sample size. From each sample 50 individ
uals were drawn at random, and the diversity indices cal
culated. This was repeated 50 times. Arithmetic means 
of the 50 values were used as the standardized diversity 
estimate for the sample.

Biomass

Depending on the institute the biomass was measured 
cither directly as ash-free dry weight or calculated 
from wet weight using appropriate conversion factors 
(Rumohr et al., 1987).

Statistical analysis

The faunal data (total biomass, total density, individual 
weight and diversity) and environmental variables (lati
tude, longitude, depth, median grain size and silt, chia and 
POC content o f  the sediment) were compared by multiple 
linear regression.

Results

The total macrofauna biomass and the biomass o f the 
major phyla (Annelida, Mollusca, Arthropoda, Echino
dermata, Rest) at each station arc shown in Figures 1 
and 2. The average total biomass is 7 g ash-free dry weight 
(AFDW ) m 2 (standard error =  7.6).

L o g  Toto l
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0.04 0 ,7 2  1,55

Figure 1. Log o f  to tal m acrofauna b iom ass (ash-free dry weight 
m J) o f  the N orth  Sea. The radius o f  the black circles is p ro 
portional to the log-transform ed biom ass within the range o f  the 
box-an d -whisker p lo ts a t the top o f  the figure. O utliers (in the 
box-an d -whisker p lo ts indicated by points) have the same radius 
as the m axim um  o r m inim um  value.

Total biomass (after log transformations) shows a clear 
and significant trend with latitude. This is show'n in Figure 
3 where for each degree latitude the m ean± standard 
error o f  the biomass is expressed. Towards the north bio
mass decreases considerably. The major shift is not caused 
by one major taxonomical group overtaking another as



16

( a )  Log Ech i node rma t a

C. Heip  e t al.

l b )  Log C r u s t á c e o

0.00  0.20 1.37
- c

0.00 0.02 0.14

I t K  1 ! 1

• f .r
- t U ’ J - l  

i t ' t  
T iiT [.+ .

: . j i w i ! .  j  à  *

v - ;  jj¡

U l

Figure 2 (a) and  (b)

Figure 2. Log o f  to tal biom ass o f  the m ajor taxonom ic groups o f  the m acrobenthos in the N orth  Sea (ash-free dry  weight m ■’). 
(a) Echinoderm ata, (b) C rustacea, (c) Polychaeta, (d) M ollusca.

one goes north (Fig. 4). Rather, the same trends seem to be 
operating in the different groups.

Apart from latitude sediment composition (logarithm 
o f  fraction smaller than 62 pm) and chlorophyll a content 
of the sediment also influence the total biomass, and the 
biomass o f  most separate groups significantly (Table 1). 
In these regressions the following variables were tested: 
longitude, latitude, median grain size, silt content, per
centage organic carbon, chlorophyll a content and depth. 
The best model in most cases was using latitude plus one 
or two sediment variables, in which case latitude accounts 
always for a larger part o f  the variance. For biomass 
o f molluscs, the model with latitude and chlorophyll a 
accounts for a smaller proportion o f variance (squared 
multiple r =  0.100) than the model with silt content and 
chlorophyll a as predictors (squared multiple r =0.147).

Especially with silt content o f the sediment, the relation 
may be non-linear. Figure 5 shows this relation, clarified

by a smoothing technique called distance-weighted least 
squares smoothing (McLain, 1974; Wilkinson, 1988). The 
locally weighted smooth line clearly suggests that biomass 
increases with silt content between 0.1 and 1%, remains 
relatively uncorrelated for si It con tent be tween 1 and 10%, 
and decreases with silt content for very fine sediments 
(silt content >  10%). This type o f relationship is not un
common in macrobenthos. The relationship o f  (log trans
formed) total biomass with (log transformed) chlorophyll 
a content o f  the sediment is relatively linear (Fig. 6).

For total biomass the same trends are found within 
each "laboratory zone" see Kiinitzer (in press) for a map 
o f laboratory zones, although there is indication o f  a (not 
very pronounced) interaction, indicating that the strength 
o f the trend depends on the laboratory or on the zone in 
the North Sea where one looks.

Diversity, as measured by Hill’s diversity index N ,, 
=  exp(H'), shows a significant trend with latitude (Fig. 7).
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Figure 3. Log o f  to tal m acrofauna biom ass (A FD W  m 2) as a 
function o f  latitude.

51 52 53 54 55 56 57 58 59 60
Figure 4. Fraction o f total biomass represented by the large taxo
nomic groups of the macrofauna. ■  Polychaeta, 38! Mollusca, È3 
Crustacea, ^  Echinodermata, □  remainder.

Towards the north o f  the North Sea diversity increases 
considerably. The trend is found within each "laboratory 
zone", and is about as strong everywhere. Analysis o f
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Table 1. M ultiple linear regression o f  (log transform ed) biom ass 
and environm ental variables. * Indicates th a t the environm ental 
variable has a significant (5% ) independent con tribu tion  to  the 
explanation  o f the dependent variable in the "b es t”  m odel (i.e. in 
the m odel w ith all partia l regression coefficients significantly 
different from  zero and  the highest squared m ultiple r).

L atitude Chia Log (silt) D epth

T o ta l » .  »
M ollusca * *
Polychaeta » » »
Echi nod erm at * *
C rustacea * *
Rest *

Ento

4

3

2

0  L 
- 2 0 2

Esco

4

3

2

- 2 0 2 4
Log CHLA

Figure 6. Relationship o f  (log transform ed) to tal biom ass (g 
A FD W  m !) w ith (log transform ed) chlorophyll a con ten t o f  the 
sediment (gg chia a per 5 cm  J sediment). T he sm ooth line is 
obtained by distance weighted leasl squares sm oothing.

L og SiH

Figure 5. R elationship  o f  (log transform ed) to tal biom ass (g 
A F D W  m 5) w ith (log transform ed) %  sedim ent < 6 2  gm. 
The sm ooth  line is ob tained by distance weighted least squares 
sm oothing.

covariance showed no significant (0.05 level) interaction 
between laboratory and slope o f  the regression on lati
tude. On the other hand, different laboratories had signifi
cantly different intercepts for the relation with latitude. In 
view o f  the non-random distribution o f  the laboratory 
zones over the North Sea, it is not clear, however, whether 
this reflects true differences between the laboratories. 
Besides latitude, both depth and longitude show an effect 
in the separate regressions. Other environmental vari
ables have no clear influence. The “best” model has both 
latitude and longitude as predictors. Other diversity 
measures (N 0, N 2, N x ) show the same trend (they are 
strongly correlated) but are subject to more variability 
than N j,

The effect o f  different sample sizes on the estimation o f  
diversity indices was not very important for N ,. After

3 0

UJ

50 52 54 58 60
L a t i t u d e

Figure 7. Diversity (H ill num ber N , expressed in equivalent 
num ber o f  species) a s a  function o f  latitude.

standardization to 50 individuals, its relation with lati
tude is not too different from the relationship shown in 
Figure 7. In accordance with the conclusions o f Soetaert 
and Heip (1990), the effect is more pronounced on N 0, the 
number o f  species. Here much variability is taken away 
by standardization, and a very clear relationship with 
latitude ensues (Fig. 8). Both latitude and longitude and 
depth show an effect on the standardized number o f
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Figure S. Diversity (num ber o f  species p er 50 individuals) as a 
function o fla tk u d e .
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Figure 10. Log individual weight (g A FD W  ind l) a s a  function 
o f  latitude.

species, and all regression coefficients remain significantly 
different from zero in a multiple regression.

Density shows a less clear gradient with latitude. There 
is a tendency for density to increase towards the north 
(Fig. 9). but the trend is less clear and less linear than for 
biomass and diversity. Using latitude, chlorophyll a con
tent and median grain size as predictors gives the “best” 
model, and sediment accounts for a larger part o f  the 
variance than latitude.

3 .6

3 . 4

E

m
c<D

T3

5 0 5 2 5 4 5 6 58 6 0

Latitude
Figure 9. Log density (num bers m 3) as a  function o f  latitude.

The mean weight o f the individuals, obtained by divid
ing total biomass by total density in each sample, also 
shows a very clear gradient with latitude (Fig. 10). 
Towards the northern part o f the North Sea, individual 
size becomes considerably smaller: the difference in mean 
weight is much more than one order o f magnitude. 
Adding sediment as predictor variable does not increase 
the squared multiple r (0.371 for the model with latitude 
and chia, 0.364 using only latitude).

D iscussion

Although an extensive literature exists on species assem
blages o f restricted areas o f  the North Sea (see e.g. 
Govaere et al., 1980 for the Southern Bight and Salzwedel 
et al., 1985 for the German Bight) and some synthesis for 
the whole North Sea has been attempted (Stephen, 1933; 
Glémarec, 1973) there are only a few data on density, 
biomass and diversity (Rachor, 1982) and no realistic 
estimates for the whole North Sea existed until now. 
Moreover, biomass values were underestimated by the use 
o f less efficient grabs (Zijlstra, 1988). Rachor (1982) 
summarized available biomass values and estimated the 
average biomass as 3.2 AFDW  m -2. This value corres
ponded to the stock as used in the North Sea model o f  
Andersen and Ursin (1977), but was about twice as high as 
biomass values used by Steele (1967, 1974). But, as all 
these estimates are based on limited data Rachor (1982) 
stressed the importance o f  a “quasisynoptic map o f  bio
mass distribution” . Such a mapping has now been done, 
and the mean biomass appears to be at least -  because 
April is commonly assumed to be a moment o f minimum 
biomass -  twice as high as estimated before. However, 
some predicted general features such as highest biomass 
stocks in the whole infralittoral étage (Glémarec, 1973) 
and in the coastal étage near the Scottish coast and south 
and east o f  the Shetlands have been confirmed.

The results from the survey show clearly that large scale 
patterns in the structure (diversity) and functional attri
butes (abundance, average weight and biomass) o f  macro- 
benthic communities in the North Sea exist and that part 
o f the variance in these variables can be explained by the 
environmental factors measured. Diversity, as measured 
by a standardized species richness and by exp(H'), 
shows a clear and nearly linear increase with latitude. 
Ursin (1960), in a study o f the echinoderm fauna between 
54° and 57°N, also found diversity to be highest in the 
northern part, independently o f the type o f sediment.



Depth and longitude also show an independent effect on 
diversity. Total biomass decreases northward and is a 
function o f latitude, the amount o f  chlorophyll a and the 
proportion o f  sill (particles smaller than 62 pm) in the 
sediment. These same factors also explain the biomass of  
the different taxonomic groups, but differently. Zijlstra 
(1988), from more limited information, tentatively con
cluded that macrofauna biomass tends to decline with 
depth and appears to be related to sediment type. There is 
a tendency for density to increase towards the north. This 
agrees with the conclusion o f Zijlstra (1988) who found 
“the highest numbers unexpectedly occurring in the two 
deeper étages". The trend is, however, not clear and sedi
ment seems to be more important. Mean individual 
weight again shows a remarkable nearly linear decrease 
with latitude.

The northern North Sea data have been obtained over 
different years and using a sieve o f  0.5 mm mesh size. The 
effect o f  mesh width may especially complicate the com
parison with the NSBS data. However, since one would 
expect a smaller average size and individual weight result
ing from this difference, the observed trends would not 
have been different if  a larger mesh size had been used.

Principal components analysis on the environmental 
variables shows a good correlation between longitude, 
depth and latitude. Median grain size and silt content are 
also correlated. Chlorophyll a is weakly correlated with 
the first group. For the interpretation o f  the observed 
trends with latitude it is useful lo  consider the general 
trend o f both water depth and longitude with latitude. 
Latitude and depth are nearly linearly related -  apart 
from some irregularities the North Sea gently slopes from 
a shallow southern part to a deeper northern part. While 
north o f the 58 degree latitude almost all stations sampled 
are situated to the west o f  the 2nd degree longitude, 
the southern North Sea (i.e. south o f the 54 degree lati
tude) is situated east o f  the 2nd degree longitude. 
For biomass, density and individual weight, latitude 
invariably explained more variation than depth. Thus, 
latitude shows the effects o f  both depth and another, 
unfortunately unknow n, variable.

The general di rcction o f  the circulation in the North Sea 
varies only little with seasons (Backhaus, 1989) and is in 
general cyclonic. Atlantic waters entering the North Sea 
from the north do not reach the continental coastline but 
turn gradually eastward towards the Jutland coast and the 
Skagerrak where they merge with the southern Atlantic 
inflow through the Channel. All water masses leave the 
North Sea along the west coast o f Norway. The effect o f  
longitude on diversity possibly shows the importance 
o f current patterns on species distributions. Indeed, 
several species, including e.g. Leucon nasica and Thyasira 
ferruginea, are restricted to the western part o f the 
northern North Sea (Kiinitzer el al., in press).

It is also conceivable that the colonization o f the North 
Sea both from the north and the south after the last lee

Age is still reflected in latitudinal patterns o f  species 
occurrences and thus diversity. During the Quarternary 
glacial period, the whole area was covered with ice. After 
the last glacial period around 15 000 years ago (Wurm 
glaciation), the sea penetrated into the North Sea arca 
from the north, and the northern part o f  it became part o f 
a glacial sea known as the Yoldia Sea. Between the Boreal 
and Atlanticum (5500 BC), the sea level was about 17 m 
lower than today, the North Sea was a shallow basin with 
several shoals and the Channel was not open. As late as 
2000 BC the Channel was still a small river-like water. In 
the beginning o f the Atlanticum the present shape o f the 
North Sea formed, except for the west coast o f Jutland 
and Dutch German coast. Subsequently the sea level rose 
15 m, the Dogger Bank disappeared and the Channel 
reached its full extent. This means that the fauna in many 
parts o f  the North Sea is younger than around 7000 years 
and that the southern element, which penetrated through 
the Channel, is no more than 4000 years old. Such a young 
fauna is unlikely to have yet stabilized and attained its 
highest diversity.

Effects o f storms on benthic communities have not been 
thoroughly investigated but may restrict the occurrence o f 
sensitive species to waters deeper than say 30 m.

The correlation between benthic biomass and chloro
phyll a in sediments certainly indicates a link with surface 
productivity, especially since the correlation does not 
exist with total pigment concentration. A survey by 
Owens et al. (1990) covering the whole North Sea in July 
1987 showed high chlorophyll and primary production 
occurring in a band around the continental and UK  
coasts more or less consistent with the CZCS images. 
CZCS images tend to show higher apparent chlorophyll 
concentrations in the coastal zones o f  southern England 
and the continent up to Denmark and Norway and per
haps over the Dogger Bank. But primary production 
cycles do not peak at the same moment in the north and 
the south (Colebrook & Robinson, 1965). In the southern 
North Sea the cycle peaks in early April, in the Central 
North Sea perhaps slightly later. In the northern North 
Sea production reached its maximum at the beginning 
o f May. Whereas in the southern North Sea production 
appears to be continuous throughout summer, in the 
northern North Sea the blooms are restricted to the 
spring. The differences in time o f onset are associated with 
increasing water depth, and the delay must be a conse
quence o f later stabilization (Cushing, 1983). It is gener
ally believed that the seasonal increase in solar radiation 
and the vertical stability o f the water are the two most 
important factors (Colebrook & Robinson, 1965). North 
Sea waters become stratified in summer north o f  a latitude 
o f about 54°N, except for the German Bight and Danish 
coast. The impact o f stratification on food input to the 
benthos may be one o f the most important factors 
explaining large scale patterns observed in this study. The 
differences in primary production cycles in the northern
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and southern North Sea possibly have larger effects than a 
different chlorophyll a content o f  the sediments. This may 
be the reason why latitude, in itself not a controlling fac
tor, invariably explained more variation in biomass than 
e.g. depth and chlorophyll a . and why animals become 
smaller towards the north.

Beside chlorophyll a, the silt content o f the sediments 
accounts lor a large part o f  the variance in biomass and 
density. Suspended solids enter the North Sea from the 
north (North Atlantic Ocean) and from the south (the 
Channel), from land and by erosion (resuspension) o f 
sediments. Transport is mainly determined by wind and 
density driven currents and by residual tidal currents. 
Most o f the material deposited in the south is from the 
Channel, with some from the Rhine and from the German 
rivers; the material in the North comes from the Atlantic 
(Puls, 1987). Erosion and deposition o f solids depend on 
the bed shear velocity, which is much stronger along the 
coasts in the south o f  the North Sea and on the Dogger 
Bank than elsewhere. The transport follows the general 
movement o f  the water, and highest concentrations 
of suspended matter are found along the coasts o f the 
Southern Bight and further north along the eastern side of 
the southern North Sea (Eisma and Irion, 1988).

Although human impact around point sources such as 
sewage outlets and oil platforms is know'n to affect the 
benthos, these effects are localized. Effects o f  fisheries are 
probably much more widespread but difficult to quantify. 
Beam-trawling in particular is thought to have large 
effects on benthic communities, including disappearance 
of long-lived species such as Aphrodite aculeata and 
Arctica islandica, but whether such an effect exists 
is unclear from our data. Eutrophication and oxygen 
deficiency has been documented for the Skagerrak and the 
German Bight. Rachor(1990) reports an increase o f 50% 
of macrofauna biomass in the German Bight between 
1924 and 1984, especially due to increases in polychaetes 
and molluscs. Oxygen deficiency can cause mass mortality 
in benthos over large areas but recovery may be rapid 
(Niermann et al., 1990).
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