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Bayesian stock assessm ent using a state-space 
implementation of the delay difference model
Renate Meyer and Russell B. Millar

Abstract: This paper presents a Bayesian approach to fisheries stock assessment using the delay difference model to 
describe nonlinear population dynamics. Given a time series o f annual catch and effort data, models in the Deriso- 
Schnute family predict exploitable biomass in the following year from biomass in the current and previous year and 
from past spawning stock. A state-space model is used, as it allows incorporation o f random errors in both the 
biomass dynamics equations and the observations. Because the biomass dynamics are nonlinear, the common Kalman 
filter is generally not applicable for parameter estimation. However, it is demonstrated that the Bayesian approach can 
handle any form of nonlinear relationship in the state and observation equations as well as realistic distributional 
assumptions. Difficulties with posterior calculations are overcome by the Gibbs sampler in conjunction with the 
adaptive rejection Metropolis sampling algorithm.

Résumé : Cet article présente une analyse bayésienne appliquée à l’évaluation des stocks de poissons utilisant le 
modèle à différences retardées pour décrire une dynamique des populations non linéaire. Avec une série temporelle de 
données de prises et d’effort, les modèles de la famille Deriso-Schnute prévoient la biomasse exploitable de l’année 
suivante à partir de la biomasse de Tannée en cours et de Tannée précédente ainsi qu’à partir du stock passé de 
reproducteurs. On utilise un modèle d’espace-d’états qui permet d’incorporer les erreurs aléatoires dans les équations 
de la dynamique de la biomasse et dans les observations. Comme la dynamique de la biomasse est non linéaire, on ne 
peut généralement appliquer le filtre de Kalman commun pour l’estimation des paramètres. Cependant, on démontre 
que l’analyse bayésienne peut traiter toute forme de relation non linéaire dans les équations d’état et d’observation de 
même que les hypothèses de distribution réalistes. On peut résoudre les difficultés liées aux calculs postérieurs en 
recourant à Téchantillonneur de Gibbs avec l’algorithme d’échantillonnage de Metropolis à rejet adaptatif.

[Traduit par la Rédaction]

Introduction
Delay difference models bridge the gap between complex 

fully age-structured models and simple surplus production 
models (e.g., for a review, see Hilbom and Walters 1992). 
Whereas the age-structured methods model the population 
cohorts in numbers-at-age and are usually applied to catch- 
at-age data, the simpler surplus production models can be fit 
when only catch and effort data are available, e.g., in situa­
tions where it is impractical, difficult, or expensive to age 
the species. However, the surplus production models sacri­
fice biological realism in the description o f biomass dynam­
ics for the sake o f mathematical simplicity.

Population dynamics models in general relate exploitable 
biomass in year t + 1 to biomass, growth, recruitment, natu­
ral mortality, and catch in the previous year t. Surplus pro­
duction models (Schaefer 1954; Pella and Tomlinson 1969; 
Fox 1970) in particular aggregate the terms for growth, re­
cruitment, and natural mortality into one combined term 
called “surplus production”. They have been popular and
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widely used in practical stock assessment because the mod­
els are parsimonious in the number o f parameters, simple fit­
ting procedures are readily available (Polachek et al. 1993), 
and they produce “management” parameters such as maxi­
mum sustainable yield and virgin biomass. On the other 
hand, the complex age-structured models (Fournier and 
Archibald 1982; Megrey 1989) enjoy greater credibility in 
the stock assessment community, and more detailed manage­
ment decisions, such as size limitations and gear mesh size 
restrictions, can be based on their outcomes (Hilbom and 
Walters 1992; Punt et al. 1995). However, this is typically at 
the expense o f obtaining comprehensive age information 
(but also see Francis 1992; McAllister et al. (1994) for ap­
plications where fully age-structured models are fit to rela­
tive abundance data) and o f making assumptions on 
vulnerability and growth.

The delay difference model was developed by Deriso 
(1980), and its important contribution to fisheries population 
theory was realized immediately (Walters 1980). Deriso’s 
(1980) model was generalized by Schnute (1985) and ex­
tended to length-structured data by Fournier and Doonan 
(1987) and Schnute (1987). Delay difference models can be 
placed conceptually midway between surplus production and 
catch-at-age models. They do not attempt to aggregate terms 
for recruitment, growth, and natural mortality into surplus 
production but retain individual parameters for these in the 
model. Thus, in contrast with the surplus production models, 
the parameters o f the delay difference model preserve their 
biological interpretability and practical significance. Like
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catch-at-age methods, they can be termed “age structured”, 
as they make initial detailed assumptions on the biomass dy­
namics in each age-class. These age-specific equations, 
however, are collapsed into just one equation for the entire 
population. Hence, no age data are required for fitting delay 
difference models, making them applicable to most fisheries. 
The delay difference model thus captures the advantages of 
both classes: like the fully age-structured model, it has a 
sound footing in biological theory, yielding parameters of 
immediate practical biological relevance while at the same 
time retaining the one-dimensional biomass dynamics and 
data requirements o f the ad hoc surplus production models. 
Information on growth, age at recruitment, and natural mor­
tality that it needs is often available from independent 
sources.

As has been pointed out in the literature (Pella 1993; 
Polachek et al. 1993), two stochastic components have to be 
taken into account when fitting population dynamics mod­
els: natural variability underlying the annual biomass dy­
namics transitions (process error) and uncertainty in the 
observed abundance indices due to measurement and sam­
pling error (observation error). Both process and observation 
error can be incorporated in a very natural way by casting 
the problem into the framework o f  dynamic state-space 
modeling o f modem time series methodology (e.g., Fahrmeir 
and Tutz 1994). State-space models relate time series obser­
vations (here the relative abundance indices {/,}, e.g., catch 
per unit effort (CPUE) from commercial fisheries) to unob­
served states (here the biomasses {Bt}) by a stochastic ob­
servation model for It given B,. The states are assumed to 
follow a stochastic transition model (here the delay differ­
ence model). Given the observations {ƒ,} the estimation o f 
the states B„ t = 1,..., N, is the primary goal o f statistical in­
ference, termed “filtering” for t  = N, “smoothing” for t < N, 
and “prediction” for t > N. Thus, by treating the annual 
biomasses as unknown states, one explicitly allows for sto- 
chasticity in the populations dynamics through specification 
o f their conditional distribution given previous states, further 
unknown model parameters, and explanatory variables (such 
as catch). At the same time, the observations are linked to 
the biomasses and measurement error is encompassed by 
specifying the conditional distribution o f each observed rela­
tive abundance index given the state o f the stock in that 
year.

State-space models have been successfully applied in en­
gineering, economics, management science, and biology 
(West and Harrison 1997). A number o f prominent time se­
ries models, e.g., autoregressive moving-average, structural 
time series, and dynamic regression models, can be de­
scribed and dealt with in a flexible and unifying way. State- 
space models have only recently been introduced and ap­
plied in fisheries modeling (Sullivan 1992; Pella 1993; 
Schnute 1994; Kimura et al. 1996; Reed and Simons 1996) 
using the classical maximum likelihood (ML) approach to 
parameter estimation. For approximately normally distrib­
uted data and linear state transitions, the famous Kalman fil­
ter (Kalman 1960) has found numerous applications in the 
ML analysis o f time series data (e.g., West and Harrison 
1997). The Kalman filter depends crucially on the linearity 
o f state-space equations, which is generally not warranted in 
delay difference or surplus production models. Even the ex­

tended Kalman filter for nonlinear models (e.g., Pella 1993; 
Gudmundsson 1994) relies heavily on linear approximations.

Although the ML approach has been well explored, a 
Bayesian approach to state-space modeling in fisheries is 
still outstanding. There have been recent Bayesian stock as­
sessment analyses using population dynamics models (Mc­
Allister et al. 1994; Rafiery et al. 1995; Kinas 1996; 
McAllister and Ianelli 1997), but none o f these have em­
ployed a state-space model and none have successfully in­
corporated both process and observation error, as detailed in 
the discussion at the end o f this paper.

We will show that a Bayesian approach (Carlin et al. 
1992; Gamerman 1997) can handle any form of nonlinearity 
in the state and observation equations as well as realistic dis­
tributional assumptions. The biologically meaningful inter­
pretations o f the parameters in a delay difference model 
permit one to make efficient use o f auxiliary information on 
growth or natural mortality in the elicitation o f prior distri­
butions. This makes a Bayesian approach particularly attrac­
tive for fitting delay difference models. More compelling 
reasons why a Bayesian technique should be the method of 
choice for stock assessment are given in Punt and Hilbom 
(1997). Trying to avoid an engagement in philosophical de­
bates about the foundations o f statistics (the interested 
reader is referred to Berger and Wolpert 1988), we would 
like to emphasize the pragmatic advantages o f Bayesian in­
ference (Gelman et al. 1995). Its flexibility and generality 
allow one to cope with very complex problems through the 
quantification o f uncertainty and application o f the Bayes’ 
rule (eq. 5). Fitting complicated, highly nonlinear multipara­
meter models, such as those in fisheries population dynam­
ics, is possible within the Bayesian paradigm. Consequently, 
we propose a fully Bayesian approach to statistical inference 
in the delay difference model by an integration into the 
scheme o f nonlinear state-space models. Following Carlin et 
al. (1992), we advocate the Gibbs sampler for posterior com­
putation in nonlinear state-space models for its ease of im­
plementation, and we demonstrate its effectiveness. The 
Gibbs sampler, as described for instance in Casella and 
George (1992), Tiemey (1994), and O’Hagan (1994), is a 
special Markov chain Monte Carlo (MCMC) method that 
uses each o f the one-dimensional full conditional posterior 
distributions in turn to generate a sample from the joint pos­
terior distribution o f all the unknowns.

The paper is organized as follows. In the first section, we 
set up the assumptions and specifications for the delay dif­
ference equations that describe the population dynamics. 
The second section introduces the general Bayesian setup 
for parameter estimation and the computational techniques 
to calculate the posterior distributions. Prior and likelihood 
specifications for a specific delay difference model are given 
in the third section, and the fourth section describes the 
Gibbs sampling approach including the calculation o f  the 
full conditional densities. The fifth section illustrates the 
feasibility o f the proposed Bayesian analysis using the data 
set on yellowfin tuna (Thunnus albacares) previously ana­
lyzed by Kimura et al. (1996) and contrasts the results ob­
tained by the two distinct approaches. It is also compared 
with results obtained from a surplus production model, im­
plemented as described in Millar and Meyer (1998). As the 
ultimate objective o f Bayesian stock assessment is to pro­
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vide fisheries management with risks o f alternative manage­
ment options, we point out how the results obtained from the 
Bayesian analysis can be used for decision analysis. This is 
the topic o f  the sixth section. The final section closes with a 
discussion on the general merits, flexibility, and potential o f 
the novel approach proposed.

Delay difference population dynamics
We proceed from data information given in the form o f a 

time series o f catches { C jjl, and relative abundance indices 
{ I , } in years t = 1,... N. To derive the deterministic delay 
difference equations (Hilbom and Walters 1992), specific as­
sumptions on the stock’s weight-age relationship and natural 
mortality are needed and will be specified in the following. 
We make the usual assumption o f so-called “knife-edged re­
cruitment” o f fish at age a = k  years but note that Deriso 
(1980) provided an approach for also allowing incomplete 
recruitment to be modeled. The mean weight o f an a-year- 
old fish is assumed to be a linear function of the weight-at- 
age a -  1 :

( 1) (oa = a  + pco„_i for a > k.

The model implies that the annual weight increment de­
creases by the factor p as cùa+, -  (0„ = p(coa -cq,_,), where 
0 < p < 1 is Ford’s growth coefficient. Some straightforward 
mathematical manipulations show the equivalence to 
Schnute’s (1985) generalization o f Deriso’s (1980) growth 
model:

1 - o l+ye%+; = + (e* -  «%_,) — -K—  for j  > 0
1 - p

where (s\+j  is the weight o f a (k  + y)-year-old fish and is
the prerecruitment weight (assumed to be 0 in Deriso’s 
(1980) original formulation). In the following application,
the growth parameters p and to = —rl are assumed to be

known, i.e., assessed from independent sources o f informa­
tion, to compare results with those in Kimura et al. (1996). 
In general, however, these may well be regarded as un­
known model parameters.

Let NaJ denote the population number at age a in year t. 
Assuming that all ages o f recruited fish have equal natural 
mortality and are equally vulnerable to the fishery, the an­
nual change for each cohort is described by

(2) ^a + t,l+ l =  St ^ a , l

where s, denotes the total survival probability in year t. We 
assume that fishing takes place in a pulse at the start o f  each 
year so that under independence o f fishing and natural mor­
tality:

B — Cwhere s f  = — L and the natural survival probability
Bt

s n _  e-M js constant (and assumed to be known in the prac­
tical application discussed later on in order to make results 
comparable with those o f  Kimura et al. (1996), but M  can in 
general be regarded as an additional parameter to be esti­

mated in the Bayesian framework). Let R, denote total 
biomass o f recruits assumed to enter in a pulse in year t.

Under the above assumptions on growth, mortality, and 
the fact that the total biomass B, o f the stock that is fully 
vulnerable to fishing at the start o f year t can be written as

(3) =
a-k

the cohort population dynamics equation can be collapsed 
into one delay difference equation, predicting the biomass in 
the next year as a linear function o f  the biomass in the cur­
rent and the previous year and the biomass o f  new recruits 
added to the stock. For details on the actual derivation, the 
reader is referred to Schnute (1985) or Hilbom and Walters 
(1992, pp. 332-335). The stochastic version in terms o f  ex­
pected biomass (suppressing the conditioning on p, to, M, q, 
R,, Rl+h and fixed catches C, and CM ) is expressed as

(4) ë[5(+, I B„ 5(-, ] = (1 + P -  C,)

- pe-2M (A j_C Á (B¡ í _ Cm)
Bt

-  R, + R,+\ fo ri  = 2 ,..., N
Bt

= for t = \ , . . . ,N

assuming that the observed relative abundance index is pro­
portional to the total biomass. This is a simplifying assump­
tion that is often made but often not realistic, as catchability 
might increase with decreasing stock size, for instance. If 
this is suspected, time-dependent catchability parameters 
should be specified in the model. We presume that prior to 
fishing, the stock is in dynamic equilibrium about its carry­
ing capacity, K. This complements the state equations above 
with those for the first 2 years:

6[£, ] = K

fi[*21B, ] = e~w(l + p -p e~ MW  - C t)
u ( ß \  -  C.)-p toe  — ------- R ,  + R 2 .

B \

The first mathematical techniques employed for parameter 
estimation in the delay difference model were ML under the 
assumption o f a normal distribution for process error only 
(see Hilbom and Walters 1992) and nonlinear least squares, 
allowing only for observation error by treating the biomass 
dynamics delay difference equations as deterministic (Punt 
1988; Ludwig and Walters 1989). However, the extreme in­
fluence o f the presumed ratio o f  the measurement and pro­
cess error variances on parameter estimates is well known 
(Ludwig and Walters 1981; Schnute 1989, 1991; Pella 1993; 
Polachek et al. 1993). Using a state-space implementation, 
we will be able to account for both observation and process 
error.

Schnute (1994) commented on two problems associated 
with ML estimation in state-space fisheries models: the ne­
cessity to solve high-dimensional integrals when calculating 
the likelihood function and the inability to estimate the un­
known states, although they have as much biological impor-
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Table 1. Catch (millions of pounds) 
and CPUE (pounds per boat-day) data 
from Pella and Tomlinson (1969).

Year Catch CPUE
1934 60.9 10 361
1935 72.3 11 484
1936 78.4 11 571
1937 91.5 11 116
1938 78.3 11 463
1939 110.4 10 528
1940 114.6 10 609
1941 76.8 8 018
1942 42.0 7 040
1943 50.1 8 441
1944 64.9 10019
1945 89.2 9512
1946 129.7 9 292
1947 160.2 7 857
1948 207.0 8 353
1949 200.1 8 363
1950 224.8 7 057
1951 186.0 10 108
1952 195.3 5 606
1953 140.0 3 852
1954 140.0 5 339
1955 140.9 8 191
1956 177.0 6 507
1957 163.0 6 090
1958 148.5 4 768
1959 140.5 4 982
1960 244.3 6817
1961 230.9 5 544
1962 174.1 4 120
1963 145.5 4 368
1964 203.9 4 844
1965 180.1 4 166
1966 182.3 4513
1967 178.9 5 292

tance as the unknown model parameters. He came to the 
conclusion that both problems can be addressed by shifting 
to a Bayesian perspective. Even as early as 1980, Deriso 
mentioned in his discussion that it might be possible to im­
prove on parameter estimates by taking a Bayesian approach 
in assigning prior probability distributions to certain parame­
ters based on information about growth, recruitment, and 
catchability, which is often available from independent as­
sessments. Yet, at that early stage, Bayesian approaches 
were hindered by computational problems o f the multipara­
meter integrations needed to calculate posterior probability 
distributions. These impediments have been overcome by 
the immense progress made within the last decade in Bayes­
ian computational technology via MCMC methods (see 
Gilks et al. 1996 for an introduction). MCMC approaches to 
dynamic models represent some o f the currently critical re­
search frontiers in Bayesian time series modeling. To en­
courage thier use in fisheries, the Bayesian approach to the 
analysis o f nonlinear state-space models is explained in the 
next section.

General framework for Bayesian stock 
assessm ent

The Bayesian paradigm enables the stock assessment sci­
entist to include substantive knowledge as well as subjective 
opinion into the analysis through the elicitation o f informa­
tive priors for the model parameters. Thus, he or she can 
make full use o f  the whole collection o f historical experi­
ence and incorporate basic biological knowledge, expert 
judgment, and information from inferences for related spe­
cies and stocks.

The Bayesian approach to stock assessment in general 
consists o f two conceptually and practically distinct steps: 
(0  constructing a full probability model that consists o f a 
joint probability distribution for all observable (here the 
CPUEs) and unobservable quantities (here the biomasses 
and model parameters) and (ii) by conditioning on the ob­
served data, calculating the posterior distribution, i.e., the 
conditional probability distribution o f the unobservables o f 
interest, given the observed data.

In the first step, the joint probability density p (y, 0) of the 
observations y = ( y y v) and the unobservables 0 = (0lv .., 
0„) can be written as the product o f two densities, referred to 
as the prior density y(0) and the sampling density or likeli­
hood function />(y|0):

/>(y,0) = p(0)p(y|0)'
In light o f the data, our opinion as to the state of nature is 
then updated to the posterior distribution. Conditioning on 
the known value o f y and using the fundamental Bayes’ rule 
yields the posterior

(5) m  y) = Ä Ö 1 0 )  oc p(0)p(y\ 0)
p(y)

because p (y) is independent o f 0 and regarded as a normal­
ization constant. One could then marginalize the joint poste­
rior over certain components o f 0 to obtain characteristics of 
0 o f interest, such as the posterior mean, median, or mode of 
a specific component 0,. If one is interested in a certain 
function c|> = g(0), its posterior density can be derived by 
multiplying /»^'(((ijly)) by the absolute value o f the determi­
nant o f the Jacobian o f  g -1^)-

Thus, the second step, although conceptionally easy, is in­
deed a formidable problem in general because it requires 
high-dimensional integration to obtain the normalization 
constant p (y) and to calculate one-dimensional characteris­
tics, and possibly further differentiation to compute posterior 
distributions o f transformations. Before the development o f 
MCMC, there were essentially three different approaches to 
handle this multidimensional integration (for an overview, 
see Evans and Swartz 1995): (j) asymptotic approximations 
like the normal approximations based on Taylor series ex­
pansion o f the logarithm o f the posterior density around its 
mode, and the more precise Laplace approximations 
(Tierney and Kadane 1986), (ii) numerical integration via 
Gaussian quadrature techniques (Gamerman 1997, 
chap. 3.3), and (iii) Monte Carlo integration via the hit-and- 
miss method (Rubinstein 1981), the more efficient impor­
tance sampling (O ’Hagan 1994), and sampling/importance 
resampling (SIR) (Rubin 1987, 1988; Smith and Gelfand
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1992). Laplace expansion relies on large sample asymptotics 
and the approximations can be very bad in small-sample sit­
uations. Gaussian quadrature suffers from the curse of 
dimensionality in that the amount o f computation rises expo­
nentially with the number o f parameters. Monte Carlo inte­
gration via importance sampling substitutes the deterministic 
integration by a statistical estimation problem, that o f esti­
mating the mean of a certain multivariate distribution. This 
can be done by drawing a random sample and estimating the 
expectation by the sample mean. Although applicable to 
high-dimensional problems, the conventional Monte Carlo 
methods can be very inefficient in certain situations. For a 
more detailed criticism of Monte Carlo integration from a 
Bayesian point o f  view, see O ’Hagan (1987). The efficiency 
of the SIR algorithm depends heavily on the importance 
density, which should be chosen close to the joint posterior 
density and have heavier tails to ensure an adequate cover­
age o f  the relevant posterior regions. This will be hard to 
achieve in high dimensions. Asymptotic approximations and 
numerical integration not only require a high degree o f 
mathematical sophistication of the data analyst but also cus­
tomizing the estimation routine to each specific problem. A 
major breakthrough for the routine implementation of Bay­
esian inference was the realization that any high­
dimensional integration can be performed by using MCMC 
methods of which the Gibbs sampler is an important special 
case.

Instead o f generating a sequence o f independent samples 
from the joint posterior, in MCMC, a Markov chain is con­
structed whose equilibrium distribution is just the joint pos­
terior. Thus, after running the Markov chain for a certain 
“burn-in” period, one obtains (correlated) samples from the 
limiting distribution (provided that the Markov chain has 
reached convergence). Asymptotic theory ensures that aver­
aging of a function o f  interest over realizations from a single 
run o f the chain provides a consistent estimate o f its expec­
tation.

The Gibbs sampler is a specific MCMC method where in 
a cycle, we sample from each o f the full conditional distri­
butions

T’(0,l 0,-i, e,-+1,..., e„)
suppressing the dependence o f  the conditional posteriors 
upon y.

Given an arbitray set of starting values 0{oi,..., 0(„o) the al­
gorithm proceeds as follows:

Simulate e j"  ~ p(6, |e '0), . . . , 6<0))

Simulate 0 ^  ~ ^ l O j 1» ,© ^ ,...,© ^ )

these. Once a sample {(0,m), . . . , 0 i'"\ m = 1, . . . , k) from 
the joint posterior is available, note the ease with which a 
sample from the marginal posterior distribution o f 0,, say, 
and the posterior distributions o f any function g(0) can be 
obtained. These are simply given by {0jm), m = 1, . . . , k) 
and {g(0(m>, m =  I , . . .  ,k ,  respectively, and there is no need 
for high-dimensional integration or differentiation, respec­
tively.

We will follow these two fundamental steps in a Bayesian 
stock assessment o f yellowfin tuna in the eastern tropical 
Pacific Ocean using a state-space implementation of the de­
lay difference model. The data, consisting o f  catch in mil­
lions o f pounds and CPUE in pounds per boat-day for the 
years 1934-1967, are taken from Pella and Tomlinson 
(1969) and are listed in Table 1. The data set has been previ­
ously analyzed by Kimura et al. (1996) using the Kalman 
filter. We chose this historical data set to demonstrate the vi­
ability o f our nonlinear state-space approach via Gibbs sam­
pling and to compare results with those o f ML estimation 
via Kalman filtering.

Constructing the joint probability model
In order to make results comparable with the analysis by 

Kimura et al. (1996), we make the same assumptions on the 
fixed model parameters. We assume linear growth in weight- 
at-age, i.e., p = 1, co= 0, and an instantaneous natural mortal­
ity rate o f M  = 0.6. Recruitment is assumed to be constant 
for all years, i.e., R, = R  for all t = 1,...,N = 34, and not equal 
to the equilibrium recruitment (Kimura et al. 1996) to allow 
for the possibility o f a change in recruitment with the onset 
o f fishing.

As an initial Gibbs sampling implementation in terms of 
total biomass exhibited extremely slow convergence, we di­
vided the state equations by K  to avoid high correlations be­
tween the states and carrying capacity. Thus, expressing the 
unknown total and recruitment biomasses as proportions of 
carrying capacity K, i.e., by the transformations

P, — , k  = — , r  = — , and Q = qK  
K  K  K

in eq. 4, we obtain a nonlinear state-space model with state 
transition equations

(6) Pl = l+ u l

P2 = e~Ai(l + p -  pe~w)(/j - k C {)

4- r 1 -pcoe - k C ù + u2

Simulate 0 «  ~/>(0J 0('>..., 0 ^ ,)

and yields (0{'”,>. . . ,Q(nm>) after m such cycles. This defines a 
Markov chain with transition kernel &(0(m+1), 0 (“>) = n "=1 
p(Q\m+'} I 0jm+l), . . . , 0f t+1>, 0j“>, . . . , 0<,m>) that converges 
to the joint posterior as its equilibrium distribution (see 
Gilks et al. 1996).

Consequently, i f  all the full conditional distributions are 
available, all that is required is sampling iteratively from

PM  = ( 1 + P  )e -" (P ,-A C f)

_ * c M )
P<

+ r 1 -p tu e -a{ (P .-k C ,)
P,

+ ut+ j fo rt = 2 , . . . ,N

and observation equations

(7) I t = QPt + v, fo r t
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We assume independent normal errors for {u,} and {v(}. 
Specifically, u, ~ N(0, o 2) and the CPUEs are given approxi­
mately constant coefficient o f variation by assuming the v, to 
be N(0, wtx2 ) with weights w, proportional to the squared fit­
ted values obtained from a nonlinear robust smoothing of 
the CPUE time series by means of running medians (using 
the SPLUS function “smooth”). The weights are standard­
ized by wN = 1 so that vjV ~N(0, x2).

The unobservables in the delay difference model are (k, r, 
Q, a 2, x2, Pi,..., PlV). The joint prior density is given (using 
a repeated application o f Bayes’ theorem) by

(8 ) /)(A:,/-,ô,a2, x2,P x,.. . ,P n )

= p(k, r, Q, G2, x2)p (P])p (P2\ Pu k, r, a 1)
N

* Y [ m P t-u P t- 2, k , W ) .
1=3

The specification of prior distributions in a Bayesian anal­
ysis is one o f the most controversial issues. Walters and 
Ludwig (1994) and Punt and Hilbom (1997) gave some gen­
eral guidelines for selecting priors for parameters o f stock 
assessment models. Following the advice o f Punt and Hil­
bom (1997) o f a pragmatic choice between informative and 
noninformative priors, we put informative priors on r  and x2 
and noninformative priors on K, Q, and G 2 . As our prior in­
formation does not permit the specification o f a prior corre­
lation structure among the parameters, we assumed them to 
be independent.

The K, Q, and g 2 can be regarded as scale parameters and 
a noninformative prior is therefore uniform on a log scale. 
An informative prior could in principle be constmcted for r 
from recruitment data o f related species and stocks. Here, 
we choose to construct a vague prior on r  by using informa­
tion on natural mortality o f yellowfin tima. With the assump­
tion of linear growth-at-age, i.e., p = 1 and co= 0 in eq. 1, 
and using eqs. 2 and 3, one would expect a proportion o f re­
cruitment biomass to carrying capacity

r(M) = ------------- î--------------
Z~=1a exp(-A7(a - 1))

depending on the instantaneous natural mortality rate M  if 
the stock were in equilibrium. Hennemuth (1961) analyzed 
length-frequency data o f yellowfin tuna in the eastern Pa­
cific from 1954 to 1959 to obtain an estimate o f M  o f 0.77 
with 95% confidence limits o f 0.64 and 0.9. Schaefer (1967) 
considered the lowest and highest probable values to be 0.55 
and 1.05. Until recently, the value M  = 0.8 was used by the 
Inter-American Tropical Tuna Commission in age-structured 
assessment models; however, Francis (1977) concluded from 
simulations that 0.8 was too high and recommended M  = 
0.6. We therefore use M  = 0.2 and M  = 1.0 to construct a 
lognormal prior for r with 10% quantile equal to r(0.2) = 
0.155 and 90% quantile equal to r(1.0) = 0.445.

In practice, informative priors can be constructed for the 
observation error variance based on information about the 
sampling design. Here, as in Carlin et al. (1992), we choose 
a vague conjugate inverse gamma distribution for x2 with 
mean and standard deviation equal to 250 000.

The sampling distribution (i.e., the likelihood function) is 
given by

N

= Y [ p in p „ Q ,x 2).
r=i

In the following section, we describe an MCMC technique 
to sample from the posterior distribution.

Sampling from the posterior distribution
The large number o f  unobservables (34 states plus five 

parameters) clearly rules out numerical techniques to do the 
required integrations. In their recent review on the Bayesian 
approach to fisheries stock assessment and decision analysis, 
Punt and Hilbom (1997) described three Monte Carlo meth­
ods for posterior calculations: grid search, the Metropolis- 
Hastings (MH) algorithm, and the SIR algorithm. They fa­
voured the last two algorithms because o f their superior per­
formance. The SIR algorithm has been successfully applied 
in Bayesian stock assessment using relative abundance data 
by McAllister et al. (1994), Raftery et al. (1995), and Kinas
(1996) and using catch-age data by McAllister and Ianelli
(1997). However, its efficiency depends crucially on the de­
velopment of a good importance function that gives a rea­
sonable approximation to the posterior. A frequently used 
candidate is the prior, a choice that can be very inefficient. 
McAllister and Ianelli (1997) suggested a multivariate t den­
sity, which requires a nonlinear minimization to find the 
posterior modes and an estimate o f  the inverse of the Hes­
sian matrix o f the posterior density. This makes the use of 
the SIR algorithm rather complicated and computationally 
expensive. Therefore, we suggest the Gibbs sampler, which 
requires generating from merely univariate densities without 
the necessity o f calculating derivatives and the use o f nu­
merical optimization procedures.

A Gibbs sampling approach to dynamic nonlinear state- 
space models has been proposed by Carlin et al. (1992). This 
is the approach taken here for the implementation o f state- 
space delay difference models.

First, we have to calculate the univariate full conditional 
posterior densities for all 39 unobservables in the model. 
The full conditional posterior density (up to a constant of 
proportionality) o f a certain parameter 0, can be constructed 
from the joint posterior o f 0, the product o f eqs. 8 and 9, by 
simply extracting the terms that involve 0,-. The forms of the 
full conditional densities for the unobserved quantities are 
given in the Appendix.

Since we use a conjugate prior for x2, its full conditional 
posterior density is again inverse gamma. Similarly, the full 
conditional posterior density o f G2 is inverse gamma. Due to 
nonlinearity in the state equations, the full conditionals for 
the states P, and the parameters k, r, and Q are rather com­
plex. A simple rejection method (Devroye 1986), as pro­
posed by Carlin et al. (1992), is no longer feasible because 
the acceptance probability would be too close to zero to be 
efficient. Therefore, we used the recently developed MCMC 
method o f adaptive rejection Metropolis sampling (ARMS) 
(Gilks et al. 1995; Gilks and Neal 1997) to sample from an 
arbitrarily complex and not necessarily log-concave density.
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This is a “Metropolized” version of adaptive rejection sam­
pling, which uses rejection sampling to drive a Markov 
chain that converges to the full conditional posterior. Similar 
to rejection sampling, it only requires the full conditional 
density to be known up to a normalization constant. Like the 
derivative-free version o f adaptive rejection sampling for 
log-concave densities, ARMS constructs an envelope func­
tion without specifying derivatives. A subroutine written in 
programming language C is available in Gilks et al. (1995).

We use ARMS to simulate not only from the full condi­
tionals for P„ k, r, and Q  but for all other unobservables. The 
use o f fast generators for normal and inverse gamma vari­
ables (e.g., Devroye 1986) could accelerate the implementa­
tion; however, we observed adequate performance with the 
universal method.

Comparison of results
We performed 250 000 cycles of the Gibbs sampler and 

thinned the chain by taking every 25th observation to avoid 
highly correlated values. For the remaining 10 000 samples, 
we used a bum-in o f 1000, which yielded a final chain of 
length 9000.

Extensive convergence diagnostics were calculated for the 
states ƒ*,, P 34, and ^35 and the parameters K, r, Q, a 2, and I 2 
using the CODA software o f Best et al. (1995). All chains 
passed the Heidelberger and Welch (1983) stationarity and 
halfwidth test. The Raftery and Lewis (1992) convergence 
diagnostics confirmed that the thinning, bum-in period, and 
minimum sample size were sufficient. Lags and autocor­
relations within each chain were reasonably low. Geweke’s
(1992) Z scores do not fall within the extreme tails o f a stan­
dard normal distribution, suggesting that the chain fully con­
verged. Trace plots and kemel estimates for the marginal 
posterior densities for the above unobservables are listed in 
Fig. 1. The prior density is shown as well for those parame­
ters with a proper prior distribution. Kemel density esti­
mates o f the marginal prior densities for the states -P|> ? n> 
and PN= 1 were obtained by using the Gibbs sampler to sam­
ple from the joint prior (eq. 8). Summary statistics including 
mean, standard deviation, and the 25, 50, and 75% quantiles 
are given in Table 2.

As can be seen from the kemel density plot in Fig. 1, the 
posterior distribution o f carrying capacity K  is positively 
skewed, with posterior mean close to the upper quartile. An 
interquartile range from 852 * IO6 to 1890 x 10 lb (1 lb =
0.454 kg) for K  captures the two virgin biomass estimates of 
1300 x io 6 and 950 x IO6 lb given by Kimura et al. (1996) 
under two different assumptions on the error variances. 
Pella’s (1993) analysis using a Kalman filter implementation 
o f a surplus production model gives a carrying capacity esti­
mate o f 1415 x IO6 lb, which is midway between the poste­
rior median and mean o f K  in Table 2.

The posterior medians o f  the biomasses vary from 453 x 
IO6 to 1180 x IO6 lb over the period from 1934 to 1967 and 
compare with a biomass range o f 400 x IO6 to 1000 x IO6 lb 
from Kimura et al.’s (1996) analysis (under the assumption 
of predominantly measurement error) and a biomass range 
of 500 x io 6 to 1500 x io 6 lb from Pella’s (1993) analysis 
(under the assumption o f mainly process error). As for the 
forecasting problem, the delay difference model predicts a

biomass with posterior mean equal to 51.1 ± 14.3% of carry­
ing capacity for the following year, 1968.

Kimura et al. (1996) analyzed this data set by ML using 
the Kalman filter. This requires that all parameters enter lin­
early in the process and observation equations. However, the 
delay difference equations (written as in Kimura et al. 1996)

B,+\ = ( l + p ) í I5 r - p i , í (_lR(_, + R,+l -p(ùs,R,

are nonlinear in Bl_l and B, (even though not apparent at first 
sight) through the dependence o f the annual survival rates s, 
on Bt. Kimura et al. (1996) eluded nonlinear dependence of 
the annual survival rates s, (= , where Ft is the instan­
taneous fishing mortality) on the biomass B, by numerically 
solving the Baranov catch equations

Ct =B,Ft 0 - M - F .

M  + F,

sequentially for F„ t = 1,..., N, once the biomass B, was ob­
tained through forward projection via the Kalman filter. This 
amounts to treating the unknown biomasses deterministi- 
cally instead o f as random. In their delay difference model, 
process error is interpreted strictly as the variation o f recruit­
ment only, ignoring variability due to growth, survival, and 
possibly other environmental sources. Therefore, the un­
known parameters to be estimated in Kimura et al.’s (1996) 
model reduce to virgin biomass B0, recruitment R, and the 
catchability q.

Our Bayesian approach gives estimates o f the variability 
o f unknown process and measurement errors in the form of 
posterior densities for the process and measurement error 
variances o 2 and x2, respectively. In contrast, both o 2 and T2 
were assumed to be known in the Kalman filter implementa­
tion o f Kimura et al. (1996). Although all parameters includ­
ing the process and measurement error variances can be 
estimated using the Kalman filter when their ratio o 2/x2 is 
known, Kimura et al. (1996) observed that the estimation of 
the ratio from the data is impractical, as the likelihood func­
tion appears to be insensitive to this ratio. Pella (1993) gave 
ML estimates o f 02 = 32 775 and x2 = 46 but commented 
that measurement error might be underestimated by the Kal­
man filter methodology.

Kimura et al. (1996) analyzed the data under two different 
variance assumptions: (1) o2 = 32 775 and x2 = 46 (using 
Pella’s (1993) estimates) and (2) 02 = 1000 and x2 = 5000. 
These values for x2 seem far too low in the light of our 
Bayesian analysis, which gives a posterior mean for x2 of 
260 000. The two scenarios therefore are not quite ade­
quately reflecting the situation o f mainly process error (as­
sumption 1) and mainly measurement error (assumption 2) 
as intended. The posterior mean o f x2 is slightly higher than 
its prior mean o f 250 000, but its posterior standard devia­
tion is considerably reduced from 250 000 to 160 000. Fur­
thermore, we observed a negative posterior correlation of 
-0.48 between x2 and 0 2.

We also fitted a surplus production model to the data. For 
the surplus production term that aggregates growth, recruit­
ment, and natural mortality, we used the two-parameter

Schaefer (1954) function g(B) = &ß|l — ̂  j ,  where K  is the 

carrying capacity and ,s the so-called “intrinsic growth rate” .
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Fig. 1. Graphs on the left show trace plots of the MCMC simulations for (a) carrying capacity K, (b) recruitment r, (c) catchability Q, 
(.d) process error variance a 2, (e) observation error variance x2, (/) depletion in year 1, P¡, (g) depletion in year N, PN, and 
(A) depletion in year N  + 1. Pn+ i- Graphs on the right show the corresponding prior marginal densities (broken lines) and the kemel 
estimates o f posterior marginal densities (solid lines) obtained from MCMC samples using the Bayesian state-space approach to 
parameter estimation in the delay difference model. (Figure 1 concluded on next page.)
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Note that the Schaefer (1954) surplus production function is 
a symmetric function o f the previous biomass; it is zero if 
the previous biomass is zero or if the previous biomass is at 
its carrying capacity, i.e., when the population is in equilib­
rium where production due to growth and recruitment equals 
natural mortality. Using the same transformation P, = B ,/K  
as in the delay difference model, the corresponding nonlin­
ear state-space model has state equations

Px =1+«!

pi+! =P, + s P $ - P i ) -  — Ct +ut fo r i  =1 ,...,fV -1  
K

and observation equations as in eq. 4. We used a Bayesian 
approach with the same prior assumptions on the common 
parameters K, Q, cr2, and x2 as for the delay difference 
model and a rather vague lognormal prior for s (as derived 
in Millar and Meyer 1998) with 10 and 90% quantiles equal 
to 0.1 and 1.0, respectively. As already mentioned in the in­

troduction, biological interpretability of the parameters in 
the delay difference model facilitates the elicitation of infor­
mative priors. This is a much harder task for compound pa­
rameters such as the intrinsic growth rate in the surplus 
production model. The results are given in Table 3. With a 
posterior median o f 2250 x IO6 lb, this surplus production 
model gives a higher estimate of carrying capacity than the 
delay difference model and Pella’s (1993) implementation of 
the surplus production model via Kalman filtering.

We plotted the posterior medians o f the total biomasses 
Bn in Fig. 2 and included the ML/Kalman filter bio­

mass estimates from Kimura et al. (1996) under the two dif­
ferent assumptions on the error variances. Unlike Kimura et 
al.’s (1996) predictions under assumption 1 o f mainly pro­
cess error, our predicted CPUEs do not follow strictly the 
observed CPUEs. It is not surprising that the Bayesian fit is 
in between that o f the Kalman filter fit under assumption 1 
o f process error only and assumption 2 o f when at least 
some measurement error is assumed. The predicted CPUEs
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Fig. 1 (concluded).
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Table 2. Summary for sample size o f 9000 from posterior 
density from the delay difference model.

Parameter Mean SD 25% Median 75%

Pa 1.020 0.110 0.945 1.00 1.08
^34 0.490 0.0845 0.440 0.481 0.539
P35 0.511 0.143 0.414 0.496 0.592
K 1 800 1 680 852 1 150 1 890
Q 10 800 1 490 9 760 10 800 11 800
r 0.203 0.0517 0.166 0.199 0.234
o2 0.0114 0.00792 0.006 0.00975 0.0148
T2 260 000 160 000 148 000 216 000 324 000

10-®
•2

1.0 1.20.8 1.4 1.6

P(1)
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0
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P(N)
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Table 3. Summary for sample size o f 9000 from posterior 
density from the surplus production model.

Parameter Mean SD 25% Median 75%

P a 1.03 0.104 0.957 1.02 1.08
P34 0.500 0.0719 0.452 0.494 0.543
P35 0.499 0.146 0.399 0.490 0.590
K 2 840 1 870 1 530 2 250 3 540
Q 10 400 1 080 9 740 10 500 11 100
s 0.350 0.207 0.196 0.308 0.457
a2 0.0142 0.00799 0.00907 0.0131 0.0181
i 2 224 000 162 000 120 000 172 000 268 000

Q P, (= q-B,) for both the delay difference and the surplus 
production m odel, overlaid by the observed CPUEs, are 
shown in Fig. 3.

Management decision analysis
In their recent review on the Bayesian approach for fisher­

ies stock assessm ent and decision analysis, Punt and H ilbom
(1997) elaborated on how  the results o f  a Bayesian analysis 
can be used to quantify risks associated w ith alternative

m anagem ent actions. The interested reader is also referred to 
Francis and Shotton (1997) for a recent review on risk in 
fisheries m anagem ent.

For expository purposes, w e will indicate here the typical 
w ay in w hich the output o f  the previous Bayesian stock as­
sessm ent can be used as input to a decision analysis. Let us 
suppose that the alternative m anagem ent options consist o f 
setting different constant catch quotas for the next 5 years, a 
fixed annual total allow able catch o f  150, 180, 200, and 
220 x IO6 lb. But note that m ore com plex feedback-control
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Fig. 2. Posterior medians o f annual biomass o f yellowfin tuna (1934-1967) obtained from the MCMC simulations using the Bayesian 
state-space approach to parameter estimation in the delay difference model. This is compared with the Kalman filter fit by Kimura et 
al. (1996) under assumption 1 (process error only) and assumption 2 (process and measurement error) as explained in the text under 
“Comparison of results”.
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Fig. 3. Observed CPUEs and posterior means of the predicted CPUEs for yellowfin tuna (1934-1967) obtained from MCMC samples 
using the Bayesian state-space approach to parameter estimation in the delay difference model and in the surplus production model.
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decision rules that depend on the current estimated state o f 
the stock can easily be dealt with in the Bayesian state- 
space framework. Fisheries management will seek to assess 
the potential impact o f  these options. In practice, these im­
pacts will be measured by various performance indicators

such as decline/increase in stock size, minimum population 
size, or the variation in the exploitation rate, depending on 
management objectives. The performance measure chosen in 
this exemplary decision analysis is the probability of the 
biomass at the end o f the management period, i.e., the begin­
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Table 4. Posterior median of predicted annual depletion from 1968 to 1973 and posterior risk o f 5(1973) < 0.35 
under four different management options, i.e., constant 5-year total allowable catch (TAC) quotas (millions of 
pounds).

TAC option 5(1968) 5(1969) 5(1970) 5(1971) 5(1972) 5(1973) Risk
150 0.502 0.528 0.553 0.569 0.581 0.590 0.077
180 0.502 0.506 0.510 0.512 0.514 0.519 0.151
200 0.502 0.493 0.482 0.475 0.469 0.464 0.235
220 0.502 0.477 0.454 0.430 0.417 0.401 0.340

ning of year 1973, falling below the threshold o f 30% o f vir­
gin biomass.

It is straightforward to estimate this probability for a 
given set o f catch quotas using MCMC simulation. The task 
is to generate a random sample from the marginal posterior 
distribution o f PN+6- Because this has a representation as a 
product o f conditional posterior distributions of the previous 
states

Pi^N+il UiÆl) ^  P(Pn +6I ^V+5’^V+4>^r>°2) 
x . . . X p(PN+l\PN,PN^ k , r , c 2)

x  p(P„t = 1 ,..., A ,k, r ,Q, a 2,x 2| {ƒ,}£,),

we only have to sample sequentially from the conditional 
posterior distribution o f PN..U..., PNib for each sample value 
that we already obtained from the posterior distribution of 
all the other unobservables. In practice, this is done by add­
ing these six unknowns and their state equations to the set of 
unobservables in the existing Gibbs sampling program. 
Then, a consistent estimate o f the probability that PN+6 < 0.3 
is given by the corresponding relative frequency in the sam­
ple.

A clearly represented summary that could be presented to 
managers is in the form of a table that gives the estimate of 
this risk (and possibly other performance indicators) and the 
posterior medians of the predicted annual depletions (possi­
bly together with corresponding interquartile ranges) for 
each management option. This is illustrated in Table 4. In 
addition, the posterior density o f the future annual biomasses 
could be plotted. A plot would be preferred to a single sum­
mary statistic in this case because the biomass distributions 
are skewed.

Because a decision analysis uses parameter estimates 
from a population dynamics model, its quality depends cru­
cially on that o f the estimates and the ability o f the stock as­
sessment model to capture and quantify most o f the 
uncertainty, in particular to account for both process and ob­
servation error. As this is the strength o f Bayesian state- 
space methodology, a risk assessment based on its outcomes 
will ultimately provide an improvement to management ad­
vice.

Discussion
The nonlinear state-space approach to stock assessment 

within the Deriso-Schnute model family handles the prob­
lem o f parameter estimation, smoothing, filtering, and fore­
casting very efficiently. This is accomplished using a 
Bayesian approach to statistical inference via the Gibbs sam­
pler.

This approach offers a superior alternative to the existing 
techniques o f nonlinear least squares and ML via Kalman 
filtering. Application o f  the Kalman filter suffers from some 
severe restrictions. Unless the (more complicated) extended 
Kalman filter is employed, it requires linearity o f state and 
observation equations in all the model parameters (as also in 
Sullivan 1992; Reed and Simons 1996). The normal distri­
bution assumption is crucial and the variances o f process 
and observation errors (or at least their ratio) must be 
known. As stated in Pella (1993), it is not possible to 
“cleanly disentangle process from measurement error” . To 
estimate an unknown state at time t, only the previously esti­
mated biomasses of the preceding time points enter into the 
forward projections, thus not making full use o f all the infor­
mation provided in the data. This can be overcome, how­
ever, using fixed-interval smoothing, as outlined in Pella
(1993). In the special application to Deriso-Schnute models, 
the assumptions o f the Kalman filter are not met when w > 
0, although Kimura et al. (1996) concluded from simulation 
studies that the Kalman filter results are not severely biased 
when applied in this general case. When trying to find the 
parameter values that maximize the likelihood function, one 
has to rely on numerical optimization procedures that are 
guaranteed only to find a local, not the global, maximum. 
Furthermore, measures o f precision o f the ML estimates can­
not be provided, as the information matrix in most biomass 
dynamics applications is singular or its determinant is close 
to zero, making asymptotic variance estimates obtained by 
matrix inversion doubtful.

In contrast with these constraints, the Bayesian approach 
can handle arbitrary distributional assumptions as well as 
any form o f nonlinear relationships in the state and observa­
tion equations. Process error o f  the biomass dynamics equa­
tions is not only confined to recruitment variability but 
comprises variation due to growth, mortality, and environ­
mental influences. There is no need for a restriction to con­
stant recruitment. A three-parametric recruitment function 
(of the spawning stock S, in year t) (e.g., Schnute 1985)

(10) R1 = ^ S t) = a S l \ - ^ l ' i

that includes the constant productivity, Ricker, Beverton- 
Holt, and Schaefer functions as special cases could be speci­
fied. As pointed out by a referee, there is no reason that the 
conventional assumption that all o f  the process error is due 
to variation in recruitment could not be incorporated into the 
biomass dynamics equations. Furthermore, different assump­
tions on fishing mortality such as those given in Schnute 
(1985) can be made. Important extensions would be to con­
sider stochastic natural mortality, which, for comparative 
purposes, was assumed to be known in this application. Sto­
chastic historical catches can be incorporated by distinguish­
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ing between observed catches, Ct , and true catches, C„ and 
adding the observation equation C, = C, + vp. In the Bayes­
ian analysis, measurement and process errors are clearly sep­
arated and the precision o f error variance estimates (as o f all 
the other parameters) can be assessed in detail from the pos­
terior densities.

Apart from ease and standardization, one o f the major ad­
vantages of our implementation using the all-purpose sub­
routine ARMS to sample from any non-log-concave density 
is that it allows specifying more realistic distributions than 
the normal for measurements and states. This does not cause 
any further complications, as all that is required is the speci­
fication of the logarithm o f the density up to an additive 
constant; no derivatives or modes o f the densities are neces­
sary (as in the tuning o f the multivariate t distribution in im­
plementations of SIR).

So far, none o f the Bayesian stock assessment models 
have used state-space methodology. McAllister et al. (1994) 
and McAllister and Ianelli (1997) fitted a fully age- 
structured model to relative abundance and catch-age data, 
respectively, allowing for observation error with known vari­
ance but using deterministic annual transitions o f the num­
bers o f fish in each age-class, treating only annual 
recruitment as subject to random fluctuations. As noted 
above, this case is easily subsumed in a state-space model. 
Similarly, Raftery et al. (1995) considered a deterministic 
population dynamics model for bowhead whales and devel­
oped a pseudo-Bayesian approach for “deterministic simula­
tion models,” which has been heavily criticized by pure 
Bayesians (Wolpert 1995) for being prone to the Borel para­
dox and violating fundamental statistical principles such as 
the likelihood and stopping-rule principle. Raftery et al.
(1995) regarded the population dynamics model as a deter­
ministic simulation model with input parameters (in their ap­
plication, consisting o f age-specific natural mortality and 
fertility rates, kill records, and initial population size) and 
output parameters (the population size for each year broken 
down by age and sex). They proposed to specify all 
premodel information on input and output parameters 
through a “premodel” distribution. This encompasses all 
available information including that o f the data but not in­
cluding that from the simulation model itself. In analogy to 
the Bayesian paradigm that updates the prior distribution to 
the posterior distribution by conditioning on the data, the 
premodel distribution is updated to the “postmodel” distribu­
tion through the simulation model. Like Wolpert (1995), we 
do not agree that this may be viewed as a generalization of 
standard Bayesian inference to deal with simulation models. 
Instead, we think that a more natural approach within the co­
herent Bayesian paradigm would be to integrate these into 
the framework o f state-space models, regarding the model 
outputs as unknown states, incorporating any prior informa­
tion about these in a stochastic distribution o f the states, and 
relating these unknown states to the data through stochastic 
observation equations.

Kinas (1996) used a Bayesian approach to estimate the 
parameters o f a surplus production model using adaptive im­
portance sampling and SIR. The specification of his model 
comes probably closest to a state-space model, allowing for 
both process and observation error. However, only the pa­
rameters o f the surplus production model and the observa­

tion error variance were estimated. Although alluding to the 
biomass dynamics equations as stochastic, Kinas (1996) did 
not estimate the unknown states, the annual biomass o f  or­
ange roughy (Hoplostethus atlanticus), in a coherent Bayes­
ian way by treating them as unobservables, like the model 
parameters, and specifying a joint prior distribution. Instead, 
he employed an adhoc time series fitting procedure for pre­
dicting these states. Our Bayesian state-space methodology 
could be readily applied to the model specified in Kinas
(1996) using the Gibbs sampler for posterior computation.

Depending on the parametrization and the correlation 
among the parameters, mixing in the Gibbs sampler could be 
slow and subsequent observations could be highly corre­
lated. High autocorrelations can be overcome by a reason­
able thinning o f the chain, as suggested by the Raftery and 
Lewis (1992) diagnostics on a small test chain. Reparametri- 
zations and joint updating o f several parameters may have to 
be considered.

The practical construction of the full conditional posterior 
densities is not a substantial task. It only requires calculating 
the joint posterior density up to a normalization constant,
i.e., the product o f prior and likelihood. The full conditional 
posterior density of a certain component 0„ say, can then be 
obtained by simply ignoring all terms in the joint density 
that do not depend on 0¡, as these are subsumed in the nor­
malization constant. This procedure can be automated. It 
compares with the task in a general MH algorithm to specify 
a proposal density ç(0* |0<m) (depending on the current state 
0 (™)) to generate a new random varíate 0* that will then be 
accepted with probability

o<r,e'»)-m Ji.JSÂeïe!ll

Following the “divide et impera” principle, the Gibbs sam­
pler reduces the problem o f generating an «-dimensional 
random varíate 0* to that o f  drawing n univariate random 
variâtes, a comparatively simple task. Moreover, the MH al­
gorithm, just like the SIR algorithm, suffers from the general 
difficulty o f choosing an «-dimensional proposal density that 
is both easy to sample from and close to the target density. 
Because o f large sample asymptotics, a multivariate normal 
or t distribution is often the proposal density of choice, 
which requires finding the mode o f  the posterior as well as 
differentiation to calculate the inverse o f the Hessian, 
needed to specify its mean and covariance matrix. The effi­
ciency o f the MH algorithm depends crucially on the choice 
o f these parameters, like the center, scale, and degrees of 
freedom o f the t distribution, and these should be tuned so 
that the acceptance probability is roughly 0.3 (for recom­
mendations, see Casella and George 1992; Gamerman 
1997). This is because an MH chain that makes only small 

jumps has a high acceptance rate but mixes slowly, as it 
takes a long time to traverse the whole parameter space, 
whereas a chain with large proposal steps will have low ac­
ceptance probabilities, making the chain stay at its current 
value for long periods and thereby resulting in slow mixing 
as well. Most likely, the costs o f calculating the proposal 
density and fine-tuning the MH algorithm will balance those 
o f specifying the full conditionals for the Gibbs sampler and 
finding reparametrizations with low posterior correlations. A
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practical comparison as to the relative performance o f the 
MH algorithm and the Gibbs sampler in stock assessment 
applications is beyond the scope o f this paper but an impor­
tant issue that will have to be investigated.

The computation time needed to run a large chain has not 
been a problem at all in our implementations o f surplus pro­
duction and delay difference models. For a problem with 40 
unobservables the run o f a C program generating 250 000 
cycles o f the Gibbs sampler using ARMS for all full condi­
tionals took about 90 min on a SUN ULTRA. This suggests 
that the Gibbs sampler might be a feasible option in a Bay­
esian analysis o f  more complicated age- or size-structured 
models such as those o f  Schnute (1987), Fournier and 
Doonan (1987), Raftery et al. (1995), or McAllister and 
Ianelli (1997) and a contender for the SIR algorithm.

Despite all o f the pros reviewed in the introduction, delay 
difference models have been used only rarely in practical 
stock assessments (Gallaway et al. 1983; Quinn et al. 1984; 
Deriso 1985; Jacobson et al. 1987; Wankowski and Williams 
1987; Punt 1988; Zheng and Walters 1988; Sampson 1990; 
Collie and Walters 1991; Polo vina 1991; Haii and Brown 
1995), especially when compared with the prominent surplus 
production models. Reasons for this may be the strong as­
sumptions that delay difference models make on linear 
growth o f weight-at-age (eq. 1 ) and on equality of spawning 
and exploitable biomasses when modeling recruitment as a 
function o f spawning stock size as through eq. 10. These 
may often be violated in practical applications. However, the 
latter is o f no concern in this particular application where re­
cruitment is independent o f the spawning biomass, and in 
general, the delay difference model allows for an annual re­
cruitment rate that can be any arbitrary time series (eq. 4). 
Another reason that could have deterred from their applica­
tion may be the mathematically more complicated form of 
the delay difference equations that incorporates time lags 
and recruitment functions and makes parameter estimation 
more involved. However, they have been widely used in 
simulation studies and proved to be valuable tools that pro­
vide insight into population dynamics, temporal changes, 
and the understanding o f age-structure effects in exploited 
stocks (Hilbom and Walters 1992). We hope that with the 
new methodology for parameter estimation provided here, 
delay difference models will come to enjoy greater popular­
ity in future practical stock assessments, in tune with their 
biological relevance.
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Appendix
In the following, let

g (ñ ) = e_/w0  + p -  pe )(fj - k C x) + r

(1 + p - kC,_x) -p e~ 2M k c t- \) (pt_2 _ kc¡ i)  + r ] _ p (m -M CP,-i k c <-\)
P - I  P i-1

for t = 1 

for t = 2

for t = 3,..., N  +1.

Full conditional posterio r density of P„ t = 3,..., N  -  2

piPt\Ph ...,P t-x,Pt+i,...,P N, k, r ,Q ,a 2, x2)
°= P(pt\ p,- \ ,pt-2> k, r, a 1 ) x p(Pt+x j P„ Pt_x,k ,r ,a 2) x p(Pt+2\PM , P„ k, r ,a 2) x  p(I,\ P„ Q, x2)

°= exp| - ™ { ( P , -g (P t) f  + (P,+] -g (P ,+i))2 +(P,+2 -g{P,+2 ))2} jx -Q P ,)1 |.

Similar expressions are obtained for P t, P2, PN_X, PN, and PN+1 by dropping respective terms. 

Full conditional posterior density of k

p(k\Px,...,P N,r ,Q ,a 2,T 2) ~  lik)Y\_ p(Pt\ P(_, ,P t_2, k, r, a 2 )
t= 2

1— exri 
k  11
0,

1
^ ( P . - g i P , ) ) 2
1=2

k  > 0  

otherwise.

Full conditional posterior density of r

N

p(r\ ƒ>[,..., PN, k, Q, a 2, x2) ~  ^ ( r ) J 7  p(Fj Pt_u Pt_2, k, r, a 2) -  exp 
r

(log r - p r)2  1_
l o 2 l a 2

^ ( P ,  ~g(P,))2 r >  0 

otherwise.

Full conditional posterior density o f Q

N

m  Pi, - ,  Pif.k, r, G 2 , x2) oc p (Q )Y lp (I t\Pt, Q, x2)
1 _ — exp
Q
o,

-i x ' Í L - Q S l
2x2 i=i n t

Q >  0

otherwise.

Full conditional posterio r density of a 2
The full conditional distribution for a 2 is IG(a,ß), where

a  = T ’ ß =* 1 /=l
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Full conditional posterior density of t 2
The IG(3, 500 000) prior distribution is conjugate family, so that the full conditional distribution for x2 is again IG(a,ß), 

where

a  = 3 + — , ß = 500 000 + -  Y  (1‘
2 2 %  ■
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