Shark (Scyliorhinus torazame) Metallothionein: cDNA Cloning, Genomic Sequence, and Expression Analysis

Young Sun Cho, ${ }^{1}$ Buyl Nim Choi, ${ }^{1}$ En-Mi Ha, ${ }^{1}$ Ki Hong Kim, ${ }^{2}$ Sung Koo Kim, ${ }^{3}$ Dong Soo Kim, ${ }^{1}$ Yoon Kwon Nam ${ }^{1}$
${ }^{1}$ Department of Aquaculture, Pukyong National University, Busan 608-737, South Korea
${ }_{3}^{2}$ Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
${ }^{3}$ Biotechnology \& Bioengineering, Pukyong National University, Busan 608-737, South Korea

Received: 22 April 2004 / Accepted: 7 October 2004 / Online publication: 4 June 2005

Abstract

Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the β-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose $(0-10 \mathrm{mg} /$ kg body weight for injection and $0-20 \mu \mathrm{M}$ for immersion) and duration ($1-10$ days); zinc was a more potent inducer than copper and cadmium.

Key words: metallothionein - tiger shark Scyliorhinus torazame - heavy metals - gene expression

[^0]
Introduction

Metallothioneins (MTs) are low molecular weight (6$7 \mathrm{kDa})$ cytoplasmic heavy-metal-binding proteins. These cysteine-rich proteins have several biological functions in eukaryotic organisms, including (1) metal ion homeostasis, (2) detoxification of excess reactive heavy metal ions, and (3) providing a reserve of essential metals for other metalloproteins (Hamer, 1986; Muto et al., 1999). Owing to their highly inducible expression (transcriptional activation), MTs have also been used as molecular bioindicators to monitor the heavy metal pollution of aquatic or marine ecosystem, and to investigate the adaptive response of aquatic animals to metal-induced stresses (Hamilton and Mehrle, 1986; Roesijadi, 1994; Olsson, 1996; Langston et al., 2002).

MT genes are known to be evolutionarily conserved in most vertebrates because of their key roles in a variety of enzymatic reactions (Olsson, 1993; Binz and Kagi, 1999). With interests in the molecular evolution of the MT genes among vertebrates numerous studies have been made on the structure and function of MT genes from fish, the evolutionarily lowest vertebrates. These include MT cDNA or genomic DNA genes from common carp (Hermesz et al., 2001; Chan et al., 2004), crucian carps (Ren et al., 2000), goldfish (Chan 1994), plaice (George et al., 1990), rainbow trout (Bonham et al., 1987), and ayu (Lin et al., 2004). Despite the numerous studies on fin-rayed bony fish MTs, there are few reports on the MT gene of cartilaginous fish species. The evolutionary position of these elasmobranch fishes relative to other vertebrates including advanced bony fish and mammals makes them useful model systems for studying the molecular evolution of vertebrate genes (Cho and Kim, 2002; Nam et al., 2002). Tiger shark (Scyliorhinus torazame) resides in the
waters of East Asia including coastal areas of the Korean peninsula. Increasing pollution in coastal areas of South Korea caused by industrial activities gives rise to concern about the bioaccumulation of toxicants such as heavy metals in marine inhabitants, of which this shark species is thought to be one of main recipients. The objective of this study was to isolate and characterize the MT gene from tiger shark, and to examine its transcriptional responses to heavy metal exposure.

Materials and Methods

Fish Samples, RNA Isolation, and cDNA Library Construction. Live shark specimens were purchased from a local fish market and transferred to the laboratory, where tissue samples were surgically removed. Liver tissues from 3 males and 3 females were pooled, and total RNAs were extracted using the TriPure Isolation Kit (Roche Molecular Biomedical). From total RNA, the poly $(\mathrm{A})^{+}$RNAs were purified using biotin-labeled oligo- $\mathrm{d}|\mathrm{T}|_{20}$ and strep-tavidin-coated magnetic particles (Promega) according to the manufacturer's instructions. Five micrograms of poly (A) $)^{+}$RNA was used as template for cDNA synthesis. All the procedures for cDNA library construction including cDNA synthesis, ligation, and packaging were performed following the protocol of λ Zap cDNA Synthesis Kit (Stratagene). The primary library ($1.5 \times 10^{6} \mathrm{pfu} / \mathrm{ml}$) was amplified to $1.0 \times 10^{11} \mathrm{pfu} / \mathrm{ml}$, and an aliquot of phage ($5 \times 107 \mathrm{pfu}$) was excised into plasmid pBluescript SK vector in Escherichia. coli SOLR cells.

Isolation of Shark MT cDNA and Genomic ORF

 Sequence. Of our expressed sequence tag \langle EST $|$ clones identified in the liver of this species, SL0262 showed higher similarity (e-value of 1E-71) with previously known MT sequences (unpublished data) based on the BLASTx search against NCBI GenBank. A total of 6144 random bacterial clones from the liver cDNA library were arrayed on 4 nylon membranes (1536 clones per membrane) and hybridized with the digo-xygenin-11-dUTP-labeled insert from EST clone SL0262 prepared using the DIG DNA Labeling and Detection Kit (Roche Applied Biosciences). Hybridization, washing, and signal detection were performed according to the manufacturer's recommendations. The clones showing hybridization-positive signals were selected and sequenced using an ABI 377 automatic sequencer (Applied Biosystems). The raw sequence data collected were analyzed with the sequence editing software, Sequencher (Version 4.0; Gene Codes). The trimmed sequences were subjectedto similarity search against GenBank database (http:// ncbi.nlm.nih.gov/BLAST).

Genomic open reading frame (ORF) sequence of shark MT was isolated by PCR using 2 specific primers (sMT-1F, 5'-atgtctgacacgaagccctgtg3^{\prime}; and sMT-1R; 5'-ctganacatccagtgtgtga-3') designed based on the shark cDNA sequence. Genomic DNA was purified from the whole blood using the conventional sodium dodecyl sulfate (SDS) and proteinase K method (Nam et al., 2002). One microgram of genomic DNA was subjected to PCR containing 20 pmol of each primer and 0.5 U Taq DNA polymerase (Takara). Thermal cycling condition (30 cycles) was $94^{\circ} \mathrm{C}$ for 45 seconds, $58^{\circ} \mathrm{C}$ for 1 minute, and $72^{\circ} \mathrm{C}$ for 1 minute with an initial denaturation step at $94^{\circ} \mathrm{C}$ for 3 minutes. Reaction volume was $50 \mu \mathrm{l}$. The amplified product was purified using spin column (Qiagen) and cloned into pGEM-T easy vector (Promega). The recombinant clones of correct size were selected, and the inserts were sequenced using ABI377 automatic sequencer (Applied Biosystems).

Phylogenetic Analysis of Shark MT. The amino acid sequence deduced from the identified shark MT, cDNA was aligned with other MT sequences. For phylogenetic analysis a total of 119 unique MT sequences from teleosts (17 sequences for MT-A, 16 for MT-B, and 22 for unclassified MTs) and mammals (37 sequences for MT-I, 17 for MT-II, 7 for MT-III, and 3 for MT-IV) were obtained from GenBank (Table 1). Multiple alignment was carried out using CLUSTAL W (Thompson et al., 1994). Gap open penalty and gap extension penalty were set to 10 and 0.05 , respectively. The weight matrix was BLOSUM (for protein). The output alignment was manually edited using the GeneDoc program (http://www. psc.edu/biomed/genedoc// for optimum alignment. Identities between shark MT and other MTs were also calculated as percentages using the same program. The edited alignment was subjected to distance and parsimony analyses to evaluate the phylogenetic relationship of shark MT with other MT orthologues. Distance analysis was performed using CLUSTAL W or PAUP* (Version 4.0b). Unrooted phylogenetic trees were calculated using the neighbor-joining (NJ) method. Bootstrap replications (1000) were performed to obtain confidence estimates for each node in the tree. Distance was measured by mean character difference. The maximum parsimony (MP) analysis was carried out using PAUP*. Of 81 total characters (number of positions in alignment including gaps), 40 characters were parsimony-informative and gaps were treated as missing. Heuristic search was performed based on
Table 1. Metallothionein Protein Sequences used in Phylogenetic Analyses

Mammals				Fishes			
Labe1	Species	MT protein	Accession no.	Label	Species	MT protein	Accession no.
M1-1	Homo sapiens	MT-IA	NP_005937	Shark	Scylorhinus orazame	MT (present study)	AY605090
M1-2	Homo sapiens	MT-IB	NP_005938	Al	Chaenocephalus aceratus	MT-A	093593
M1-3	Homo sapiens	MT-IE	P04732	A2	Chionodraco hamatus	MT-A	O13258
M1-4	Homo sapiens	MT-IF	NP_005940	A3	Cyprinodon sp.	MT-A	Q92044
M1-5	Homo sapiens	MT-IG	NP_005941	A4	Cyprinus carpio	MT-A	013269
M1-6	Homo sapiens	MT-IH	NP_005942	A5	Danio rerio	MT-A	NP_571150
M1-7	Homo sapiens	MT-IJ	NP_783321	A6	Notothenia coriiceps	MT-A	P62339
M1-8	Homo sapiens	MT-IK isoform 1	P80296	A7	Parachaenichthys charcoti	MT-A	O93450
M1-9	Homo sapiens	MT-IK isoform 2	AAH28280	A8	Oncorhynchus mykiss	MT-A	P09861
M1-10	Homo sapiens	MT-IK isoform 3	NP_789846	A9	Salmo salar	MT-A	CAA65929
M1-11	Homo sapiens	MT-IL	P80297	A10	Salvelinus alpinus	MT-A	AAB66342
M1-12	Homo sapiens	MT-IM	AAL83902	A11	Sparus aurata	MT-A	P52727
M1-13	Homo sapiens	MT-IQ	AAO49186	A12	Thermarces Cerberus	MT-A	P52721
M1-14	Homo sapiens	MT-IR	Q93083	Al3	Trematomus bernacchii	MT-A	093609
M1-15	Homo sapiens	MT-IS	AAK26162	Al4	Chionodraco rastrospinosus	MT-A	CAA09714
M1-16	Homo sapiens	MT-IX isoform 1	NP_005943	Al5	Gymnodraco acuticeps	MT-A	CAA07555
M1-17	Homo sapiens	MT-IX isoform 2	AAH18190	A16	Pagothenia borchgrevinki	MT-A	CAA07558
M1-18	Equus caballus	MT-IA isoform 1	P02800	A17	Carassius cuvieri	MT-A	AAN85819
M1-19	Equus caballus	MT-IB isoform 1	P02801	B1	Chaenocephalus aceratus	МТ-В	P52724
M1-20	Equus caballus	MT-IA isoform 2	SMHO1A	B2	Chionodraco hamatus	MT-B	P62711
M1-21	Equus caballus	MT-IB isoform 2	SMHOB	B3	Chionodraco rastrospinosus	MT-B	P62679
M1-22	Sus scrofa	MT-IA	P49068	B4	Cyprinus carpio	MT-B	Q91910
M1-23	Sus scrofa	MT-IC	P79376	B5	Danio rerio	MT-B	NP_919249
M1-24	Sut scrofa	MT-ID	P79377	B6	Dicentrarchus labrax	MT-B	Q9PTG9
M1-25	Sus scrofa	MT-IE	P79431	B7	Gymmodraco acuticeps	MT-B	P62713
M1-26	Suts scrofa	MT-IF	P79378	B8	Morone saxatilis	MT-B	P62712
M1-27	Ovis aries	MT-IA	S00808	B9	Notothenia coriiceps	MT-B	P62680
M1-28	Ovis aries	MT-IB	P09577	B10	Oncorhynchus mykiss	МТ-В	P09862
M1-29	Ovis aries	MT-IC	P09578	B11	Pagothenia borchgrevinki	МТ-В	P62681
M1-30	Bos taurus	MT-I isoform 1	P58280	B12	Parachaenichthys charcoti	МТ-В	P62682
M1-31	Bos taurus	MT-I isoform 2	P55942	B13	Salmo salar	МТ-В	CAA65930
M1-32	Canis familiaris	MT-I	019000	B14	Salvelinus alpinus	МТ-В	AAB66343
M1-33	Cercopithecus aethiops	MT-I	P02797	B15	Trematomus bernacchii	MT-B	P62678
M1-34	Cricetulus griseus	MT-I	P02804	B16	Carassius cuvieri	MT-B	AAN85820
M1-35	Mus musculus	MT-I	P02802	C1	Barbatula barbatula	MT	P25128
M1-36	Oryctolagus cuniculus	MT-I	AAA31147	C2	Carassius auratus	MT	P52723
M1-37	Rattus norvegicus	MT-I	P02803	C3	Carassius auratus	MT	JC2419
M2-1	Bos taurus	MT-II isoform 1	P09579	C4	Esox lucius	MT	P25127
M2-2	Bos taurus	MT-II isoform 2	P55943	C5	Gadus morhua	MT	P51902
M2-3	Bos taurus	MT-II isoform 3	SMBO2	C6	Gadus morhua	MT	CAA65924
M2-4	Mus musculus	MT-II isoform 1	P02798	C7	Gobiomorphus cotidianus	MT	AAO89258
M2-5	Mus musculus	MT-II isoform 2	SMMS2	C8	Ictalurus punctatas	MT	093571
M2-6	Homo sapiens	MT-II isoform 1	P02795	C9	Lithognathus mormyrus	MT	AAL37187
M2-7	Homo sapiens	MT-II isoform 2	P80295	C10	Liza aurata	MT	O13257
M2-8	Sus scrofa	MT-IIA	P79379	C11	Oreochromis aureus	MT	AAP14677

Table 1. Continued

Mammals				Fishes			
Label	Species	MT protein	Accession no.	Label	Species	MT protein	Accession no.
M2-9	Sus scrofa	MT-IIB	P79380	C12	Oreochromis mossambicus	MT	AAP14678
M2-10	Canis familiaris	MT-II	Q9XST5	C13	Oreochromis mossambicus	MT	P52726
M2-11	Cercopithecus aethiops	MT-II	P02796	C14	Oryzias latipes	MT	AAR30249
M2-12	Cricetulus griseus	MT-II	P02799	C15	Pagrus major	MT	Q9IB50
M2-13	Cricetulus longicaudatus	MT-II	I48116	C16	Perca fluviatilis	MT	P52725
M2-14	Mesocricetus auratus	MT-II	P17808	C17	Plecoglossus altivelis	MT	AAP43669
M2-15	Ovis aries	MT-II	S00811	C18	Pleuronectes platessa	MT	S30567
M2-16	Rattus norvegicus	MT-II	P04355	C19	Pseudopleuronectes americanus	MT	P55945
M2-17	Stenella coeruleoalba	MT-II	P14425	C20	Pseudopleuronectes americanus	MT	CAA31930
M3-1	Rattus norvegicus	MT-III	P37361	C21	Rutilus rutilus	MT	P80593
M3-2	Ovis aries	MT-III	AAM21134	C22	Zoarces viviparous	MT	P52728
M3-3	Bos taurus	MT-III	P37359				
M3-4	Equas caballus	MT-III	P37360				
M3-5	Homo sapiens	MT-III	P25713				
M3-6	Mus musculus	MT-III	P28184				
M3-7	Sus scrofa	MT-III	P55944				
M4-1	Canis familiaris	MT-IV	Q9TUI5				
M4-2	Homo sapiens	MT-IV	P47944				
M4-3	Mus musculus	MT-IV	P47945				

tree-bisection-reconnection (TBR) branch-swapping algorithm. Bootstrap analyses were carried out using both fast stepwise-addition search (1000 replications) and full heuristic search (100 replications). The bootstrap 50% majority-rule consensus trees from both NJ and MP analyses were visualized using the TreeView (Win32 1.52) program (http://taxonomy.zoology.gla.ac.uk/rod/treeview).

Experimental Exposures to Heavy Metals. To examine transcriptional induction of the shark MT gene by heavy metal ions, 3 experimental exposures to heavy metals were conducted. First, sharks (average body weight, $320 \pm 38 \mathrm{~g})$ were given an intraperitoneal injection of CdCl_{2} (Sigma) at different dose levels $(2.5,5.0$, and $10.0 \mathrm{mg} / \mathrm{kg}$ body weight $)$. A control group injected with saline containing no cadmium. The changes of MT mRNA levels in liver and kidney were monitored for 7 days. The injected fish ($n=16$ per dose) were transferred to a $150-\mathrm{L}$ wellaerated tanks and individuals ($n=4$) were sampled from each group at 2,4 , and 7 days after injection. Second, the sharks were exposed to equal molar concentrations of cadmium, copper, and zinc in order to examine which heavy metal was the most potent inducer for shark MT. Fish were immersed in seawater (150 L) containing $0,5,10$, or $20 \mu \mathrm{M}$ of each heavy metal for 24 hours. The effect of extended durations (48 and 96 hours) on MT expression was also examined with a fixed dose $(10 \mu \mathrm{M})$ of cadmium, copper, or zinc. Livers were sampled from 4 fish belonging to each treatment group. Third, the time course of MT expression during the zinc exposure was examined up to 10 days. Fish were immersed in seawater containing 0 or $10 \mu \mathrm{M}$ of zinc, and 3 individuals were randomly chosen from each tank at 1,4 , 7 , and 10 days after exposure. The starting level of MT mRNA was also examined at day 0 . Liver and kidney samples were subjected to RNA analysis. Water temperature was adjusted at $13^{\circ} \pm 1^{\circ} \mathrm{C}$ throughout the experiments.

RNA Blot Analysis. Total RNA was isolated using TriPure Isolation Kit (Roche Applied Biosciences) and treated with DNase I (10U/p $\mu \mathrm{g}$ total RNA) for 30 minutes at $37^{\circ} \mathrm{C}$ in order to remove possible contaminating DNA. DNase I was inactivated by incubating the reaction at $90^{\circ} \mathrm{C}$ for 15 minutes. One microgram of resulting total RNA was spotted onto a positively charged nylon membrane (Roche Applied Biosciences) in a volume of 1μ l. The membrane was processed according to the manufacturer's instructions and hybridized with digo-xygenin-11-dUTP-labeled full-length shark MT
cDNA. Labeling, hybridization, washing, and detection were performed as described above. The hybridized signal was analyzed using Quantity-One software (BioRad) to evaluate the relative intensity of the hybridized signal. Arbitrary values for intensity (INT/ mm^{2}) generated from the software were used for the comparative analysis of hybridization signals among experimental groups. For Northern blot analysis, $10 \mu \mathrm{~g}$ of purified total RNA was separated by electrophoresis in a MOPS-formaldehyde agarose gel (1.2%). The RNA was transferred to a nylon membrane using the capillary method (Sambrook et al., 1989), processed according to the manufacturer's instructions (Roche), and hybridized with DIG-labeled shark MT cDNA. The membranes (dot blot and Northern blot) were stripped and reprobed with shark actin cDNA insert (EST clone; unpublished data) in order to normalize the MT mRNA levels.

Semiquantitative RT-PCR Analysis. The differential change of MT transcripts was examined with semiquantitative reverse transcriptase PCR. Prior to semiquantitative RT-PCR analysis, optimal conditions were established regarding the range of input total RNAs $(0.2-2 \mu \mathrm{~g})$, the number of cycles (12-30 cycles), and thermal cycling conditions for MT gene and actin gene (normalization control). The numbers of cycles were kept to a minimum and the RT-PCRs were linear in the range of input total RNA tested. As a negative control for each set of primers, RTPCRs were performed in the absence of RT and RNA (data not shown). First-strand cDNA using Superscript II Reverse Transcriptase (Invitrogen) was generated from $1 \mu \mathrm{~g}$ of total RNA (DNase-treated) with oligo(dT) ${ }_{18}$ primers. For PCR reactions, 0.5 U ExTaq DNA polymerase (Takara) and $2 \mu \mathrm{l}$ cDNA were used in $50 \mu \mathrm{l}$ of amplification buffer containing 30 pmol of primers. The primer pair specific for shark MT cDNA was sMT-1F and sMT-1R as described above. The primer pair specific for shark β-actin was sACT 1F 5'-CtgTgCccatctac ganggt- 3^{\prime} and saCT 1R 5^{\prime} agagcgatgatctcctt ctg-3'. PCR was performed using the iCycler (BioRad) under the following conditions: $94^{\circ} \mathrm{C}$ for 2 minutes (initial denaturation), $94^{\circ} \mathrm{C}$ for 1 minute, $58^{\circ} \mathrm{C}$ for 1 minutes, and $72^{\circ} \mathrm{C}$ for 1 minute. Numbers of cycles for MT and actin genes were 25 and 20 , respectively. PCR reactions were repeated 3 times for each cDNA sample. Expected sizes of PCR products of MT and actin are 280 and 475 bp , respectively. PCR products were electrophoretically separated on 2.0% agarose gels, and the ethidium-bromide-stained bands were analyzed by densitometry using Quantity-One software to determine the relative mRNA levels.

Results and Discussion

Isolation and Characterization of Shark MT cDNA and Genomic Sequences. From 4 arrays, each containing 1536 randomly selected clones, 2 clones showed a positive signal with the MT probe in the filter hybridization. Both clones contained fulllength ORFs corresponding to shark MT mRNA, and had the identical sequence composed of a 5^{\prime} untranslated region (UTR) of 38 bp , a single ORF (204 bp) encoding 68 amino acids, and 3^{\prime}-UTR of 183 bp excluding 71 bp of poly $(\mathrm{A})^{+}$tail. The consensus sequence for polyadenylation was also found 19 bp upstream of the poly (A) $)^{+}$tail (Figure 1, A). The genomic fragment isolated by PCR using sMT 1F and 1R primers was 923 bp in length. It consisted of 3 exons, 2 introns, and partial 3^{\prime}-UTR: exons I (34 bp), II (78 bp), and III (92 bp) were separated by introns I $(203 \mathrm{bp})$ and II (449 bp). Consensus exon-intron boundary sequence (GT-AG) was clearly conserved (Figure 1, B).

Multiple Sequence Alignment Analysis. The amino acid sequence of the putative shark MT deduced from the cDNA sequences shared relatively high similarity with other previously known MT sequences from vertebrates including mammals and bony fishes. Overall amino acid identities of shark MT ranged from 41% to 62% with other MTs: average identities were $57 \% \pm 3 \%$ (range, $52 \%-62 \%$) with mammalian MT-Is (37 sequences from 11 species), $58 \% \pm 2 \%(55 \%-61 \%)$ with mammalian MT-IIs (17 sequences from 12 species), $47 \%-3 \%(41 \%-48 \%)$ with mammalian MT-IIIs (7 sequences from 7 species), $50 \% \pm 1 \%(50 \%-52 \%)$ with mammalian MT-IVs (3 sequences from 3 species), $53 \% \pm 2 \%(49 \%-56 \%)$ with teleost MT-As (17 sequences from 17 species), $54 \% \pm 2 \%(47 \%-55 \%)$ with teleost MT-Bs (16 sequences from 16 species) and $52 \%-3 \%(47 \%-57 \%)$ with teleost MTs that had not been yet classified as MT-A or MT-B (tables not shown).

Optimized multiple alignment using shark MT and 119 orthologues generated 81 positions including gaps (only the selected sequences are shown in Figure 2). In mammalian MTs most MT-Is and IIs comprised 61 amino acids. Two exceptional MT-I sequences were human MT-IK (M1-8 in Figure 2) and horse MT-IA (M1-20 in Table 1; not shown in Figure 2), containing 62 and 60 amino acids, respectively. Human MT-IK (M1-8) had an exceptional insertion of Ala at the 14th position, which cannot be found in any other vertebrate MTs. Mammalian MT-IIIs consisted of 65 to 68 amino acids with additional sequences in both β-domain (Thr or Ala at the 8 th position) and α-domain (from

B
Exon I
1 ATGTCTGACACGAAGCCCTGTGIGTGCCTGGATG tg gagtgetgact.ggigt cagtgt.tt
ttagcagagtg:gccggctcactcccactgaggctgcagcaztggaggggaggctcttta
121 ttcaactcactgcagägagaazgtgacgoagagocogcco cotcoacacggeggcaty 1 ggcggcatztcicaggettigaacacaactcaazgtctgtc-ttctcctottztoggat Exon II CCTGCTCCTGTGAAAACACCTGCAGGTGCTCCGACTGCCGATGTCCCACCAGCAAAGCTG 301 GACGCTGCCAGAAAA trgagtaact qqggqaqagt.t.caaactgctcacattotat toat
 421 gat Lcagelgacglcal Lcccalcaaallgat:ccalalccaggctaaaga: Lglggag
 541 gaczgatgattagaaatggegtagtggagacag gagtcgaacatct tcaccoaaactct 601 ctcacacagt.gttct.gagget.gagcctct.gcagatggy tact.tggggatatgacacaga 661 t.gggtt.tg \quad gagtgaggagotgagtgctgcaat.gggaggctot.ggagggatt.ocagt.caz
 781 TCCTGCAGGATGCACGAACTGTGCCAATGGCTGTGTGTGTAAAGGCAAAGCCTCTGACAA 841 ATGTAGCTGCTGTTCCtgacaacaggcacctcagacacaa_atctgaaata二tgtccat 901 atgzactg=at tecacacactggatgtttcag
Fig. 1. A: Nucleotide sequence of shark MT cDNA. Coding sequence is represented by uppercase type and noncoding sequence by lowercase. The deduced amino acid sequence is indicated below the nucleotide sequence in single letter code. The termination codon is indicated by an asterisk, and the putative polyadenylation signal (aataaa) is in boldface. Sequences of primers s MT-1F and sMT-1R are underlined. B: Genomic sequence of shark MT gene isolated by PCR using sMT-1F and sMT-1R primers (underlined). Coding sequence is represented by uppercase boldface. Exon-intron boundary sequences (gt-ag) are boxed.
the 64th to 71st positions): the consensus sequence (G/E)EGAEAE(A/E) and its modified forms inserted in α domain were found in all of the previously known mammalian MT-IIIs, but in no other MTs. Mammalian MT-IVs had 62 amino acids with an insertion of Glu at the 8th position. Compared with the multiplicity of mammalian MTs, teleosts have been known to possess 2 distinct MTs; MT-A and MT-B. All the fish MT-Bs had 60 amino acids without variation. Most, but not all, teleost MT-As also comprised 60 amino acids. Three salmonid MT-As from Oncorhynchus mykiss (A-8 in Figure 2), Salmo salar (A-9), and Salvelinus alpinus (A-10) had an additional Ala residue at the border between β-domain and α-domain, which was not seen in MT-Bs from the same species. The insertion at the border
region has recently been reported in a nonsalmonid fish, ayu (Plecoglossus altivelis); however, the inserted amino acid was Thr (C-17 in Table 1; Lin et al., 2004).

Like many other MT sequences, shark MT contained a high proportion of Cys residues (20 [29.4\%] of 68) as Cys-X-Cys or Cys-Cys forms. The positions of most, but not all Cys residues in shark MT sequences were well conserved when aligned to other fish and mammalian sequences. In addition to these conserved cysteine residues, shark MT shared several identical residues with other MTs. In β-domain, Asp (the 3rd position), Pro (the 6th position), and also Lys (the 4lst position) were conserved in all the fish and mammalian MTs. Serine at the beginning of α domain (the 43rd position; except human MT-IB) and Pro (49th position) were conserved in most vertebrate MTs. However, shark MT had some unique features, including 4 extra amino acids (Lys-Ala-GlyArg; 35th to 38th positions) which have not been reported in any other vertebrate MTs. The position of these additional amino acids was close to the end of β-domain (see Olsson, 1993). Analysis of genomic sequence indicated that these amino acids should be encoded by exon II of shark MT (see also Figure 1). However, the physiological function remains to be studied. On the one hand, further comparisons of shark MT with other teleost MTs based on this multiple alignment showed that shark MT had unique insertions in β-domain which were missing in other MTs: Ser (the 2nd position), Thr-Lys (the 4th and 5th positions), and Pro (the 32nd position). On the other hand, there was a gap in shark MT at the 15th position where many mammalian MTs had Gly or Asp, while most teleosts had Ser or Thr. Shark MT also had Gln at the 40th position (close to the end of β-domain), while most fish and mammalian MT-I, MT-II and MT-IIIs had Lys (mammalian MTIV had Arg). Similarly, the amino acid at the 54th position was Asn in shark MT, while most mammalian and all the teleost MTs had Lys at this position. The last amino acid residue at the C -terminus in shark MT was Ser, which has not been reported in any other vertebrate MTs: all the teleost MTs and mammalian MT-IIIs had Gln, while most mammalian MT-Is and MT-IIs showed Ala at the C-terminus.

Shark MT represented intermediate characters between teleost and mammalian MTs, suggesting that the shark MT might be an ancestral form of vertebrate MTs. Shark MT shared homology with fish MTs, including the gaps at the 7th and 8th positions in β-domain. Similarity between shark and teleost MTs was also found at the 72 nd position: the Lys residue was conserved in the majority of fish

Fig. 2. Alignment of shark MT polypeptide sequences with mammalian MTs (M1-X for MT-I, M2-X for MT-II, M3-X for MT-III, and M4-X for MT-IV) and teleost MTs (A1 to A17 for MT-A and B1 to B16 for MT-B). Multiple alignment was performed with 120 unique sequences indicated in Table 1, but only representative sequences are shown here. For the species name and GenBank accession number of each sequence, see Table 1. Dots indicate the identities with shark MT. Hyphens represent gaps introduced for optimal alignment, and letters represent amino acids where substitutions occur. Conserved cysteine residues are boxed, and extra amino acids found only in shark MT are in boldface. The number of amino acids is noted at the right of each sequence.

Fig. 3. Phylogenetic tree of MT inferred using NJ method. The 120 unique MTs from fish and mammalian species (shown in Table 1) were used to construct the tree. The bootstrap values as percentages shown at the nodes of the tree are based on 1000 replications. Only values greater than 50% are shown. The GenBank accession number of each sequence is shown in Table 1.

MTs but was found in only 2 mammalian MT-IIIs. In addition to the similarity with teleost MTs, shark shared homology with mammals in their MT sequences. First, Arg at the 31 st position was found in many mammalian MT-Is and MT-IIs, but was in none of the fish MTs. Second, shark shared Arg-Ser at 73rd-74th positions with most mammalian MT-Is and MT-IIs, but the consensus sequence at this position in fish MTs was Thr-Cys. Third, the third Cys from the C-terminus (the 77th position) was conserved in shark and mammalian MTs, but was missing in all of the teleost MTs.

Construction of Phylogenetic Trees. The phylogenetic relationships among 120 MT sequences including shark MT inferred using NJ and MP methods are shown in Figure 3 and Figure 4, respectively. In both NJ and MP analyses, shark formed a unique branch. The NJ and MP analyses yielded similar phylogenetic hypotheses, with the same nodes receiving bootstrap support higher than 80% replicates in most cases. In the NJ tree the teleost MT, mammalian MT-IV, and mammalian MT-

III groups were supported by the bootstrap values higher than 90% replicates. However, mammalian MT-I and MT-II groups were not clearly divided from each other, and the large group consisting of both MT-I and MT-II was characterized by 75% bootstrap support. Of a total of 16 highly supported nodes in NJ tree ($>90 \%$ of replicates), 8 nodes belonged to subgroups of mammalian MT-I/II. Within the teleost group, Cypriniformes containing 10 MT sequences was characterized by 95% bootstrap support, 3 salmonid MT-As (A8, A9, and A10) by 92%, and 2 isoforms of G. morhua (C5 and C6) by 95%. Further insights into teleost MTs have shown that the MT-A and MT-B isoforms from the group containing Salmoniformes (A8, A9, A10, B10, B13, and B14) appear to have originated before the species separations, because the clades within Salmoniformes are characterized by MT isoforms (MT-A or MT-B) rather than by species: e.g., arctic char MT-A (A10) is more closely related to rainbow trout MT-A (A8) than to arctic char MT-B (B14) (see also Bargelloni et al., 1999). A similar phenomenon is found in tilapia species (see C11, C12, C13): Oreochromis mossam-

Fig. 4. Consensus tree summarizing results from parsimony analyses using PAUP program under TBR algorithm (40 parsimony-informative sites; tree length, 302; consistency index, 0.5497; retention index, 0.8967; gaps treated as missing). Numbers on branch nodes indicate bootstrap values (\%) after 1000 replications using fast stepwiseaddition search or 100 replications using full heuristicsearch (in parentheses). Only values greater than 50% are shown. Uppercase labels (A to K) in circles represent distinct clades supported by bootstrap values of 80% or higher in both searches. The GenBank accession number of each sequence is shown in Table 1.
bicus MT isoform (C12) is more closely related to O. aureus MT (Cl1) than is O. mossambicus MT isoform (C13) (Figure 3).

The consensus tree summarizing results from MP analysis is shown in Figure 4. The general topology of the MP tree was similar to that of the NJ tree. The nodes receiving strong bootstrap support $(\geq 80 \%$ in both fast stepwise-addition and full heuristic searches) characterized 14 clades. Clades As are all isoforms of human MT-Is. Clades B and D are 2 isoforms of horse (Equus caballus) MT-I and mouse MT-II, respectively. Clade C represents the MT-Is from 3 Muridae families. Clade G covers all of mammalian MT-IIIs including 2 highly supported clades, E and F . Clade H is a distinct group composed exclusively of previously known mammalian MTIVs. The separation of MT-III and MT-IV groups at high confidence levels is similar to the finding in NJ analysis. Unlike the NJ tree, the node for the teleost group is supported by relatively lower bootstrap values (68% in fast search and 73% in full search). Within this clade the formations of nodes are generally in agreement with the expected taxonomic placements. Fish species belonging to Cypriniformes formed a distinct clade I supported by 82% to 86% bootstrap values. Although the salmonid species (A8, A9, and A10) formed a distinct group in the NJ tree, they did not receive high bootstrap support in MP analysis: only full heuristic search resulted in a node with 65% bootstrap support. Clade J represents 2 isoforms of MT from G. morhua, and tilapia MT isoforms also formed a distinct clade K, as in NJ analysis (Figure 4).

Transcriptional Activation of Shark MT Gene by Intraperitoneal Injection of Cadmium. The concentration of cadmium injected affected the induction of shark MT transcripts. On the RNA blot assay, the basal level of MT expression was significantly higher in liver than in kidney. The MT mRNA level of nonexposed fish was not significantly changed in either tissue throughout the experiment. In kidney, all the dose levels ($2.5-10 \mathrm{mg} / \mathrm{kg}$ body weight) of

Fig. 5. Levels of shark MT transcripts in kidney and liver induced by cadmium injection. A: RNA dot blot hybridization probed with shark MT cDNA. MT mRNA was induced by intraperitoneal injection of different doses of cadmium $(0-10 \mathrm{mg} / \mathrm{kg}$ body weight). The MT mRNA levels were assayed at $0,2,4$, and 7 days after injection. B: Representative gel showing the RT-PCR products of the expected sizes (475 bp for actin and 280 bp for MT) fractionated in 2% agarose gel electrophoresis and stained with ethidium bromide. C: Densitometric analysis (actin ratio) representing the means of 3 independent PCR amplifications of a cDNA /see "Materials and methods"). Signal intensities (INT/ mm^{2}) of the bands were assigned by image analysis software (Quantity One). Standard deviations are indicated by bars on the histograms. Means with the same letters on each histogram within a day were not statistically different at $P<0.05$ based on analysis of variance.
cadmium injection revealed significant dose-dependent increases in MT transcripts at 2 days after injection. A transient increase in MT transcripts was observed up to day 4 after injection, which dropped to a lower level at day 7, although the level was still
elevated as compared to that in the control fish (Figure 5, A). The transient response of MT transcript in kidney to heavy metal exposure has already been reported in rainbow trout (Norey et al., 1990). Liver also displayed a sharp increase of MT mRNA

C

Fig. 6. Semiquantitative RT-PCR analysis of RNA from fish exposed to cadmium, copper, and zinc. A: Induction of hepatic MT mRNA by immersing sharks in equal molar concentrations (5,10 , or $20 \mu \mathrm{M}$) of 3 heavy metals for 24 hours. C0 indicates the starting level of MT transcripts assayed at day $0 . \mathrm{Cl}$ is the nonexposed control assayed at 24 hours after immersion (immersion in water containing no heavy metal). B: MT mRNA levels induced by exposures to heavy metals at $10 \mu \mathrm{M}$ for 48 and 96 hours. C0 is the starting level of MT transcripts and C1 lanes are nonexposed controls assayed at 48 and 96 hours after immersion. C: Northern blot hybridization to show MT mRNA levels in shark liver induced by exposure to cadmium, zinc, or copper at $10 \mu \mathrm{M}$ for 96 hours. Ten micrograms of liver total RNA was transferred to nylon membrane and probed with digoxygenin-labeled full-length shark MT cDNA probe. Control hybridization was a with shark β-actin cDNA fragment.
levels by cadmium injection; however, the expression pattern in liver was different from that in kidney. The maximum MT mRNA level was attained in liver at day 4 and retained up to day 7 , in contrast to the rapid drop of MT mRNA level at day 7 in kidney (Figure 5, A). A similar pattern of MT induction at mRNA level was observed in semiquantitative RT-PCR analysis (Figure 5, B and C). Actin gene showed steady-state expression without significant variations in kidney or liver tissues. However, MT transcripts were clearly induced by cadmium injection, and the increases in these tissues were dose-dependent, even though there was not a linear relationship between doses and mRNA levels. As in RNA blot analysis, the induction of MT mRNA in kidney was transient; however, elevation was retained in liver (Figure 5, B and C). The view that differential regulation of MT expression in different organs might be due to the different rates of metal-ion uptake or excretion in the organs, which can also be affected by other metal-binding proteins existing in different organs, has been widely accepted (see Gedamu and Zafarullah, 1993).

Induction of MT mRNA by Immersion Exposure

 to Cadmium, Copper, and Zinc. Sharks were exposed to equal molar concentrations $(0,5,10$, and 20 $\mu \mathrm{M}$) of 3 different heavy metal ions (Figure 6, A). Actin transcript was not changed during immersion,but significant increases were detected in fish subjected to all the doses except nonexposed fish. According to the scanning densitometry, zinc was the more potent inducer than cadmium and copper: MT mRNA levels of fish exposed to zinc were always higher than those of fish exposed to cadmium and copper (pixel data not shown). The extended exposures using a single dose ($10 \mu \mathrm{M}$) also showed similar patterns of increase (Figure 6, B). The MT mRNA level induced by zinc was more than 2 -fold that of nonexposed fish at 48 hours after immersion. Cadmium induced slightly more MT mRNA in liver than copper, but the difference was not significant. Further extension of duration up to 96 hours decreased the difference in the induced mRNA levels by the 3 heavy metals. Although the MT transcript level induced by zinc was still slightly higher than those by cadmium and copper, the difference between cadmium and copper was diminished at 96 hours (Figure 6, B). Northern blot analysis using the RNA from the fish exposed for 96 hours showed similar results, but the difference was less compared to that on RT-PCR (Figure 6, C). This result was similar to the findings of a previous report on rainbow trout in which higher induction was detected by exposures to zinc and cadmium than to copper (Gedamu and Zafarullah, 1993). Olsvik et al. (2001) also reported that brown trout from a stream contaminated with cadmium and zinc showed signifi-

Fig. 7. Time course expression of MT transcripts assessed by semiquantitative RTPCR with the RNAs from fishes exposed to $0(\mathrm{C})$ or $10 \mu \mathrm{M}(\mathrm{E})$ of zinc up to 10 days. RT-PCR products were analyzed by electrophoresis onto a 2.0% agarose gel followed by ethidium bromide staining.
cantly higher MT level than fish from a copper-polluted river. The differential response of the MT gene to different kinds of metal inducers might be due to not only the differential affinity of the heavy metals for a metal-binding transcription factor but also the different rates of metal flux and availability (Gedamu and Zafarullah, 1993). However, Boeck et al. (2003) proposed that there also might be significant variations among fish species in the regulatory capacity for a specific metal homeostasis: for example, cyprinid fish species exhibited higher tolerance for copper exposure and showed much more positive correlation between tissue copper levels and tissue MT levels than salmonid fish.

Using the most potent inducer, zinc, the time course of MT expression was monitored up to 10 days (Figure 7). In both kidney and liver, significant increase of MT transcripts was detectable at day 1 by semiquantitative RT-PCR. Although there was a trend toward higher induction with longer duration of zinc exposure, the level of MT transcripts rapidly reached its maximum at day 4 (kidney) and at day 7 (liver). Unlike the transient pattern of expression in kidney by cadmium injection, however, there was no evidence that the MT mRNA dropped rapidly after reaching maximum induced level: induced MT transcripts remained elevated up to 10 days without any significant decrease. Positive correlations between MT levels and periods of exposure to heavy metals have also been observed in other teleost species at mRNA or protein levels (George et al., 1996; Boeck et al., 2003; Lin et al., 2004). The short period required to reach maximum induction observed in this study might be due to the relatively high concentration of doses ($10 \mu \mathrm{M}$). To consider the environmentally realistic doses, further experiments should be conducted using lower concentrations and more extended periods. It also would be valuable to examine the expressed profile of other stress-responsive genes together with MT transcripts during
heavy metal exposures, because stress factors other than metal ions also could affect MT mRNA levels.

In summary, a novel MT cDNA and genomic sequence was isolated from a cartilaginous shark species, Scyliorhinus torazame. The shark MT shared homologous traits with MTs from both advanced bony fishes and mammalian species, suggesting that the shark MT may be the ancestral form of vertebrate MTs. However, it is not clearly understood yet whether or not the present type of shark MT gene belongs to subtype MT-A or MT-B. Further experiments on the genomic structure of shark MT gene including genomic Southern blot hybridization and inverse PCR will be useful for better understanding the origin of ancestral MT gene of vertebrates. The highly inducible expression of shark MT gene by various metal ions may also allow the use of MT transcripts as molecular biomarkers to address environmental contamination by heavy metals.

Acknowledgments

This study was supported by Korea Sea Grant Program from Ministry of Maritime Affairs and Fisheries.

References

1. Bargelloni L, Scudiero R, Parsi E, Carginale V, Capasso C, Patarnello T (1999) Metallothioneins in Antarctic fish: evidence for independent duplication and gene conservation. Mol Biol Evol 16, 885-897
2. Binz PA, Kagi JHR (1999) Metallothionein: molecular evolution and classification. In: Metallothionein, vol. 4, Klaassen C, ed. (Basel, Switzerland: Birkhauser) pp 7-13
3. Boeck GD, Ngo TTH, Campenhout KV, Blust R (2003) Differential metallothionein induction patterns in three freshwater fish during sublethal copper exposure. Aquat Toxicol 65, 413-424
4. Bonham K, Zafarullah M, Gedamu L (1987) The rainbow trout metallothioneins: molecular cloning characterization of two distinct cDNA sequences. DNA 6, 519-528
5. Chan KM (1994) PCR-cloning of goldfish and tilapia metallothionein cDNAs. Biochem Biophys Res Commun 205, 368-374
6. Chan PC, Shiu CKM, Wong FWY, Wong JKY, Lam KW, Chan KM (2004) Common carp metallothionein-1 gene: cDNA cloning, gene structure and expression studies. Biochem Biophys Acta 1676, 162-171
7. Cho JI, Kim YT (2002) Sharks: a potential source of antiangiogenic factors and tumor treatments. Mar Biotechnol 4, 521-525
8. Gedamu L, Zafarullah M (1993) Molecular analyses of rainbow trout metallothionein and stress protein genes: structure, expression and regulation. In: Molecular Biology Frontier: Biochemistry and Molec-
ular Biology of Fishes, Hochachka PW, Mommsen TP, eds. (Amsterdam, Netherlands: Elsevier) pp 241-258
9. George SG, Todd K, Wright J (1996) Regulation of metallothionein in teleosts: induction of MT mRNA and protein by cadmium in hepatic and extrahepatic tissues of a marine flatfish, the turbot (Scophthalmus maximus). Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 113, 109-115
10. George S, Leaver M, Freichs N, Burgess D (1990) Plaice metallothionein: molecular cloning studies and induction in cultured cells. Mar Envion Res 28, 173177
11. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55, 913-951
12. Hamilton SJ, Mehrle PM (1986) Metallothionein in fish: review of its importance in assessing stress from metal concentration. Trans Am Fish Soc 115, 596-609
13. Hermesz E, Abraham M, Nemcsok J (2001) Tissuespecific expression of two metallothionein genes in common carp during cadmium exposure and temperature shock. Comp Biochem Physiol 128, 457-465
14. Langston WJ, Chesman BS, Burt GR, Pope ND, McEvoy J (2002) Metallothionein in liver of eels Anguilla anguilla from the Thames Estuary: an indicator of environmental quality? Mar Environ Res 53, 263-293
15. Lin CH, John JAC, Ou LW, Chen JC, Lin CH, Chang CY (2004) Cloning and characterization of metallothionein gene in ayu Plecoglossus altivelis. Aquat Toxicol 66, 111-124
16. Muto N, Ren HW, Hwang GS, Tominaga S, Itoh N, Tanaka K (1999) Induction of two major isoforms of metallothionein in crucian carp (Carassius cuvieri) by air pumping stress, dexamethasone, and metals. Comp Biochem Physiol 122, 75-82
17. Nam YK, Cho YS, Douglas SE, Gallant JW, Reith ME, Kim DS (2002) Isolation and transient expression of a cDNA encoding L-gulono- γ-lactone oxidase, a key enzyme for L -ascorbic acid biosynthesis, from the tiger
shark Scyliorhinus torazame. Aquaculture 209, 271284
18. Norey CG, Cryer A, Kay J (1990) Induction of metallothionein gene expression by cadmium and the retention of the toxic metal in the tissues of rainbow trout (Salmo gairdneri). Comp Biochem Physiol 97C, 215-220
19. Olsson PE (1993) Metallothionein gene expression and regulation in fish. In: Molecular Biology Frontier: Biochemistry and Molecular Biology of Fishes, Hochachka PW, Mommsen TP, eds. (Amsterdam: Elsevier) 259-278
20. Olsson PE (1996) Metallothioneins in fish: induction and use in environmental monitoring. In: Toxicology of Aquatic Pollution: Physiological, Molecular and Cellular Approaches, Taylor EW. ed. |Cambridge, U.K.: Cambridge University Press) 187-203
21. Olsvik PA, Hindar K, Zachariassen KE, Andersen RA (2001) Brown trout (Salmo trutta) metallothioneins as biomarkers for metal exposure in two Norwegian rivers. Biomarkers 6, 274-288
22. Ren HW, Itoh N, Kanekiyo M, Tominaga S, Kohroki J, Hwang GS, Nakanishi T, Muto N, Tanaka K (2000) Two metallothioneins in the fresh-water fish, crucian carp (Carassius cuvieri): cDNA cloning and assignment of their expression isoforms. Biol Pharm Bull 23, 145-148
23. Roesijadi G (1994) Metallothionein induction as a measure of response to metal exposure in aquatic animals. Environ Health Perspect 102, 91-96
24. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press
25. Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680

[^0]: Correspondence to: Yoon Kwon Nam; E-mail: yoonknam@pknu .ac.kr

