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stocks/species .  These probabilities are essential if  the consequences o f  alternative 
m anagem ent actions are to be evaluated through a decision analysis.  Using the Bayesian 
approach to stock assessment and decision analysis it becom es possible to admit the full 
range o f  uncertainty and use the collective historical experience o f  fisheries science when 
estimating the consequences o f  proposed m anagem ent actions. Recent advances in 
com puting algorithms and power have allowed methods based on the Bayesian approach 
to be used even for fairly complex stock assessment models and to be within the reach o f  
most stock assessment scientists. However, to avoid com ing to ill-founded conclusions, 
care must be taken when selecting prior distributions. In particular, selection o f  priors 
designed to be noninformative with respect to quantities o f  interest to m anagem ent is 
problematic. The arguments o f  the paper are illustrated using New Z ea lan d ’s western 
stock o f  hoki, Macruronus novaezelandiae  (Merlucciidae) and the B e r in g -C h u k ch i  
Beaufort Seas stock o f  bowhead whales as examples.

Introduction

The most important reason to conduct fisheries stock assessments is to be able to 
evaluate the consequences o f  alternative m anagem ent actions (i.e. to conduct a decision 
analysis). There are usually com peting hypotheses about the dynam ics and state o f  a 
fishery, and the consequences o f  m anagem ent actions may differ depending on which 
hypothesis is true. The purpose o f  this paper is to review the Bayesian approach to 
fisheries stock assessment which we believe offers conceptual simplicity and elegance 
and can formally and rigorously incorporate expert judgm en t  and .inferences from data 
for other species or stocks. This approach can therefore address the issue o f  assigning 
probabilities to alternative hypotheses in a general and com plete manner.

Bayesian stock assessment methods use information from two sources to assign 
probabilities to alternative hypotheses. The first source is data from observations o f  the 
stock in question (trends in catch rate, age-com position  data, etc.) and the second 
source is information based on inferences for other s tocks/species .  The first o f  these 
sources is represented in the form o f  a likelihood function and the information from the 
second source through prior probability distributions. Bayes Theorem  (see Equations 1 
and 2 below) is used to com bine the information from these sources to obtain the 
posterior probability for each alternative hypothesis.

The paper is divided into four major  sections. In the first, we present an overview o f  
the generic process o f  evaluating the consequences o f  alternative m anagem ent actions 
and outline several approaches to stock assessment which can be used to provide the 
information needed to conduct such an evaluation (including the Bayesian approach). In 
the second, we show how data from other stocks can be used to formulate prior 
distributions for model parameters within a Bayesian assessm ent and discuss the merits 
o f  trying to formulate noninformative prior distributions which attempt to let the data 
‘speak for them se lves’ and dominate the process o f  assigning probabilities. We 
highlight the problems with the choice o f  the prior distribution which is used to 
sum m arize the information about the f ishery before incorporation o f  any assessment 
data. We also review the major  com putational problem s associated with Bayesian 
fisheries assessment techniques (i.e. the need to integrate across m any parameters),  and 
Appendix  A describes three algorithms we have found useful.

In the third section, assessments o f  N ew Z ea lan d ’s western stock o f  hoki
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(M acruronus novaeze landiae , Merlucciidae) and the Bering Chukchi -Beaufort Seas 
stock o f  bowhead whales (Balaena m ystice tus , Balaenidae) are used to illustrate some 
o f  the points raised in the paper. These assessments should be considered to be 
examples only the reports o f  the New Zealand Stock Assessment plenaries and the 
International W haling Com m ission should be consulted for more up-to-date results. The 
assessments are based on fully age-structured population dynam ics models. Although 
the use o f  age-structured models (e.g. Appendix B) com plicates the presentation, most 
o f  the Bayesian stock assessments that are used for m anagem ent purposes are based on 
such models.

It is important to recognize that the Bayesian approach is independent o f  the 
population dynamics model and the likelihood used to describe the observations, and is 
best thought o f  as a m ethod for describing uncertainty and using historical experience. 
Thus, with the Bayesian approach, the analyst is free to deal with arbitrarily com plex 
models as long as it is possible to provide prior distributions for the parameters. The 
techniques described in this paper can easily be applied to simpler models than that in 
Appendix B, such as surplus production models (e.g. Schaefer 1954, 1957), delay- 
difference models (Deriso, 1980; Schnute, 1985), or even VPA-based methods such as 
AD A PT (Gavaris, 1988; Powers and Restrepo, 1992). H oenig et al. (1994) present 
Bayesian assessments based on an equilibrium production model while Walters and 
Punt (1994) consider AD APT within a Bayesian framework.

The final section contains a discussion o f  the key advantages and disadvantages o f  
the Bayesian approach as well as the future data collection and analysis requirements 
for making Bayesian assessments more useful. At various points in. the paper, we make 
suggestions based on our experience applying the techniques discussed.

Evaluating the consequences of management actions

A decision analysis involves the following five steps:

1. identifying alternative hypotheses about the population dynam ics (often referred to 
as ‘states o f  na tu re’), Hp

2. determining the relative weight o f  evidence in support o f  each alternative hypothesis 
expressed as a relative probability, P (H ¡);

3. identifying each alternative m anagem ent action, Ap
4. evaluating the distribution and expected value o f  each perform ance measure, ƒ*, 

given the m anagem ent actions and the hypotheses; and
5. presenting the results to the decision makers.

W hen there are discrete alternative hypotheses and m anagem ent actions, a ‘decision 
tab le’ (e.g. Table 1) is an effective aid to sum m arizing the process o f  evaluating 
m anagem ent actions, and to presenting the results to the decision makers. The alternative 
hypotheses, are given in the first row, the probability assigned to each hypothesis, 
P (H j), is given in the second row, the alternative m anagem ent actions, A¡, are shown in 
the leftmost column, and the consequences (in term s o f  some perform ance measure 4 4  
o f  alternative action A¡ i f  a hypothesis H¡ is true (denoted by 4 ( ^ 4 ,  A/)), are shown in 
the (y, /) cells. The rightmost column lists the expected value o f  4  for each m anagem ent
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Table 1. A simple decision table to evaluate the consequences, in terms o f  the ratio o f  the stock size 
at the end o f  the management period to the virgin biomass, o f  a variety o f  alternative future annual 
catch quotas (from Hilborn et cv/., 1994)

Alternative hypotheses (virgin biomass X IO3 t ) 1 Expectation

750 950 1150 1350 1550 1750 10472
Quota (IO3 t) (0.099) (0.465) (0.317) (0.096) (0.020) (0.003)

100 0.513 0.63 0.70 0.75 0.78 0.81 0.664
150 0.26 0.45 0.56 0.63 0.69 0.72 0.49
200 0.22 0.26 0.42 0.52 0.59 0.64 0.34

'Values in parentheses are the probabilities assigned to each hypothesis.
2Expressed as biomass (IO3 t).
3This entry implies that if  the virgin biomass is 750 x IO3 t and a quota o f  100 x IO3 t is set for 5 years, the 
biom ass at the end o f  the 5 years will be 51% o f  the virgin biomass.
4The expectation for a quota is calculated by multiplying the ratios for that quota by the probabilities associated  
with the corresponding virgin biom asses, i.e. 0 .66 =  0.099 x 0.51 + 0 .4 6 5  x 0.63 +  . . ..

action (i.e. H í) P ( H í)). There are often several m easures  o f  perform ance and
separate decision tables must be produced for each.

Each one o f  steps ( 1 - 5 )  involves a num ber o f  philosophical or methodological 
decisions.

C H O I C E  OF A L T E R N A T I V E  H Y P O T H E S E S  A N D  T H E I R  P R O B A B I L I T I E S

The choice o f  alternative hypotheses (1) is usually a question o f  preference and 
judgm ent.  The ‘alternative hypotheses’ consist o f  all possible structural models com bined 
with all values for the parameters o f  those models. The most com m on approach is to 
select a single structural model and to consider the uncertainty in its parameters only. A 
more defensible alternative is to consider a series o f  truly different structural models. 
However, apart from being computationally  m ore intensive, it is difficult to ‘b o u n d ’ the 
range o f  models considered. A related issue is how to determine how m any model 
parameters should be considered uncertain.

These choices are closely related to step (2), the assignm ent o f  probabilities to 
alternative hypotheses which is dealt with in detail below. It is not possible io consider 
(or even list) all possible hypotheses, because there is an infinite number. Therefore, 
any decision analysis must exclude most plausible hypotheses by asserting that they 
have little or no credibility relative to the m odels that are considered (i.e. P ( //,•) =  0). 
Some o f  the hypotheses excluded clearly have a non-zero probability. For instance, 
systematic environmental change is now an acknowledged com ponent o f  aquatic 
ecosystems (Cushing, 1982; Hilborn and Walters, 1992), yet very few decision analyses 
allow for this.

S P E C I F Y I N G  T HE  M A N A G E M E N T  O P T I O N S

M anagem ent actions are generally arrived at through discussion between m anagers, user 
groups and scientists, and are usually quite simple (alternative series o f  future catches or 
exploitation rates, size limits, etc.). But as m anagem ent systems becom e more 
sophisticated, actions may take the form o f  feedback-control ‘decision ru le s ’. A decision 
rule defines a m anagem ent action as a function o f  the estimated current status o f  the
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stock and perhaps even o f  the uncertainty about its estimated status (Hilborn and Luedke, 
1987; Sainsbury, 1988; IWC, 1989; Butterworth and Bergh, 1993). The International 
W haling Com m ission (IW C) has conducted the most thorough examination o f  the 
perform ance o f  alternative decision rules to date (e.g. IW C, 1989). O ther analyses to 
contrast alternative decision rules for specific stocks are those for South African anchovy 
( Engraulis capensis , Clupeidae) by Bergh and Butterworth (1987), Butterworth and 
Bergh (1993) and Butterworth et al. (1993), yellowtail f lounder (Limanda ferruginea ,  
p leuronectidae) o ff  eastern Canada by Collie and Walters (1991), the Cape hakes 
(M erluccius capensis  and M. paradoxus , Merlucciidae) by Punt (1993) and Punt et al. 
(1995b), North Sea cod (Gadus m orhua , Gadidae) by Pelletier and Lauree (1992), and 
Australian orange roughy (Hoplostethus a tlanticus , Trachichthyidae) by Smith (1993).

The population dynam ics model used when com paring decision rules is often referred 
to as an ‘operating m o d e l’ (e.g. Punt, 1992) and can be very com plex in order to mim ic 
the dynam ics o f  the system for which a decision rule is being sought. For example, to 
com pare decision rules for Southern Hemisphere m inke whales, IWC (1993) developed 
a model which accounts for multiple stocks as well as multiple whaling grounds.

C A L C U L A T I N G  P E R F O R M A N C E  I N D I C E S

The consequences o f  alternative m anagem ent actions, given a specific hypothesis, can be 
determined analytically for very simple models, but for m ost f isheries problem s they 
must be com puted by Monte Carlo simulation. The objective is to calculate the future 
stock size ( N ), given the time series o f  future catches (C v), dictated by m anagem ent 
actions and any environmental fluctuations ((j)y). In the simplest case, where the catches 
are pre-specified  and do not depend on future stock size, the calculation involves 
generating cj)y from its assumed distribution (usually log-normal) and using equations 
such as those in Appendix B to project the population forward. The resultant values for 
N  and Cv provide the basis for the calculation o f  the perform ance measures (average 
catch, changes in catch, variance o f  catch, average stock size, changes in stock size, the 
average and variance o f  exploitation rate, etc.).

Projection is more difficult when the m anagem ent action for a given year is
determined by a decision rule and hence depends in some way on the system state in 
that year. For instance, many m anagem ent policies now used for large-scale industrial 
fisheries are based on attempting to fix the exploitation rate (for example to Foi) .  The 
quota for a given year is obtained by multiplying the estimate o f  exploitable stock size 
during that year by the desired exploitation rate. Modelling the assessment procedure is 
necessary to evaluate this sort o f  decision rule (e.g. Punt, 1993; McAllister, 1995). This 
is a highly laborious process that, in the end, usually results in the need for
considerable simplification or short cuts. One such short cut is to assum e that the 
estimated stock size ( B v) is distributed about the true stock size (B v) with some error 
such as B v =  B v exp (ly), and then setting the annual quota based on a target
exploitation rate u: C v =  u B v. This requires specifying a sequence o f  random  errors in 
estimating stock size (the v Y).

P R E S E N T I N G  T HE  R E S U L T S

Fisheries models can produce many perform ance measures, such as average catch,
variance o f  catch, average stock size, m inim um  stock size, or probability o f  falling below 
some threshold level. In any specific case, these measures are chosen to quantify  the
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m anagem ent objectives. Much o f  the art o f  stock assessment involves determining what 
to present to managers and the best ways to summ arize the information. The papers in 
Smith et al. (1993) illustrate the diversity in what different scientists present to managers. 
W hen dealing with discrete hypotheses or a small num ber o f  values for a single 
parameter, the decision table format o f  Table 1 is an effective means o f  presentation, 
though multiple tables are required if  there is more than one perform ance measure. If the 
decision makers formulate a true objective function (Hilborn and Walters, 1992), the 
results o f  the decision table can be com pressed to the expected utility for each possible 
m anagem ent action. This rarely happens and we believe that most f isheries m anagem ent 
groups should discuss the trade-offs between alternative perform ance measures explicitly. 
Participants in the decision process often have com peting objectives and the most 
scientists can hope for is to present the distribution o f  consequences o f  m anagem ent 
alternatives and let the decision process lead to decisions. In many cases stock 
assessment scientists have some role as decision advisors, and should, at the very least, 
m ake sure that the decision makers understand the consequences o f  alternative 
m anagem ent actions.

W hen there is uncertainty in several parameters, the decision table format is too 
limiting because it is impossible to express all the hypotheses about several parameters 
as alternative states o f  nature. The approach we have used is to aggregate outcom es 
across alternative hypotheses and simply present the marginal distribution o f  
consequences for each alternative action. For example, Fig. 1 shows the distribution 
o f  the biomass o f  hoki after 5 years o f  a catch o f  300 000 t beginning in 1995. We have 
found that m anagers gravitate toward the simplest presentation and that the expected 
value o f  consequences (the arrow in Fig. 1) is often all they want to see. A lthough the 
expected values summ arize the central tendency o f  the distributions, some scenarios
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Fig. 1. Distribution o f  the biomass o f  hoki after 5 years o f  a catch o f  300 000 t beginning in 1995. 
The arrow indicates the expected value.



B ayesian approach to stock assessm ent 41

that have low probability may have disastrous consequences and this should be shown 
clearly to decision makers.

The International W haling Com mission adopted a different way o f  interpreting the 
results o f  projections, namely specifying m inim um  levels o f  perform ance for some key 
variables (e.g. the time to recover to a pre-specified threshold level). Any decision rules 
that did not satisfy these criteria for any state o f  nature were automatically  rejected, no 
matter how well they perform ed on other measures or for other states o f  nature. This is 
effectively the same as having an objective that says any policy with these m anagem ent 
outcom es is unacceptable.

Methods for assigning weights to alternative hypotheses

The most difficult e lement in a decision analysis is assigning weights to alternative 
hypotheses (different models and values for parameters within models). The choice o f  
m odels must be considered explicitly in this process and each model must be assigned a 
weight because if  a model is not considered, it is implicitly given zero weight. In this 
section we first review alternative methods that have been used to assign probabilities
and then explore in detail how this is done in a Bayesian assessment.

There are several com peting methods to assign relative weights to alternative
hypotheses. The traditional and simplest is to select a single model, set its parameters
to the values which fit the available data ‘bes t’, and ignore all other m o de ls /pa ram e te r  
values (i.e. P(H¡) =  1 for the selected m o d e l / 'b e s t  f i t ’ param eter  values and P(H¡)  =  0 
for all other m ode ls /pa ram e te r  values). An extension o f  this approach is to consider 
several models and assign them equal probability (Punt and Butterworth, 1991). The 
values for the model parameters are determ ined as before but no account is taken o f  
parameter uncertainty. A lthough this is better than the traditional approach, the
possibility that the models do not have the same credibility is ignored.

Bootstrap or Monte Carlo methods (Francis, 1992; Restrepo et a l ., 1992) use
resampling to calculate frequency distributions for the values o f  the parameters o f  a 
pre-specif ied  model. These distributions are then used as i f  they represented the 
probabilities o f  alternative hypotheses. To date, these m ethods have been used only in 
conjunction with a single model and have not been used to com pare structurally
different models.

Bayesian analysts compute the relative probability o f  alternative hypotheses using the 
information contained in the prior probability distribution for each state o f  nature, and 
the goodness o f  fit to the available data. These two sources o f  inform ation are 
com bined using Bayes Theorem. I f  the alternative hypotheses can be described by a 
vector o f  continuous parameters (0), the posterior probability is calculated using the 
continuous form o f  Bayes Theorem:

/ o w n  L(D|0)/?(O)r/0 
Jt(0)dQ=-¡;-------------------------  (1)

L(D ¡e ')p (Q ')dO '

where jt(0 )  is the posterior probability o f  the vector 0 given the data, L ( D |0) is the 
probability (likelihood) o f  the data given the vector 0, and /?(0) is the prior probability o f  
the vector 0.
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If, however, the alternative hypotheses are considered as a set o f  discrete possibilities
(H¡), then Bayes Theorem  is written as:

L (D \H i) p (H i)
Jt ( / / / )  = -----  1 . (2)

L (D \H j)p (H j)
j

There are three main reasons for using the Bayesian approach to assigning relative 
weights: (1) it is straightforward to represent the full range o f  uncertainty (both 
param eter  uncertainty and model-structure uncertainty); (2) information based on ‘expert 
o p in ion’ and inferences about other species can be incorporated explicitly and rigorously 
into the stock assessment through the prior distributions; and (3) the output o f  the 
analysis is exactly the information needed for decision analysis (i.e. the probability o f  
alternative states o f  nature). Thus, unlike bootstrap approaches, it is not necessary to 
argue that the posterior distribution can be assum ed to represent probabilities because 
that is exactly what the Bayesian approach provides.

Walters and Hilborn (1976) first p roposed that Bayesian analysis could be used to 
evaluate alternative fisheries policies, but the first major  applications in the context o f  
traditional stock assessment m odels were Bergh and Butterworth (1987), w ho 
considered a single age-structured model with uncertainty in several parameters,  and 
Sainsbury (1988), who considered six structurally different models. Since then, 
Bayesian methods have been applied to a broad range o f  stock assessm ent problem s 
(Collie and Walters, 1991; Thompson, 1992; Givens et al., 1993; Kinas, 1993; Hilborn
et a l ., 1994; McAllister et al., 1994; Punt et al., 1994; Walters and Ludwig, 1994;
Walters and Punt, 1994).

W hether a discrete or continuous model (Equation 1 or 2) is used, there are two key 
elements to the Bayesian analysis -  the prior distribution p ( 0), and the likelihood o f  
the data L(Z)|0). Selecting the methods to determine these elements is the major  
p roblem in formulating a Bayesian analysis and this is discussed in the following two 
subsections.

S P E C I F Y I N G  P R I O R  D I S T R I B U T I O N S

The prior distribution for a parameter tor set o f  parameters) summ arizes the information 
about that parameter (or parameters) from all knowledge except the data used in the 
likelihood calculations o f  the stock assessment. In practice this m eans using basic 
biological knowledge or historical information from other stocks to determine a priori 
weights for alternative states o f  nature. These states o f  nature include alternative models 
as well as different values for the parameters o f  the models. The parameters o f  the age- 
structured model described in Appendix B are: virgin biomass, Bo, the steepness o f  the 
s to c k -re c ru i t  relationship, h, the rate o f  natural mortality, M, selectivity at age a, Sa, 
fecundity at age a, f a, weight at age a , wa, and the recruitment multipliers for each year 
y, cj)v. In principle, prior distributions should be specified for all these parameters. 
However, we often treat some o f  them as known, especially those well determ ined by 
data such as weight at age and fecundity at age. Parameters such as Z?(), which are poorly 
determ ined by external information, must be assigned priors.

Developing prior distributions is undoubtedly the m ost controversial aspect o f  any 
Bayesian analysis (Lindley, 1983; Walters and Ludwig, 1994). We therefore strongly
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recom m end that whenever a Bayesian assessment is conducted, considerable care should 
be taken to docum ent fully the basis for the various prior distributions. This 
docum entation  process must include specifying which models were considered for 
inclusion in the analysis and why some o f  these models were not considered further, 
even though they may be plausible. The guidelines for ranking hypotheses given by 
Butterworth et al. (1996) could be helpful as part o f  the model selection process.

Care needs to be taken not to reject a model simply because it is too complex. This 
is because it may represent a hypothesis the future behaviour o f  which is not captured 
by any simple model. For example, environmental change is now accepted as a major  
com ponent o f  fisheries m anagement. Freshwater, estuarine and even marine habitats are 
changing due to effects o f  humans, and not only have natural climate shifts been 
dem onstrated to have affected fish production in the past (Cushing, 1982) but they 
should also be expected to affect it in the future. M ost stock assessments ignore 
environmental change and assume that future environmental effects will be either an 
average o f  historical environmental conditions or random  with no underlying trend. 
Once it is admitted that the environment m ay change systematically (in the m edium  
term) for better or for worse, it will be found that the uncertainty about the future is 
greater than i f  it is assumed that the environment shows no directional trend. The 
possibility o f  environmental change should therefore be considered w hen developing a 
range o f  plausible models for consideration in a decision analysis.

Care should be taken when selecting the functional form for a prior because poor 
choices can lead to incorrect inferences. We have also noticed a tendency to 
underestimate uncertainty, and hence to specify unrealistically informative priors -  this 
tendency should be explicitly acknowledged and avoided. In particular, priors that 
assign zero probability to some values o f  a param eter  should be selected only i f  this is 
a reasonable assumption: if  some value is assigned zero probability a priori, Bayes 
T heorem  ensures that the posterior also assigns it zero probability. If  the likelihood 
favours values close to where the prior assigns zero probability, the m ode o f  the 
posterior may be at its extreme, which is not desirable (e.g. Punt and Butterworth, 
1996). We suggest that unless there is a very good reason for not doing so, the prior 
should assign a non-zero (but possibly very small) probability to all plausuble values.

In many situations, it is not at all obvious which prior is the most appropriate and we 
suggest that the sensitivity o f  the results to the choice o f  the prior be examined and if  
necessary, the implications for m anagem ent reported to the decision makers.

Noninform ative or informative priors

There are two types o f  priors: informative and noninform ative (or ‘reference’). Box and 
Tiao (1973) define a noninformative prior as one that provides little information relative 
to the experiment -  in this case the stock assessm ent data. Informative prior 
distributions, on the other hand, summ arize the evidence about the parameters concerned 
from many sources and may well have a considerable impact on the results.

U sing informative prior distributions allows the incorporation o f  information 
available to stock assessment scientists from the literature and in light o f  their  
experience with other stocks. However, using informative priors may lead to problems 
because o f  the subjective beliefs o f  stock assessment scientists. This and other problems 
have led Walters and Ludwig (1994) to recom m end that noninform ative priors should 
be the default choice when perform ing Bayesian stock assessments. We disagree with
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this argument and believe that, wherever possible, historical experience with other 
stocks should be used in the assessment. However, even if  we wanted to use 
noninformative priors, the best m ethod for choosing such priors is still an issue o f  
considerable debate (Box and Tiao, 1973; Bernardo, 1979; Lindley, 1983). Jeffreys 
(1961), Box and Tiao (1973) and Bernardo (1979) describe techniques for obtaining 
noninformative priors. Unfortunately most o f  these techniques can, on occasion, lead to 
noninformative priors that are counter-intuitive or dem onstrably in error. So far, they 
have not been used for age-structured stock assessments. Instead, uniform priors on 
some measurem ent system (e.g. uniform, or uniform on a logarithmic scale) are 
generally chosen when noninformative priors are needed. The use o f  noninformative 
priors is controversial because they are sensitive to the choice o f  m easurem ent system. 
In almost all stock assessment models any prior will be informative with respect to 
some quantities o f  interest even if it is noninformative for others. Take the problem o f  
selecting a prior for A uniform prior for B() is noninform ative with respect to Bo, 
yet it will not be noninformative for other managem ent-rela ted  quantities such as the 
ratio o f  the current biomass to Bo (Fig. 2). This had led some authors (e.g. Lindley, 
1983) to suggest that the use o f  noninformative priors should be abandoned.

We advocate a pragmatic approach to the choice between noninform ative and 
informative priors and have, on occasion, incorporated both types into analyses (e.g. 
McAllister et ed., 1994). We would prefer to select a noninformative prior and test 
sensitivity to alternatives than '’dream u p ’ an informative prior that perhaps markedly 
biases the results. On the other hand, well-thought-out informative priors can reduce 
uncertainty considerably. Indeed, using noninform ative priors implies that no 
information from fisheries science is relevant to the parameter in question. Most 
existing non-Bayesian assessments fix some parameters (such as natural mortality) for
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Fig. 2. Posterior distribution for the current (1994) biomass o f  hoki divided by B{) and expressed as a 
percentage, based on an assessment which ignores the data for the stock concerned and places a U[(), 
3000 kt] prior distribution on B{).



B ayesian approach to stock assessm ent  45

the analysis.  To a Bayesian, this implies that there is a very informative prior, i.e. that 
the parameter is known exactly. Thus, while many non-Bayesians object to the use o f  
priors, they use extremely informative priors in their  own analyses.

Eliciting expert opinion and  using data from other stocks

In principle, one o f  the most powerful methods for developing informative priors is to 
synthesize the information from a group o f  experts. IWC (1995) developed priors for the 
bow head assessment by consensus. However, Butterworth (1995) pointed out that the a 
priori correlations am ong some o f  the parameters, for example that between M  and the 
age at maturity, are missing. Walters and Ludwag (1994) caution against the use o f  
‘subjective ' prior distributions based on arguments from ‘basic b iology ' (fecundity, 
longevity etc.) rather than on empirical data. Prior distributions for some parameters 
(such as fecundity at age, weight at age and selectivity at age) can be set equal to their  
sampling distributions.

We advocate using parameters that do not depend on the parameter which scales the 
population (Bo in the model described in Appendix B) as often as possible. Such 
parameters are then com parable am ong stocks, making it considerably easier to 
construct priors. For example, it seems reasonable to assume that the prior distributions 
for Bo and steepness (Equation B.5) are uncorrelated (the resilience o f  the stock recruit 
relationship should not depend a priori on the size o f  the population prior to 
harvesting). In contrast, it is unreasonable to assume that the parameters a  and [) 
(Equation B.5) are independent. Parameters such as steepness can be com puted for 
many stocks using, for example, the data compiled by Myers et cd. (1995) and a prior 
constructed by selecting estimates for stocks that are similar to the one under 
consideration. Care must be taken to specify how the stocks used were selected and to 
consider only those stocks for which the assessments are ‘reasonable ' although what is 
reasonable is, o f  course, subjective. For example, Punt et ul. (1994) weighted the 
contribution o f  each estimate by its variance when constructing a prior for steepness.

The use o f  data from diverse stocks to formulate a prior is known as meta-analysis. 
Hierarchical meta-analysis (Gelman et a l 1995) can be used to develop a prior for a 
parameter from values for that parameter for other stocks under the assumption that the 
stocks differ in that parameter. For example, it seems reasonable to assume that the

which could be parameterized using estimates for other ground fish stocks, but that 
account needs to be taken o f  uncertainty about the estimates for other stocks and 
differences in steepness between stocks. Liermann and Hilborn (in press) develop a 
prior for the parameter which could be used to measure the extent o f  depensation in the 
stock recruitment relationship using meta-analysis. If the raw assessment data for 
various stocks are available, an empirical Bayes approach could be applied (e.g. Hoenig 
et ah,  1994).

‘Selection bias' is a potential problem when developing a prior using data for similar 
stocks. Assessments in the literature tend to be for large, productive populations (small,  
less productive populations in general receive less research funding). If the stocks 
considered are not representative o f  all similar stocks, an inappropriate prior may be 
selected. For example, the analyses o f  Best (1990) which could, in principle, be used to 
develop a prior distribution for the rate o f  increase o f  severely depleted whale 
populations, were criticized because the stocks included could have been ‘self-
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selecting’: only stocks that had increased substantially could be monitored  because only 
they were large enough (IWC, 1990). However, a more detailed evaluation o f  all 
severely depleted large baleen whale stocks by Best (1993) suggests that this is unlikely 
to be the case.

The pr io r  f o r  B()

The prior for Bo (or more generally the param eter  which scales the overall abundance) 
can have a considerable impact on the final results o f  any decision analysis. As every 
population dynam ics model, age-structured or otherwise, contains such a parameter, it is 
o f  particular importance in most assessments. No one has perform ed an analysis o f  the 
frequency distribution o f  initial population sizes and the problem  o f  selection bias would 
be very severe in such an analysis. In principle, a prior for B 0 could be developed using 
estimates o f  B0 for the same species in different areas after m aking allowance for 
differences in the size o f  the available habitat areas.

We have found three general approaches to selecting a prior for the param eter  which 
scales the overall abundance. The first is to select a 'base ca se ’ prior for B q by 
consensus and then to conduct an extensive sensitivity examination o f  this choice. The 
philosophy behind the other two approaches is to place a prior on the current 
population size instead o f  on 5 0 (either the biomass in the current year or the current 
depletion). A prior for the current abundance could be obtained from a tagging 
experiment while a U[0, 1] prior on current depletion reflects a lack o f  information 
about the current status o f  the resource (it could be anything - from unexploited to 
verging on collapse). Computationally, however, these latter two approaches are much 
m ore com plex that the first approach. This is because while it is straightforward to 
project the population dynam ics model forward from B{) to calculate the biomass 
trajectory and hence com pute the likelihood, it is generally impossible to project the 
population backwards from a current population size or current depletion. The solution 
to the problem o f  calculating the b iomass trajectory corresponding to a value for 
current biomass (or current depletion) is to choose different values for B {) and project 
the model forward until a value is chosen that ‘h i ts ’ the current b iomass value exactly 
(Butterworth and Punt, 1995).

If  the data are sufficiently informative, the choice o f  the prior for Bn will no t  affect 
the results substantially. On the other hand, i f  the results are sensitive to this prior, this 
sensitivity is indicative o f  the fact that the data provide little information about one o f  
the most important y ield-determ ining factors, and this constraint must be pointed out to 
the decision makers.

E X P R E S S I N G  T H E  D A TA  IN T H E  F O R M  OF A L I K E L I H O O D

The priors discussed above are the first e lement in applying Bayes Theorem; the second 
element is the probability o f  the observed data given that each alternative hypothesis is 
true T(Z)|0). For most stock assessments, there are two main sources o f  information. The 
first is information on trends in population size in the form o f  surveys or standardized 
catch-rate data, and the other are data on the age (or size) structure o f  the catches. The 
process o f  specifying the likelihood for each o f  these data sources will be dealt with in 
turn. The likelihood for several data sources is the product o f  the likelihoods for each 
separate data source if  they are independent.



B ayesian approach to stock assessm en t 47

Abundance indices

Consider the case o f  an abundance series { I v \ . This series can be an index either o f  
absolute abundance (such as estimates o f  spawner biomass from egg surveys or direct 
counts o f  population numbers from aerial or visual surveys) or o f  relative abundance 
(such as trawl surveys, or catch rates). The deterministic com ponent o f  the model relating 
an abundance index to the population dynam ics model is o f  the form /, =  q B v, where q 
is the ‘catchability coeffic ient’ and B v is the population dynam ics quantity that is being 
indexed (for example, catch rates are usually assum ed to be related to exploitable 
biomass). For series that are assum ed to be indices o f  absolute abundance, q is taken to 
be equal to 1. The value o f  B v is calculated using the population dynam ics model and is 
a function o f  the parameters o f  the model and the catch history.

It is necessary to specify the stochastic com ponent o f  the observation process as well 
as its deterministic component.  The assumption o f  log-normality  guarantees that an 
observed quantity cannot be negative, something which is certainly true o f  most indices 
o f  abundance, such as the results o f  trawl surveys and catch rates. This assumption is, 
therefore, a very com m on one in stock assessment work.

The likelihood function for abundance index data is o f  the form:

where, for the situation described above, Tr =  / n ( / r ), U v =  l n ( q B v) and Vv is the 
variance o f  the observation error for data point Yv.

For relative abundance series, a prior distribution for the catchability coefficient must 
be specified. In principle, an informative prior for this param eter  can be constructed 
(e.g. Punt et a l ., 1994). Flowever, for m ost relative abundance series, this is not possible 
and it is necessary to use a prior that is as noninform ative as possible. Walters and 
Ludwig (1994) argue for the use o f  a uniform prior from 0 to oo for q and show that 
this assumption leads to a closed form solution for the integral over the prior (see also 
Punt and Butterworth, 1996). However, as their Figure 1 indicates, such a prior tends to 
give larger weight to low values for Bo i f  the data are not informative. While this might 
be desirable because resultant estimates are conservative (Walters and Ludwig, 1994), 
this prior is clearly not noninformative. An alternative that favours no values o f  Bo if  
the data are noninformative is uniform on a logarithmic scale over the 0 to oo interval 
and we recom m end this approach.

Note that the preceding discussion assumes that a relative abundance index is related 
linearly to abundance. This need not be the case for m any reasons (especially if  the 
index is derived from com mercial catch-rate data). It is, however, s traightforward to 
generalize the observation model to examine the implications o f  non-linearity in the 
relationship.

Age-structure data

Age-structure data contain information about the total num ber  o f  fish landed as well as 
the age composition o f  the catch. The total is used implicitly w hen projecting the 
population dynamics model forward through Equation B .6 which forces the model- 
predicted catch to equal the observed catch. Thus, only the information about the age 
com position o f  the catches is included in the likelihood function. It is possible to allow

(3)
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for the eventuality that the catches differ from the recorded values by adding an extra 
component to the likelihood function (Methot, 1989, for details). The observed fraction 
o f  the catch (by number) taken in year y  consisting o f  fish o f  age a is usually assumed to 
be multinomially  distributed about its expected value (although, for an alternative, sec 
Schnute and Richards, 1995), so the contribution o f  the age-composition data to the log- 
likelihood function is given by:

where p lv/ is the model estimate o f  the fraction o f  the catch (in number) during year r  
which consists o f  fish o f  age ¿/, N cy is the effective num ber o f  fish aged during year y, 
and is the observed fraction o f  the catch (in number) during year y  which consists o f  
fish o f  age a.

Specifying a value for N cv is difficult because the age-composition information does 
not generally come from a simple random sample from the total catch, but is instead 
estimated using a length-frequency sample and an a g e - le n g th  key (Ricker, 1975). The 
usual approach for dealing with the problem o f  specifying the N c[. is to consider a range 
o f  values and examine sensitivity to this choice. They could, in principle, however, be 
set from the results o f  analyses such as those o f  Baird (1983) and Gavaris and Gavaris 
(1983). Equation 4 can be extended straightforwardly to account for uncertainty and 
bias in the ageing process (Methot, 1989; Richards et u l ., 1992).

Current applications

W hile the basic formulation o f  Bayes Theorem is both simple and elegant and the 
theoretical advantages o f  this approach for fisheries assessments were recognized long 
ago (Walters and Elilborn, 1976), practical implementation in actual stock assessments 
requires that priors, models and likelihoods be specified. In this section we overview two 
stock assessments to explore how Bayesian m ethods can be applied in practice.

The hoki and bowhead stocks are markedly different in terms o f  biology and 
exploitation history. Hoki are fast-growing and short-lived (Sullivan et u l ., 1995) 
whereas some bowhead whales probably l ive to well ov er 100 years (!WC, Î995). 
Recruitm ent o f  hoki appears to exhibit considerable interannual fluctuations, while the 
population dynamics o f  bowhead whales are (probably reasonably) assum ed to be 
deterministic. Catches o f  hoki exceeded 10 000 t for the first time in 1975 and becam e 
substantial only in 1986 when 8 6 0 0 0  t were landed (Sullivan et a í ., 1995). In contrast,  
catches o f  bowhead whales peaked in 1852 during a period o f  extensive Yankee 
whaling (Bockstoce and Botkin, 1983). There is now only a subsistence fishery for 
bowheads by Native Americans in Alaska. The assessments for both stocks are based 
on an age- and sex-structured population dynam ics model that divides the population 
into ‘available’ and ‘unavailable’ components. Only the hoki assessment allows for 
f luctuations in recruitment about its expected value (i.e. cj>v =  1 for the bowhead stock).

The two assessments are based on different data types. The hoki assessment uses 
catch-rate, trawl survey and acoustic data (Sullivan et u l ., 1995), whereas the bowhead 
assessment uses estimates o f  current population size inferred from visual and acoustic 
surveys at Point Barrow, Alaska, and estimates o f  the fraction o f  the population that

(4)
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consisted o f  calves and mature animals in 1988 and 1989 (IW C, 1995, for details). For 
both assessments, the observation error variances (Vv in Equation 3) are assumed to be 
known exactly, so there is no need to specify priors for them.

The hoki assessment places prior distributions on Bo, M, steepness, the recruitment 
multipliers, the catchability coefficients and the extent o f  recruitment variability. The 
recruitment multipliers are assumed to be lognormally distributed with a m edian o f  1 
and a C V  o f  a , . The prior distribution for the parameter that measures the extent o f  
recruitment fluctuation, o r , and that for steepness, are derived from analyses o f  stock 
and recruitment data for several stocks o f  gadoids (Punt et a l ., 1994). The prior for B() 
was selected by consensus to be C[0, 3 000 000 t], although the sensitivity o f  the results 
to alternative choices for this prior is examined as a routine part o f  the stock 
assessment process (Punt et a l ., 1993, 1994). The prior for M  was also selected by 
consensus and is assumed to be uniform over ranges which depend on sex. The 
catchability coefficients for the catch rate and trawl survey series are assum ed to be 
uniform on a logarithmic scale due to paucity o f  data. An informative prior distribution 
is assumed for the catchability coefficient for the acoustic surveys. This prior 
distribution was constructed by those involved in the acoustic surveys to quantify the 
uncertainties associated with acoustic indices as measures o f  absolute abundance. These 
uncertainties included uncertainty in the estimate o f  acoustic target strength, species 
identification and the proportion o f  the population in the area surveyed.

For the bowhead assessment, prior distributions are specified for the pre-exploitation 
size o f  the population, K , the population size at which M S Y  is achieved ( M S Y L ), the 
ratio o f  M S Y  to M SYL (M SYR),  the age at maturity, the survival .rate for adults, the 
survival rate for juveniles, and the age at which animals first experience adult natural 
mortality (IWC, 1995). These prior distributions were selected after considerable 
discussion by the Scientific Com mittee o f  the IWC. A lthough Raftery et ul. (1995) 
assert that this was a successful exercise, Butterworth (1995), Butterworth and Punt 
(1995) and Punt and Butterworth (1996) point out several problems with the priors that 
were selected, and Baker (1995) raises some concerns about the approach used to 
derive the elata. In particular, two o f  the priors (those for K  and M SYR)  are inconsistent 
because the prodedure used to devise the prior for K , which is based on an estimation 
approach by Delury (1947), effectively assumes that M SYR — 0 (Butterworth and Punt, 
1095). Wolpert (1095) notes that the use o f  a deterministic model for the analvses leads 
to an instance o f  BoreTs Paradox1, although Raftery et ul. (1995) show by example 
that, in this case, the extent o f  error is likely to be small.

The quantity o f  greatest interest pertaining to the m anagem ent o f  the bowhead stock 
is the current replacement yield (the greatest num ber o f  whales that could be taken in a 
given year without the population decreasing). In the past, the IWC Scientific 
C om m ittee has based its recommendation for a catch limit on the lower 5th percentile 
o f  the sampling distribution for the current replacement yield. In 1994, it based its 
recom m endation on the lower 5th percentile o f  the posterior probability distribution for 
the 1994 replacement yield. The lower 5th percentile was chosen because it is 
conservative in the face o f  uncertainty. O ther quantities that were reported by the 
Scientific Com mittee are the current depletion o f  the female com ponent o f  the

'This paradox occurs because the dimensionality o f  the prior distribution exceeds that o f  the set o f  parameters 
needed to specify the posterior distribution in sueli a ease, the posterior is non-unique and depends on the scale 
on which the parameters are expressed.
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Fig. 3. Posterior distribution (solid lines and bars) for four quantities o f  relevance to the management 
o f  the Bering C hukchi-B eaufort  Seas stock o f  bowhead whales. The dotted lines in the two upper 
panels represent the assumed prior distributions. M SYR  is the ratio o f  M SY  to the population size at 
which M SY  is achieved.

population, MSYR, M SYL  and K. Figure 3 shows the prior and posterior distributions 
for two o f  these quantities and posterior d is tr ibu t ion s  fo r  the 1994 mature female 
depletion and the 1994 replacement yield. The results show that prior for K  is updated  
m arkedly  while the difference between prior for M SYR  and its posterior is relatively 
small. The posterior distribution for the mature female depletion is relatively tight while 
that for the 1994 replacement yield is fairly imprecise. These results indicate that, as 
expected, even if  the data are informative about some quantities, the prior will not 
necessarily be updated m arkedly for all the quantities o f  interest. The results o f  the 
bow head assessment have been used as the basis for an examination o f  the 
perform ances o f  alternative decision rules for the bowhead population by Punt and 
Polacheck (1996).

Figure 4(a) shows the posterior distribution for the current (1994) b iom ass o f  hoki 
while Fig. 4(b) provides the posterior distribution for this b iomass expressed as a 
percentage o f  the virgin biomass. The results in Fig. 4 (a) and (b) are based on an 
assessm ent that places a uniform prior on B () from 0 to 3 million tonnes and restricts 
the current depletion to lie between 0 and 1.
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Fig. 4. Posterior distributions for the current biomass and current depletion o f  the hoki stock from two 
Bayesian assessments. The results in the upper panels are based on a U[0, 3000 kt] prior for B{) while 
those in the lower panels are based on a U[(), I] prior for current depletion.

The results in Fig. 4 were used as input to a decision analysis to assess the impact o f  
various alternative future series o f  catch quotas. The perform ance indicators chosen to 
quantity’ risk arc the probability that the m i d - s e a s o n biomass ° f  nv,tiin'  n i m ̂  1 s rirons 
below 20% o f  its pre-exploitation equilibrium level, "risk (s tock)1, and the probability 
that the industry is unable to take at least 80% o f  its catch quota, 'risk (ca tch)1 
(Annala, 1994). Table 2 lists perform ance indices for four alternative series o f  catch

Table 2. Performance indices (see text for definitions) for hoki. The quota is assumed to be fixed for 
5 years starting in 1995

Quantity Annual quota ( l ( F t )

200 300 400 500

Risk (stock) 0.037 0.160 0.360 0.541
Risk (catch) 0.002 0.061 0.230 0.427
E(C) 200 297 383 450
P(B n„ > Busy ) 0.866 0.726 0.564 0.406
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quotas. Results are shown for the two risk statistics as well as the expected annual 
catch, £ ( 0 ,  and the probability that the biomass at the end o f  the 5 year projection
period. Z?n„, exceeds that at which M S Y  is achieved, P (B fu¡>  B\jSy)- Note that the
annual catch may differ from the specified catch quota if the stock is driven to low 
levels so the quota cannot be taken. Table 2 differs from the type o f  decision tabic 
mentioned earlier because the uncertainty inherent in the posterior distribution for the 
population parameters has been in te g ra te d  o u t \  The results in Table 2 illustrate the 
trade-off  between risk and reward which decision makers have to evaluate to select a 
quota which appropriately balances the desire for high yields and the satisfaction o f  the
objective o f  maintaining a healthy spawning population.

Discussion
A D VA N T A G  H S A N I )  D I S A D V A N T A G E S  O F  T H F  BAY F S I A N A P P R O A C H

The main reason for using a Bayesian approach to stock assessment is that it facilitates 
representing and taking account o f  the full range o f  uncertainties related to models and 
parameter values. In contrast,  most decision analyses based on conditional m axim um  
likelihood (or least squares) estimation involve fixing (conditioning on) the values o f  
parameters that may, in actuality, have an important bearing on the final outcom e o f  the 
analysis and for which there is considerable uncertainty. For example, Francis et ul. 
(1992) contrast assessments that include and ignore the effects o f  interannual fluctuations 
in recruitment by examining the posterior distribution for Z?o, and find that ignoring this 
uncertainty leads to considerable underestimation o f  the uncertainty about B{).

In the past, the effects o f  uncertainty have been evaluated through sensitivity 
analysis. In general,  this involved changing the value o f  a single parameter only and 
rerunning the entire stock assessment. This limitation to a single parameter was due to 
time constraints and was needed to avoid large amounts o f  model output. There is 
clearly a need for sensitivity analysis for any stock assessment. Ftowever. current 
practice cannot guarantee that some (reasonably plausible) com bination o f  parameter 
values does not give rise to behaviour that would not be expected from the results o f  
sensitivity tests which involve changing the value o f  a single param eter  only. In 
addition, it is often difficult to sum m anae  the manqapment implications o f  scnd tiv it \....... 0    t" V I
tests that exhibit considerable sensitivity without some form o f  integration across those 
tests. In contrast,  the Bayesian approach to stock assessment explicitly allows for 
weighting across alternative states o f  nature through Bayes Theorem , although this can 
'h id e ’ those sets o f  parameter values that do give rise to poor performance. The use o f  
Bayesian techniques does not eliminate the need for sensitivity tests. It is still necessary 
to conduct an extensive examination o f  the sensitivity o f  the stock assessment and 
decision analysis results to the choice o f  the prior distributions, the data set choices, 
etc. Givens et al. (1994) describe a com putationally  efficient reweighting approach for 
assessing sensitivity in Bayesian stock assessments which can be applied in conjunction 
with the SIR algorithm and would facilitate such an examination.

Current stock assessments, both Bayesian and non-Bayesian, tend to ignore the true 
range o f  uncertainty (both model and parameter). In particular, model-structure 
uncertainty is usually completely ignored (Sainsbury, 1988, is a notable exception) 
even though the impact o f  this source o f  uncertainty can be more important than that o f
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uncertainty about the values for the parameters for any one model -  this is particularly 
the case if  the future consequences o f  m anagem ent actions are to be evaluated.

The process o f  eliciting prior distributions can be very time consum ing and 
frustrating. Scientists who are experts with the species concerned but who are unaware 
o f  Bayesian techniques (and hence do not have a full understanding o f  what is meant 
by a prior distribution) can provide "prior distributions' that are either inconsistent or 
far too precise (Walters and Ludwig, 1994). However, this process is com parable with 
that o f  selecting a "base case’ assessment and a set o f  sensitivity tests as is com m on 
when conducting assessments based on m axim um  likelihood methods. Although 
"expert’ opinion is currently the dominant m ethod for determining priors and this is 
subject to many problems, we believe that prior distributions will increasingly be 
determined by analysis o f  information from synthesis studies and hence will depend 
less on "expert’ opinion. The majority o f  the problems encountered during the 
development o f  the hoki and bowhead whale assessments have resulted from arguments 
about the choice o f  prior distributions. In particular, considerable difficulties arose in 
both cases when attempts were made to select appropriate noninformative prior 
distributions. In contrast, the development o f  informative priors tended to be productive, 
with most participants in the stock assessment groups concerned cooperating even in 
fairly confrontational assessment situations.

Care needs to be taken to avoid specifying contradictory priors (i.e. specifying two 
(or more) priors for the same model parameter). This can occur if  priors are specified 
for many quantities which arc linked via the population dynam ics model. Consider, for 
example, a situation for the hoki stock in which the following two-priors are specified:
(a) Bo is uniformally distributed from 0 to 3000 kt; and (b) the current depletion is 
uniformally distributed from 0 to 1. These two priors appear to be both sensible and a 
reflection o f  a lack o f  information. However, they are effectively providing information 
about the same model quantity, namely the biomass o f  the population. Figure 4 provides 
results for two different ways o f  including these priors in an analysis. The first 
assessment (Fig. 4 (a) and (b )) is based on a uniform prior for B {) from 0 to 3 000 000 t 
and restricts the current depletion to lie between 0 and 1, while the other assessment 
(Fig. 4 (c) and (d)) corresponds to assuming a U[0, 1] prior for current depletion and 
restricts the value o f  B {) to the range [0, 3 000 000 t]. The prior o f  B {) (Fig. 4 (a) and
(b )) leads to more optimistic re^.dK beraube o f  the implicit nrior  which a nrior on Bn 
places on the current biomass (Fig. 2). A lthough the results are clearly different,  the 
managem ent implications o f  likely alternative catch quotas do not differ markedly.

The assessment data for hoki are relatively informative. Had the data been less 
informative, the results would have differed to an even greater extent,  wdth the prior on 
Bo indicating a resource close to its virgin state and the results for the prior on current 
depletion indicating that almost nothing is known about the current status o f  the 
resource relative to its virgin level. In this example, broadening the range for the B {} 
prior from 3 million to 4 million tonnes would lead to a more optimistic appraisal. 
Flowever, changing the restriction for the analysis based on the current biomass in this 
way will not affect the results noticeably. This example is fairly simple in that the link 
between Bo and current depletion is obvious. Care needs to be taken when specifying 
priors so that they are not contradictory because o f  some com plex pathway through the 
model. This problem o f  multiple priors for the same quantity has occurred  for the 
bowhead assessment (e.g. Punt and Butterworth, 1996).
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It is extremely intensive computationally  to apply Bayes Theorem  to complex 
models: it often takes days o f  com puter time even on reasonably powerful personal 
computers. However, to conduct defensible decision analyses for assessments based on 
m axim um  likelihood estimation, it is usually necessary to conduct a bootstrap analysis 
(Restrepo et a l ., 1992). Such an analysis,  although not as intensive com putationally  as 
applying Bayes Theorem, can often take several hours on a personal computer. In 
addition, when applying m axim um  likelihood methods, there is a need to avoid 
numerical problems such as locating a local (but not the global) m axim um  -  this can 
again be very time consuming for the analyst. Raftery et al. (1995) assert that one o f  
the advantages o f  their  Bayesian approach over m ax im um  likelihood methods is the 
avoidance o f  convergence problems, which have impeded timely completion o f  previous 
assessments.

One o f  the most frequent criticisms o f  the stock assessment process is that it is a 
'c losed sh o p ’ and that only scientists fluent in the mathematical methods can contribute 
(see Introduction in Hilborn, 1992). In contrast,  use o f  Bayesian methods allows 
scientists with expertise in many other areas to contribute to assessments, primarily 
through the process o f  designing prior distributions.

We believe that Bayesian techniques for stock assessment and decision analysis 
should be the ‘methods o f  cho ice ’. Nonetheless, we are not so naive as to believe that 
Bayesian methods should be the only methods used. Although Bayesian stock 
assessments have several advantages over alternative methods, the actual perform ance 
o f  this approach in terms o f  the bias and variability o f  estimated quantities is not 
necessarily better than methods based on m axim um  likelihood estimation (Cordue and 
Francis, 1994). As we em phasized earlier with respect to models, there is a need to 
apply a num ber o f  alternative methods. If the results are generally insensitive to model 
and estimator choice, considerably more weight can be placed on the final outcomes.

The Bayesian approach cannot overcome the issue o f  which o f  a variety o f  
(possibility conflicting) data types should be included in an assessment. It provides 
posterior probabilities for alternative hypotheses, not for the reliability o f  the data set. 
In general,  as much data as possible must be included in the analysis. The most fruitful 
approach to handling situations in which there are conflicting sources o f  information 
(e.g. increasing catch-rate series and declining trawl indices o f  abundance) is to conduct 
analyses for each source separately and present the results; to the decision makers 
(Richards, 1991; Schnute and Hilborn, 1993).

FUTURE:  M . F O S  A N D  I S S U E S

One o f  the major benefits o f  the Bayesian approach is the ability to incorporate prior 
information -  indeed, it dem ands such information. While other stock assessment 
approaches use ‘pr io r’ information by specifying levels or ranges o f  individual 
parameters for use in sensitivity analysis, the Bayesian approach forces the analyst to 
look at historical data sets to determine what is known about the biological parameters 
and processes. Within the context o f  age-structured population dynam ics models, we 
believe that researchers should develop databases to allow the construction o f  
distributions for the rate o f  natural mortality (Pauly, 1980), the relationship between 
spawning stock size and subsequent recruitment (McAllister, 1995; Myers et a l ., 1995), 
recruitment variability (McAllister, 1995), depensation, etc. Most traditional stock 
assessment methods do not use any o f  the quantitative information that could be gathered
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from historical experience with other stocks and, in effect, treat each stock assessment as 
a new independent problem. Stock assessment scientists need to develop databases that 
summ arize historical experience with other stocks so that it can be used in subsequent 
assessments.

Finally, a major impediment to the Bayesian approach is com puting power. The 
algorithms we now use (Appendix A) are slow: a typical run using an age-structurcd 
model takes between 5 hours and several days on a m odern  desktop computer. There is 
an obvious need to stimulate numerical analysis research into more efficient algorithms.
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Appendix A: Methods for numerical integration

The posterior distribution that results from complicated models can often be 
characterized only numerically. A variety o f  numerical methods are available for 
com puting the integrals needed for Bayesian analysis (Smith, 1991, and references
therein). We will concentrate on three methods which we have found to be useful even
for quite badly behaved and markedly non-normal posterior distributions. Walters and 
Ludwig (1994) show that it is possible to perform some o f  the integrals analytically for 
some prior distributions for the catchability coefficient and its variance (Equation 3). Use 
o f  the methods outlined by Walters and Ludwig (1994) is recom m ended because they 
reduce the computational dem ands markedly. The am ount o f  com puter  time needed to 
perform the calculations increases geometrically  with the num ber o f  parameters.

The purpose o f  the algorithms in this appendix is to sample a set o f  vectors
IO,; i — U 2, . .j from the poster1.0 ’* Hwtnhntinn ~t(4)) V o(40 =  /4 0 \ 0) /?(0), This
sample can then be used as input to a decision analysis or for inference about the 
values o f  quantities o f  interest to management. Evaluation o f  A(D |0) involves 
projecting the age-structured population dynam ics model forward, using known catches,
to predict stock biomasses and then calculating the likelihood for the projection. If the
population becomes extinct before the most recent year, it is customary to set the
likelihood to zero. This is equivalent to placing an improper prior on the current
depletion which is uniform above 0.

To gauge the information content o f  the data, it is necessary to com pare the prior
distribution for a quantity o f  interest, such as the current biomass, with a numerical
representation o f  its marginal posterior distribution. This distribution is calculated by
dividing the range for the quantity o f  interest (ƒ(())) into a large num ber o f  discrete 
'b in s ’ o f  equal width. The probability assigned to bin B is calculated by dividing the 
num ber o f  vectors in the sample for wTich the value o f  / ( 0 )  lies in bin B  by the total 
num ber o f  vectors.
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This approach involves dividing the ranee for each parameter into a num ber o f  discrete 
narrow intervals, and then evaluating* g(0). the product o f  the likelihood and the prior, at 
the centre o f  each grid square. The sample from the posterior is then obtained by 
sampling values o f  0 from those considered with replacement, assigning a probability o f  
selecting a particular vector proportional to the value o f  g(0).  Walters and Ludwig 
(1994) recom m end that the range for each parameter should be divided into at least 40 
intervals. Thus, this approach is reasonable for problem s with a relatively small num ber 
o f  parameters (up to a maximum of. say, four -  at which point the calculation involves 
over 2.5 million evaluations o f  the likelihood).

A problem with this approach is that if  the data are highly informative or there are 
high posterior correlations (often the case when age-structure data are used), most o f  
the likelihood evaluations have a negligible contribution to the total probability and it is 
possible not to sample the area o f  parameter space with highest support adequately. It is 
also possible for the same point to be selected a large num ber o f  times, leading to a 
com plex multivariate posterior being represented by a small num ber o f  points. This can 
lead to poor estimation o f  probabilities and hence the quantities needed to conduct the 
decision analysis. The solution to these problems is to reduce the width o f  each 
interval, but this leads to greatly increased computational demands. On the other hand, 
this approach can deal adequately with multimodal posterior distributions ( if  the width 
o f  each interval is chosen well), which is a problem for the Metropolis method (see 
below).

This approach is extremely easy to implement. However,* the SIR method (see 
below), which is very similar to the grid search method, is more efficient 
computationally, especially for problems involving large num bers o f  parameters.

TUI .  M E T R O P O L I S  A L G O R I T H M  ( H A S T I N G S ,  1 9 7 0 )

The Metropolis algorithm involves selecting an initial parameter vector 0() and generating 
a Markov chain 0 i,  (L, . . .. The sample from jx( 0) is every /7th value in the chain (where 
n is selected so that the covariance between 0/„ and 0 (/ + d,, is sufficiently small that it can 
be safely ignored).

The algorithm proceeds by specifying the initial state 0() (where the vector 0 is o f  
length /;?), calculating To =  e((L) and d e f i n i n g  ? vector o f  tolerance^ A.  Tu  u p d a t e  u (, 
to 0i (or more generally to update 0, to G o i) ,  the following steps are carried out for 
each element o f  G0 (Oo./).

1. G ene ra te  a 'p ro p o s a l ’ 0 0 /  from  the un ifo rm  d is tr ibu t ion  on the interval
[Oo,/ -  «»,/ A  A /].

2. Calculate T0 =  g(G(',).
3. Generate a random variable U from the uniform distribution on the interval [0, 1], If 

Y [ ) /Y ( )> U  the 'p roposa l’ is accepted, 0i = 0 0  and Y 1 =  T f  end.
4. The 'p roposa l’ 0 (', was not accepted so 0i =  0() and Y\ =  T(), end.

Steps 1 4  (referred to as a cycle) are repeated a large num ber o f  times. The vector o f  
tolerances A is updated dynamically. An algorithm for doing this is to keep a record o f  
the proportion o f  times the 'p ro p o sa l’ for element j  is accepted, and to increase the j th 
element o f  A by 1% if  this proportion is greater than 0.5 and vice versa. This updating is
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conducted every 5 10 cyeles. The results o f  the first 1000 or so cycles should be 
ignored, as this is a kburn-iiT period for the algorithm to set itself up. Note that the use o f  
the uniform distribution to generate proposals is only o f  several alternatives (Hastings, 
1970; Gelm an et a l ., 1995). We have found that the use o f  a multivariate distribution for 
this purpose (Gelman et a l ., 1995) can improve the computational efficiency o f  the 
algorith m c o n s i d e r a b 1 y.

There is considerable debate about how many cyeles to conduct (or how to assess 
whether the chain has converged to the posterior distribution). This point is o f  
importance because, if  the algorithm is stopped before the chain reaches convergence, 
the results can be misleading. Although it is feasible to assess this visually by plotting 
the values o f  quantities o f  interest against cycle num ber and examining the plots for 
strong autocorrelation (Raftery and Tewis, 1992), G elm an and Rubin (1992) 
recom m end that analyses be conducted for a range o f  initial parameter vectors instead. 
If the results from such multiple runs do not agree, it can be concluded that the runs 
are too short. However, even if  there is no disagreement, it cannot be concluded that 
the runs are sufficiently long. Gelm an and Rubin (1992) and Geyer (1992) provide 
quantitative measures that can be used to assess the extent o f  convergence.

Another problem with this approach occurs if the posterior is multimodal and the 
initial state is in one o f  the modes, but the chain does not reach all o f  the other modes 
so that it does not represent an important part o f  the posterior; an example o f  such a 
posterior is given by Gelman and Rubin (1992).

We have found this algorithm to be very com putationally  efficient for problems with 
a large num ber o f  parameters and a complicated likelihood function. Unlike the SIR 
algorithm, this algorithm appears to perform adequately for stock assessments that use 
catch-at-age data.

Ti l t - .  S I R  A L G O R I T H M  ( R U B I N .  1 9 8 7 ;  V A N  D I J K  E T  A l . . .  1 9 8 7 )

The sample-im portance-resample (SIR) algorithm is another m ethod that approximates 
the posterior distribution for high dimensional problems. This algorithm requires a 
(possibly crude) approximation to the posterior to generate a sample from jt(0). This 
approximation, jt(0), referred to as the importance function, must have non-zero 
probability wherever jr(0) has non-zero probability and must be easy to generate from. 
The simplest choice for fr(0) is the po o r  distribution /Tilt although this choice mav not 
be very efficient if  the likelihood supports only a small part o f  /;(()). The analyses o f  
Bergh and Butterworth (1987), McAllister et ul. (1994), Punt et al. (1994) and Raftery et 
ul. (1995) are all based on this choice. The SIR algorithm proceeds as follows.

1. Generate a vector, 0/, from the distribution T(0).
2. Calculate Y¡ =  g(0 ,)  and the importance sampling weight \v¡ — >7/jt(0,) where j t (0/) 

is the probability o f  generating the vector CU For the choice 5f(0/) — /)(()). the 
importance sampling weight is simply the likelihood o f  the data given the vector CU 
i.e. L (D |U ).

3. Repeat steps 1 and 2 a very large num ber o f  times.
4. Select a sample from these vectors with replacement, assigning a probability o f  

selecting a particular vector proportional to its importance weight. As a rule o f  
thumb, we have found that steps 1 and 2 need to be applied until no point in the 
posterior is assigned more than 1% o f  the total probability.

*
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In some cases it is more efficient to iterate the above algorithm, at each iteration 
replacing the current choice for jf(O) by the distribution arising from the previous 
application o f  the algorithm (Smith et u l ., 1987).

Appendix B: The age-structured model

The model assumes that the population is closed with respect to im m igration and 
emigration, relates recruitment to spawner stock size by means o f  a B e v e r to n -H o lt  
s to c k -re c ru i t  relationship and accounts for recruitment variability explicitly. Natural 
mortality is assumed to be independent o f  age and time, and age-specific selectivity is 
assumed to be time invariant. Models o f  this form have been used in the assessments o f  
Cape hake (Punt, 1994), albaeore tuna {Thunnus a la lunga , Scombridae) (Punt et a l ., 
1995a) and orange roughy (Francis, 1992). It is s traightforward to generalize the model 
to incorporate more realistic assumptions, for instance that natural mortality is age and 
time dependent. Sex structure can also be modelled easily (De la Mare, 1989). However, 
such extensions are ignored here for ease o f  presentation.

The age-specific dynamics o f  the population are governed by the equation:

where N VM is the num ber o f  animals o f  age a at the start o f  year y, B\, is the spawner 
stock size at the start o f  year y:

fu is the num ber o f  eggs produced by an animal o f  age a, i.e. the fecundity o f  an animal 
o f  age c/, (j), is the 'recruitment mult ip lier’ for year y, u ,  [> are the stock -recruit 
relationship parameters, M  is the instantaneous rate o f  natural mortality, Sa is the 
selectivity o f  the fishing gear on a fish o f  age ¿/, Fv is the fully selected (S a —* 1 ) f ishing 
mortality during year y, and v is the m axim um  (lumped) age class. R ecru itm en t  
fluctuation is accounted loi by die introduction o f  (j), which measures the difference 
between the realized recruitment and the value expected from the s to c k -re c ru i t  
relationship.

Were there no fluctuations in births (i.e. cjy ~  1), the resource would be assumed to 
be at its pre-exploitation level, with the corresponding age structure, at the start o f  
harvesting (year y¡).  Instead, because o f  historical fluctuations in births, the sizes o f  the 
cohorts at the start o f  year yq are drawn from distributions that allow for this 
fluctuation, and the initial biomass is thus similarly distributed about the corresponding 
deterministic pre-exploitation level. The initial numbers at age are given by the 
equations:

a =  0

a =  x
( B. l )

A ’

(B.2)

(B.3)

where /?o is the num ber o f  O-year-olds at the deterministic equilibrium that corresponds
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to an absence o f  harvesting, and <fu is the recruitment multiplier for age a. Note that the 
equation for the plus-group does not incorporate a recruitment variability term, because 
this group comprises a large num ber o f  age classes which will largely dam p out this 
effect. The value o f  R{) is calculated from the value for the average pre-exploitation 
equilibrium exploitable biomass at the start o f  the year, Bo, using the equation:

i  V 1 -,-A/ Ï

R<> =  ß o / , |  Z J  w « s “ e  a "  +  " ' . V  , „  j  <B -4 >

where \\\, is the weight o f  a fish o f  age a at the start o f  the year.
The s to c k -re c ru i t  relationship is often re-parameterized in terms o f  B{) and the 

"steepness’ o f  the s tock -rec ru i t  relationship ( ‘s teepness’ is defined as the fraction o f  
the virgin num ber o f  births expected when the spawner stock size is reduced to 20%  o f  
its virgin size (Francis, 1992)):

(1 -  h)B0
4 h

i -  1

4 Hb {)

Bo — aM + ./«

{ 5 h - \ ) B 0
P =  —  ------ (B .5)

e -xM

e - M
a= 1

The fishing mortality during year y, is obtained by solving the equation:

r  — w“+ 1 !2  ̂ ~  e ( U tSilF} )  ̂ (B 6)

where Cv is the catch (in weight) during year y .
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