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Abstract

The coastal defence and nature conservation authorities from the Ministry of the Flemish 
Community need detailed vegetation maps of the Belgian coast for policy planning and evaluation. 
From an Integrated Coastal Zone Management point of view, the development of efficient tools 
serving both authorities is desirable. Therefore new methods for objective, detailed and cost- 
efficient vegetation mapping are under investigation. This paper focuses on the application of 
airborne hyperspectral imagery. Two classification methods are used. The standard Spectral Angle 
Mapper, performed after a Minimum Noise Fraction transform, gives an overall accuracy of 59% 
with 15 vegetation classes. When using the Optimized Spectral Angle Mapper, the overall 
accuracy can be increased to 67% using the same 15 classes.

Keywords: Hyperspectral; Classification; Spectral Angle Mapper; Optimized Spectral Angle 
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Introduction

The dynamic dunes along the Belgian coast are an important ecosystem with respect to 
nature conservation. They are the habitat of a specific and at least regionally rare wildlife 
(Provoost and Bonte, 2004). Beside their biological value they serve as a natural seawall, 
protecting the hinterland against floods. The integration of nature conservation and 
public safety requires balanced decisions and forms a major topic within the Integrated 
Coastal Zone Management (ICZM) in Belgium. Present day coastal defence supports an 
integrated approach in which natural processes are guided rather than opposed.
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Vegetation maps are an important tool to support this policy. The coastal defence 
division (AWZ -  ‘Afdeling Kust’) of the Ministry of the Flemish Community applies 
vegetation stability maps since the 1980s in order to assess management priorities and 
prevent uncontrolled, large scale blow outs in the fore dunes. Thematically more detailed 
maps are used for planning and evaluation of nature management, mainly by the nature 
division (AMINAL, ‘Afdeling Natuur’). These maps provide information on 
syntaxonomically defined vegetation types and can be linked to priority habitats for 
conservation.
Until present, these vegetation maps are made by manual photo interpretation. A main 
objective of the HYPERKART project is investigating the suitability of airborne 
hyperspectral imaging data for efficient, detailed and objective mapping of dune 
vegetation along the Belgian coast. Imaging spectrometers have developed rapidly over 
the past decades. They have more channels with better spectral and spatial resolution, 
individual bands are only a few nanometers wide while the spatial resolution is often less 
than one meter. Moreover, computer power, data-transfer and storage capacity have 
increased considerably in recent years. These developments have made it possible to 
handle and analyse the large data sets acquired by imaging spectrometers.
Within the project, the Belgian coast was imaged by a hyperspectral airborne flight 
campaign in July 2004, using the AISA Eagle hyperspectral sensor. Vegetation mapping 
is achieved by comparing image spectra with reference spectra derived from 
georeferenced ground truth. Therefore an extensive field survey was carried out. In this 
study two different supervised classification algorithms were tested to produce the 
vegetation maps. Beside the classical Spectral Angle Mapper (SAM) classification, an 
innovative classification algorithm was developed, the Optimized SAM (OSAM), which 
will exhaust the information content of the reference spectra.

Material and methods 

The principle of hyperspectral airborne remote sensing
Light emitted by the sun is partially absorbed, partially transmitted and partially 
reflected by the different materials on the Earth’s surface. The nature of the material 
determines the degree in which different wavelengths are absorbed, reflected or 
transmitted. The reflected part of the sunlight determines the ‘colour’ of the material. 
Because of this, each material has its own spectral identity by which it can be identified. 
The principle of airborne hyperspectral remote sensing is based on spectroscopy. From 
an aircraft a location is imaged in different spectral bands in such a manner that for each 
pixel a quasi continuous (depending on the number of bands) reflectance spectrum is 
obtained (Fig. 1). High spectral and spatial resolution images acquired with airborne 
hyperspectral sensors offer the opportunity to map materials and therefore also 
vegetation in great detail. The reflected radiance measured by the sensor is converted to 
reflectance values which are defined as the ratio of the intensity of the reflected light to 
the intensity of the incoming light in function of the wavelength.
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Each pixel is com posed  of a 
unique, contiguous spectrum  
for the  identification of

Contiguous registering 
of adjacent spectral . 
bands

th e  principle of imaging spectroscopy: contiguous spectre  a re  collected in imaging mode

Fig. 1. Principle o f  airborne imaging spectroscopy.

The typical vegetation spectrum
Sunlight reaching plant leaves is either reflected, absorbed or transmitted. The 
probability of these processes depends on wavelength, incidence angle and roughness of 
the leaves as well as on their different optical properties and biochemical composition. 
The amount of light being absorbed by the leaves as a function of wavelength is 
selectively determined by the leaf pigments. The visible part of the vegetation 
reflectance spectrum is characterized by low reflectance values due to very strong 
absorption of the leaf pigments ( Table i).

Table I. Leaf pigments and their absorption maxima

Type of pigment Characteristic absorption maximum (nm)

Chlorophyll a 420, 490, 660
Chlorophyll b 435, 643
ß-Carotene 425, 450, 480
a-Carotene 420, 440, 470
Xanthophylls 425, 450, 475

Absorption is strong in the violet -  blue and red part of the spectrum. The green part of 
the solar spectrum is less absorbed causing plants to exhibit a green colour. Because the 
energy content of the ‘invisible’ shortwave infrared part of the solar spectrum is 
insufficient to trigger photochemical reactions, this part of the energy spectrum is not 
absorbed by chlorophyll and other leaf pigments. This results in a strong increased 
reflectance of the near infrared which appears around 690mn and which is typical for 
vegetation. This is the so-called red-edge. The absorption of the near infrared part of the 
spectrum is due to the leaf cell internal structure. Fig. 2 shows two arbitrary vegetation
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spectra, selected from the hyperspectral image, with an indication of the different 
spectral features.

Vegetation spectra
0,0

<p
le:

Leaf pigments Cell structure

V isible Near infrared

Chlorophyll 
absorption

\Green peak Red-edge

vvnvaisntjih vnrrv
Fig. 2. Typical spectral response characteristic o f  green plants.

Because different plant species have different leaf pigments, internal cell structure and 
moisture content, they reflect light in a different way. The relative and often subtle 
differences between the reflectance in the visible (VIS) and near infrared (NIR) part of 
the spectrum is used to distinguish between the different vegetation types. Main 
reflectance features are position and slope of the red-edge, the amount of absorption due 
to the different leaf pigments in the blue and red part of the spectrum and the amount of 
reflection at the green peak and at the NIR plateau.

Experimental test site

This study was conducted for a test site called ‘De Westhoek ’, in the most western part 
of the Belgian coast (De Panne). The dune area is about 340ha large and is one of the 
last unfragmented dune areas along the Belgian coast. ‘De Westhoek ’ contains most of 
the (semi-)natural vegetation types that can be found in the Belgian dunes, which suits 
the requirements of an ideal test area. Floristically, the area is important because of its 
species richness: almost 400 species of vascular plants have been found in the area, 
which fonns 1/3 of the Flemish flora, and 20% of the species are classified as rare to 
extremely rare. A quarter of the Flemish Red-List species is present in the area. ’De 
Westhoek’ also owes its conservation status to the particular faunal and fungal diversity 
(Hoyseio/. 1996).

Ecological consideration

Integrated Coastal Zone Management requires an ecosystem approach of coastal 
defence. Rather than merely considering dune stability as a state, vegetation should be 
situated within its ecological functioning. Fig. 3 represents a scheme of the fore dune 
ecosystem including the most important vegetation patterns and processes. Vegetation 
mapping should focus on these vegetation characteristics in order to give a
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comprehensive image of the ecosystem’s functional aspects. Detailed elevation models 
are very useful ancillary data completing the picture.
Primary dune fonnation takes place along accreting coasts, where sand is available for 
embryonic dune fonnation. Under continuous sand supply these dunes develop towards 
manam dunes (Ammophila arenaria). Decrease of aeolian dynamics will lead to dune 
fixation with successive development of moss dunes and dune grasslands. Without 
management of other external ‘stress factors’, further vegetation succession towards 
scrub will take place. Vegetation regression caused by internal phenomena such as plant 
pathogens can change vegetation structure but will not lead to soil degradation. External 
factors such as trampling or natural blow outs however can lead to soil destruction and 
initiate secondary vegetation patterns.

secundary dune formation

primary 
dune formation dune fixation

p io n e e r
g r a s s l a n d

(Carex arenaria) 4
destruction 

of vegetation

b e a c h
e m b r y o n ic d y n a m ic  d u n e d r y  d u n e

4 d u n e 4 (Ammophila 4 m a r r a m  d u n e * m a r r a m  d u n e 4 ( Tortula ruralis) 4 g r a s s l a n d
arenaria)

.
(Galium verum)

scrub invasion 
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o r  w o o d la n d
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Fig. 3. Scheme o f  succession relations between coastal dune vegetation types within a landscape 
ecological framework.

Data acquisition
The AISA Eagle sensor, developed by SPECIM, Spectral Imaging Ltd. Finland, is a 
complete pushbroom system that consists of a compact hyperspectral sensor head and a 
miniature 3-axial GPS/INS sensor for monitoring the aircraft position and attitude. 
Table II gives an overview of the AISA Eagle characteristics.

Band settings and bandwidth are fully programmable and depend on the operation mode. 
In this study, 32 bands were collected with a ground resolution of lm  x lm. The selected 
bands in the green and red region of the solar spectrum and the first part of the NIR- 
region (between 500nm and 760mn) have a bandwidth (Full Width at Half Max, 
FWHM) of 2.2mn. This very fine spectral sampling allows to measure the typical 
vegetation absorption features very accurately. Because the irradiance in the blue region, 
between 410mn and 500nm, is much lower than in the green, red and NIR part of the
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spectrum, the signal to noise ratio in this part is also much lower. By choosing a broader 
bandwidth in the blue region (FWHM = 25nm), the reflected light is integrated over 
several channels and the signal to noise ratio is increased. In the NIR region of the 
vegetation spectrum, the information content is much lower than in the visible part of the 
spectrum and therefore again a broader bandwidth was chosen (FWHM = 28nm).

Table II. AISA Eagle characteristics
Field of view (FOV) 39.7 DEG
Instantaneous field of view (IFOV) 0.039 DEG
Spatial resolution 0.5 - 10 m
Spectral range 400 - 970 nm
Spectral channels max 244
Spectral sampling interval 2.3 nm
Spectral resolution (FWHM) 2.9 nm
Dynamic range 12 bits (4096)

Classification methods
Vegetation classification starting from hyperspectral images can be regarded as a 
technique for material identification and mapping. The unknown pixels are identified as 
one of several vegetation types whose reference spectra are derived from the 
hyperspectral imagery by means of Regions O f Interest (ROIs). Ideally, the reflectance 
spectra of a vegetation type should not vary, but in reality, it does, due to a number of 
factors, i.e. phenological stage, weather conditions, soil conditions, shadows, 
Bidirectional Reflectance Distribution Function (BRDF) effects, etc.
One of the most frequently applied strategies for material mapping is the use of 
similarity measures. This study will make use of a deterministic similarity measure to 
compare an unknown pixel spectrum with a library of reference spectra. Spectral Angle 
Mapper (SAM), is a common distance metric, which compares an unknown pixel 
spectrum t to the reference spectra r ;, /' = 1, ,.,K, for each of K references and assigns t to 
the material having the smallest distance:

Class{t) = arg min d(t, r  ) (1)
1 < i < K

Collecting ground truth data

During an extensive field campaign, several hundreds of vegetation plots were relevéed 
and their geographic locations were measured by using a dGPS. Some of the geographic 
locations were measured as polygons. Because these data were available in ‘shape’- 
format (SHP), it could be easily imported into commercially available image processing 
software. For homogeneous regions with a minimum diameter of 5m, a point 
measurement of the central location was performed using the dGPS. The point 
measurements were used to define ROIs of size 3 by 3 pixels around the central
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measured location. Finally, the ROIs were used to extract the pixel spectra which are 
used as references in the classification algorithm.

Spectral Angle Mapper

The reflectance spectra of individual pixels can be described as vectors in an n- 
dimensional space, where n is the nmnber of spectral bands. Each vector has a certain 
length and direction. The length of the vector represents brightness of the pixel while the 
direction represents the spectral feature of the pixel. Variation in illumination mainly 
effects changes in length of the vector, while spectral variability between different 
spectra affects the angle between their corresponding vectors, (Kruse et al., 1993). Fig. 4 
shows two three-dimensional spectra, r and t, and indicates the Spectral Angle 9 between 
them. This spectral angle can have values between 0 and n/2 and is calculated as:

Where n = the nmnber of spectral bands, t = the reflectance of the actual spectrum and r 
= the reflectance of the reference spectrum. The more similar the two spectra are, the 
smaller the spectral angle between them.

Fig. 4. Visualization o f  the Spectral Angle 0, between two spectra, t = target spectrum, r = 
reference spectrum, using three bands ßh ßj, ß3.

Classification is done by calculating the spectral angles between the reflectance 
spectrum of the target pixel and the reference spectra. Each pixel will be assigned to the 
class according to the lowest spectral angle value.

(2 )
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Minimum Noise Fraction

The high spectral and high spatial resolution intrinsic to Imaging Spectroscopy, has an 
important drawback: imaging spectrometers deliver huge quantities of data. Much of the 
spectral data in the dataset are redundant. The selection of a small number of relevant 
spectral bands without loss of essential information for a given application is therefore a 
critical issue in any Imaging Spectroscopy application. The Minimum Noise Fraction 
(MNF) transform segregates the spectral bands that are dominated by noise from the 
bands that contain important information, contributing to the overall variance in the 
dataset. MNF reduces the dimensionality of the dataset and retains the small number of 
noise-free components. In this way the computational requirements for subsequent 
processing is reduced (Boardman and Kruse, 1994).
The MNF transform as given in Green et al. (1988) is essentially a two-step principle 
components analysis. The first step calculates a noise covariance matrix and decorrelates 
and rescales the noise in the data. The second step is a standard principle components 
transform where the transformed spectral bands are ranked by decreasing explained 
variance.
The output of the MNF transform is an image cube of n MNF bands. The low-order 
components have the highest information content, while most of the noise is 
concentrated in the high ordered bands. The inherent dimensionality can be evaluated by 
visual examination of the associated images. In the higher order bands surface features 
are no longer visible and the image is dominated by noise. An other approach to evaluate 
the cutoff region between signal and noise is to examine the plot of the eigenvalues. 
Eigenvalues for MNF bands that contain information will be an order of magnitude 
larger than those containing noise only. The noise-dominated bands have near-unity 
eigenvalues. Generally most information is concentrated in the lower order MNF bands, 
but rare spectra may be found in the noisier MNF bands.

Optimized Spectral Angle Mapper

The standard SAM algorithm uses the average spectrum per ROI. This implies that the 
intra-class variability is not retained. To preserve the intra-class variability an Optimized 
Spectral Angle Mapper algorithm (OSAM) was developed, consisting of two parts. 
Firstly, for each class an Optimal Spectral Library (OSL) is generated. This library can 
be considered as ‘optimal’ since it contains the spectra that classifies as many pixels as 
possible in the class under consideration, without mis-classrfying pixels which do not 
belong to that class. This is possible thanks to the calculation of the minimum Spectral 
Angle between a certain spectrum in a class and all pixel spectra which do not belong to 
the same class as this reference spectrum. In the second step, all pixel spectra are 
classified using the reference spectra stored in the OSL, i.e. each pixel will be assigned 
to the class for which the angle between a reference spectrum of that class and that 
particular pixel spectrum is smallest.

Results and conclusions

All classification experiments were performed with the commercial software package 
ENVI® Version 4.0. Classification was performed using ground truth data of 15 different
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vegetation types. For each vegetation type a number of ROIs were used, ranging from 
three ROIs for wood small-reed (Calamagrostis epigejos) to 23 ROIs for creeping 
willow (Salix repens). After the MNF transfonnation the standard SAM classification 
was performed, using the first six MNF-bands. To clean-up the initial classification 
result, a standard majority 3x3 filter was applied. This filter uses a 3x3 pixels kernel and 
replaces the center pixel in the kernel with the class value that the majority of the pixels 
in the kernel has. The obtained overall accuracy reached 59% and was calculated by a 
confusion matrix using all ground truth ROIs. However, this accuracy is overestimated 
since training pixels and validation pixels are identical. All accuracies mentioned in this 
paper are weighted, i.e. they take into account the nmnber of pixels per class.
Next, the Optimized SAM classification was applied. Fig. 5 shows the result of the 
OSAM classification after post-classification clean-up by a majority 3x3 filter.

Unclassified
■  Ammoare Fix
■  Ammo are Vit
■  Calaepi
■  Gras groen
■  Gras kaal
■  H ip p rh a  

Hipprha Calaepi
■  Lfguvul
■  Rosapim
■  Rubupae 

Sali ein
■  SaLirep Rubncae 

SaLiiep
■  Sambnig
■  Tortrur

Fig. 5. Classification result obtained by the Optimized Spectral Angle Mapper (OSAM).

75% of the pixels of each class were randomly selected for training while the remaining 
25% pixels were used for accuracy calculation. To obtain a statistical significant result, 
the overall accuracy was calculated as the mean of the accuracies calculated over 20 
runs. For OSAM an overall weighted accuracy of 67% was obtained. Compared to the
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accuracy obtained with the standard SAM, the accuracy obtained by OSAM can be 
considered as more valuable because training and validation spectra were separated.

To further increase the accuracy several measures can be taken. Firstly, the hyperspectral 
images used in this study have a geometric inaccuracy of 1 to 5 pixels. Because wrongly 
selected ground truth pixels result in bad classification performance, the different ROIs 
need to be manually repositioned to make sure they select the correct ground truth 
pixels. Secondly, several vegetation types residing in similar environments, e.g. different 
grassland types, different dune slack types and different pioneer vegetation types, have 
similar reflectance spectra and therefore are difficult to separate. By lumping these 
vegetation types the overall classification accuracy can be increased. Thirdly, different 
users need different vegetation maps. One user might be interested in the distribution of 
the broader vegetation classes, while the other user might be interested in the very detail 
of vegetation type distribution. It is obvious that the level of detail will influence the 
level of classification accuracy, i.e. vegetation maps indicating the broader classes have 
high accuracy values, while detailed vegetation maps will have lower accuracy values.

Nevertheless, the results obtained by SAM classification methods, especially the OSAM 
method, yield promising results. They illustrate the potential of using hyperspectral 
imagery for the generation of detailed vegetation maps, distinguishing a large number of 
vegetation types.
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