

Characterization of β-Carotene Ketolases, CrtW, from Marine Bacteria by Complementation Analysis in *Escherichia coli*

Seon-kang Choi,¹ Yasuhiro Nishida,² Satoru Matsuda,¹ Kyoko Adachi,¹ Hiroaki Kasai,¹ Xue Peng,¹ Sadao Komemushi,² Wataru Miki,³ Norihiko Misawa¹

¹Laboratory of Applied Molecular Design, Marine Biotechnology Institute, Heita, Kamaishi-shi, Iwate 026-0001, Japan

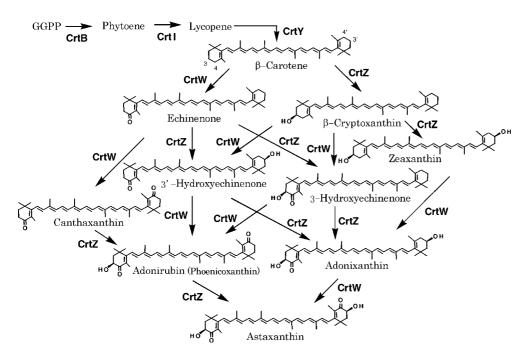
²School of Agriculture, Kinki University, Nakamachi, Nara-shi 631-8505, Japan,

Received: 25 August 2004 / Accepted: 27 January 2005 / Online publication: 17 June 2005

Abstract

A complementation analysis was performed in Escherichia coli to evaluate the efficiency of β-carotene ketolases (CrtW) from the marine bacteria Brevundimonas sp. SD212, Paracoccus sp. PC1 (Alcaligenes PC-1), and Paracoccus sp. N81106 (Agrobacterium aurantiacum), for astaxanthin production. Each crtW gene was expressed in Escherichia coli synthesizing zeaxanthin due to the presence of plasmid pACCAR25\(\Delta\)crtX. Carotenoids that accumulated in the resulting E. coli transformants were examined by chromatographic and spectroscopic analyses. The transformant carrying the Paracoccus sp. PC1 or N81106 crtW gene accumulated high levels of adonixanthin, which is the final astaxanthin precursor for CrtW, and astaxanthin, while the E. coli transformant with crtW from Brevundimonas sp. SD212 did not accumulate any adonixanthin and produced a high level of astaxanthin. These results show efficient conversion by CrtW of Brevundimonas sp. SD212 from adonixanthin to astaxanthin, which is a new-found characteristic of a bacterial CrtW enzyme. The phylogenetic positions between CrtW of the two genera, Brevundimonas and Paracoccus, are distant, although they fall into α-Proteobacteria.

Key words: β-carotene ketolase, β-carotene oxygenase — *Brevundimonas* sp., *Paracoccus* sp., astaxanthin — adonixanthin


Correspondence to: Norihiko Misawa; E-mail: norihiko.misawa@ mbio.jp

Introduction

Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is the most commonly found carotenoid pigment in marine animal tissues (Miki et al., 1982). Astaxanthin is being industrially exploited as a food dye, and particularly as a feed supplement in poultry farming and aquaculture. For example, sales of astaxanthin as a pigmentation source in salmon aquaculture in the United States amount to about U.S. \$200 million per year (Lorenz and Cysewski, 2000). The diverse biological functions of astaxanthin include involvement in the anti-oxidative activity of low-density lipoprotein (Iwamoto et al., 2000), anticancer activity (Tanaka et al., 1994; Chen et al., 1999), enhancement of immune responses (Chen and Park, 2004), and singlet oxygen-quenching activity (Tatsuzawa et al., 2000). Therefore, its use in the pharmaceutical and food industries is expected to increase dramatically in the near future.

Organisms that are capable of synthesizing astaxanthin are limited, but include some marine eubacteria (Yokoyama et al., 1994, 1996), the yeast Xanthophyllomyces dendrorhous (renamed from Phaffia rhodozyma; Andrewes et al., 1976), and the green algae Haematococcus pluvialis (Boussiba and Vonshak, 1991). The most comprehensive study on astaxanthin biosynthesis has been conducted with the marine bacteria Agrobacterium aurantiacum and Alcaligenes sp. strain PC-1, which were respectively reclassified as Paracoccus sp. strain N81106 (MBIC01143) and Paracoccus sp. strain PC1 (MBIC03024) (see http://www.mbio.jp/mbic/ and Berry et al., 2003). The astaxanthin biosynthetic pathway has been elucidated at enzyme and gene levels by in vitro studies (Fraser et al., 1997) and in vivo studies (Misawa et al., 1995). Astaxanthin can be synthesized from β -carotene (β , β -carotene) with the

³Suntory Limited, Shimamoto-cho, Mishima-gun 618-8503, Japan

Fig. 1. Astaxanthin biosynthetic pathway in astaxanthin-producing bacteria and the catalytic functions of CrtZ and CrtW.

introduction of keto and hydroxyl moieties at the 4,4' and 3,3' positions of the (β -ionone rings by CrtW, β carotene ketolase (β-carotene oxygenase; β-C4-oxygenase), and CrtZ, β-carotene hydroxylase (β-C3hydroxylase), and is finally formed from the final astaxanthin precursors, adonixanthin (3,3'-dihydroxyβ,β-caroten-4-one) and adonirubin (phoenicoxanthin; 3-hydroxy-β,β-carotene-4, 4'-dione), respectively, as shown in Figure 1. The in vitro enzymatic study has shown that for the CrtW enzymes of *Paracoccus* sp. PCI and N81106 and β -carotene ketolase (BKT) of H. pluvialis, the conversion of adonixanthin to astaxanthin seems to be an important limiting step (Fraser et al., 1997). The in vivo study by a complementation analysis using E. coli has shown that adonixanthin accumulated up to 47% of the total carotenoids in recombinant E. coli strains carrying the crt genes required for zeaxanthin (3,3'-dihydroxy-β,β-carotene) synthesis, in addition to the Paracoccus PC1 or N81106 crtW gene (Misawa et al., 1995), and that adonixanthin was also often more predominant than astaxanthin in *Paracoccus* sp. N81106 (Yokoyama et al., 1994) and other marine bacteria (A. Yokoyama and W. Miki, unpublished data). These results suggest that the conversion efficiency with CrtW of adonixanthin to astaxanthin may be an important step, not only for more efficient production in the marine bacteria, but also for artificial production of astaxanthin in transgenic organisms.

The astaxanthin-producing marine bacterium *Brevundimonas* sp., strain SD212, has been isolated from seawater around the Iwo islands in southern Japan (Yokoyama et al., 1996). A *crtW* gene has more

recently been isolated from this *Brevundimonas* strain (Y. Nishida et al., unpublished data). The CrtW protein from *Brevundimonas* sp. SD212 possessed 45% identity to that of the *Paracoccus* sp. PC1 or *Paracoccus* sp. N81106, whereas 75% identity existed between the two *Paracoccus* strains. We compare astaxanthin production with the CrtW enzymes from *Brevundimonas* sp. SD212, *Paracoccus* sp. PCI, and *Paracoccus* sp. N81106 by using the *E. coli* complementation system and discuss the phylogenetic positions of the known CrtW proteins, including these 3 β-carotene ketolases.

Materials and Methods

Recombinant DNA Techniques. The restriction enzymes and DNA ligation kit were respectively purchased from New England BioLabs and Toyobo. DNA manipulation was conducted by the standard methods (Sambrook et al., 1989) or as instructed by the suppliers. Plasmid DNA was prepared with the Miniprep DNA Purification Kit (Takara). The polymerase chain reaction (PCR) was carried out by an automated thermal cycler (Techne) with pfu turbo DNA polymerase (Stratagene).

Construction of Expression Plasmids. The crtW genes of Brevundimonas sp. SD212, Paracoccus sp. PC1, and Paracoccus sp. N81106 were respectively amplified by PCR from plasmids p5Bre2-15, which contained a 12-kb carotenogenic fragment derived from Brevundimonas sp. SD212 genomic DNA (DDBJ/EMBL/GenBank accession number.

Table 1. Oligonucleotides Used for Amplifying crtW Genes encoding β-Carotene Ketolases

Constructed plasmid	Primer ^a
pUCBre-W	F: 5'-TAC <u>GAA</u> <u>TTC</u> GAT GAG CGC CGC CGT CG-3'
	R: 5'-TAG AGG ATC CTC AAG ACT CGC CGC GCC ACA A-3'
pUCParaPC1-W	F: 5'-TAC GAA TTC GAT GTC CGG ACG GAA GC-3'
pUCParaN8-W	R: 5'-TAG <u>AGG ATC C</u> TC ATG CGC GGC CTC CGG-3' F: 5'-TAC <u>GAA TTC G</u> AT GAG CGC ACA TGC CC-3'
pocratario-w	R: 5'-TAG AGG ATC CTC ATG CGG TGT CCC CCT-3'
	k. 5-1AG AGG ATC CTC ATG CGG TGT CCC CCT-5

^aF and R respectively indicate forward and reverse primers. The EcoRI and BamHI sites are underlined.

AB181388), pPC17 (Misawa et al., 1995), and pAK96K (Misawa et al., 1995), using the 6 synthetic oligonucleotide primers described in Table 1. The PCR products were digested with *Eco*RI and *Bam*-HI, and then inserted into the corresponding sites of pUC18 (Toyobo) to respectively construct pUCBre-W (for *Brevundimonas* sp. SD212 *crtW*), pUC-ParaPCl-W (for *Paracoccus* sp. PC1 *crtW*), and pUCParaN8-W (for *Paracoccus* sp. N81106 *crtW*), where ATG for the original starts of the respective *crtW* genes were placed next to the *Eco*RI site (underlined) to form the CrtW proteins fused with the additional 7-amino-acid terminus of β-glucosidase (LacZ) as follows (start codon of the *crtW* gene):

The nucleotide sequences of the inserted fragments of the 3 plasmids were confirmed using a DNA sequencing kit (Big dye terminator cycle sequencing ready reaction kit version 2, PerkinElmer) and a model 3700 DNA sequencer (PerkinElmer) according to the manufacturer's instructions.

Cultures of E. coli. E. coli IM109 (Sambrook et al., 1989) carrying plasmid pACCAR25∆crtX that contained the 5 carotenoid biosysthesis genes, crtE, crtB, crtI, crtY, and crtZ, from Pantoea ananatis (D90087; renamed from Erwinia uredovora; Misawa et al., 1995) was used as the host for producing astaxanthin. A Luria-Bertani medium (4 ml; Sambrook et al., 1989) containing appropriate antibiotics was inoculated with 40 μ l of a fully grown culture of E. coli transformants, and incubated at 30°C while shaking. E. coli containing pACCAR25ΔcrtX required chloramphenicol (Cm) at a final concentration of 30 µg/ml, and E. coli carrying plasmid pACCAR25ΔcrtX, as well as pUCBre-W, pUCParaPC1-W, and pUCParaN8-W, each required Cm and ampicillin (100 µg/ml). When OD at 600 nm of the culture had reached about 0.5, isopropyl-β-D-thiogalactopyranoside was added to a final concentration of

0.5 mM. After cultivating for 6 to 48 hours, the cells were harvested by centrifugation at 4°C and stored at -70°C.

Analysis of Accumulated Carotenoids in E. coli. Frozen cells were vigorously shaken for 30 minutes after adding a volume of acetone sufficient to extract the carotenoid pigments. The extract was centrifuged at 14,000g for 20 minutes and at 4°C to remove the cell debris. The carotenoid pigments were analyzed by high-performance liquid chromatography (HPLC) with photodiode array (PDA) detection (Waters 2695–Waters 2996) or by HPLC–PDA–APCI (atmospheric pressure chemical ionization)–MS (mass spectrometry) with a Shiseido Nano Space SI-ThermoQuest UV600LP-ThermoQuest LCQ Advantage system.

The HPLC-PDA analysis was carried out on a TSK ODS-80Ts column $(4.6 \times 150 \text{ nm}, \text{Tosoh})$ as previously described (Yokoyama and Miki, 1995). The crude extract was eluted at a rate of 1 ml/min with solvent A (water-methanol, 5:95, v/v) for 5 minutes, followed by a linear gradient from solvent A to solvent B (tetrahydrofuran-methanol, 3:7, v/v) for 5 minutes, solvent B alone for 8 minutes, and then back to solvent A. The relative percentage of each carotenoid was determined by comparing the HPLC peak area at 470 nm. The HPLC-PDA-APCI-MS analysis was conducted in a Develosil C30-UG-3 column (1.0 mm i.d. \times 150 nm, Nomura), with a Develosil C30-UG-S used as a precolumn. The crude extract was eluted at a rate of 0.09 ml/min with solvent A for 15 minutes, followed by a linear gradient from solvent A to solvent C (methanol-tertbutyl methyl ether, 3:7, v/v) for 100 minutes, solvent C alone for 20 minutes, and then back to solvent A. Mass spectra were monitored in the mass range of m/z 200–1200 by the LCQ Advantage instrument. The capillary temperature was set to 150°C, the APCI vaporizer temperature was held at 400°C, the capillary voltage was optimized to 23 V, and the sheath nitrogen gas flow was set to 28 (arbitrary units).

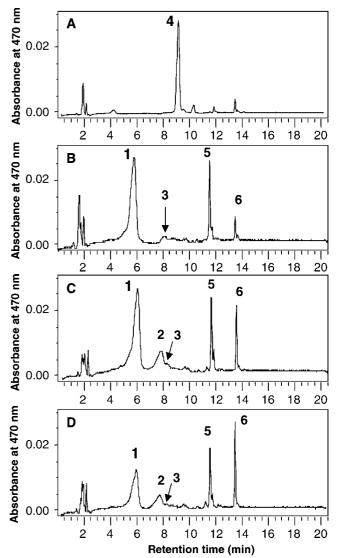
Authentic samples of carotenoids were purchased from Sigma or purified from the *E. coli* transformants expressing the *crt* genes derived from *P. ananatis* and *Paracoccus* sp. N81106 (Misawa et al., 1995).

Spectral Data for the Individual Carotenoids. Astaxanthin (1): HPLC-PDA, retention time (RT) 5.8 minutes, λ max 473 nm; HPLC-PDA-APCI-MS, RT 13.3 minutes, λ max 476 nm, m/z 597 [M+H]⁺.

Adonixanthin (2): HPLC-PDA, RT 7.6 minutes, $\hat{\lambda}$ max 462 nm; HPLC-PDA-APCI-MS: RT 17.5 minutes, $\hat{\lambda}$ max 463 nm, m/z 583 [M+H]⁺.

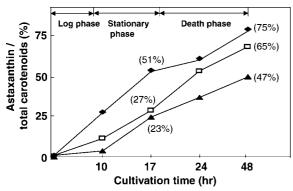
Adonirubin (3): HPLC-PDA, RT 8.1 minutes, $\hat{\lambda}$ max 472 nm; HPLC-PDA-APCI-MS, RT 20.9 minutes, $\hat{\lambda}$ max 470 nm, m/z 581[M+H]⁺.

Zeaxanthin (4): HPLC-PDA, RT 8.5 minutes, λ max 450, 479 nm; HPLC-PDA-APCI-MS, RT 25.6 minutes, λ max 450, 476 nm, m/z 569 [M+H]⁺.


3-Hydroxyechinenone, 3-hydroxy- β , β -caroten-4-one (5): HPLC-PDA, RT 11.5 minutes, λ max 463 nm; HPLC-PDA-APCI-MS, RT 62.1 minutes, λ max 464 nm, m/z 567 [M+H]⁺.

Lycopene, Ψ , Ψ -carotene (6): HPLC-PDA, RT 13.4 minutes, λ max 446, 473, 505 nm; HPLC-PDA-APCI-MS, RT 90.3 minutes, λ max 444, 471, 501 nm, m/z 537 [M+H]⁺.

Phylogenetic Tree Analysis. The amino acid sequences having significant homology to CrtW of SD212 (AB181388) Brevundimonas sp. retrieved from the GenBank database with the BLAST program (Altschul et al., 1997), and aligned CLUSTAL W (DDBJ version; www.ddbj.nig.ac.Jp/search/ex clustalw-J.html). A phylogenetic tree was constructed by using the CLUSTAL X program (Thompson et al., 1997). The evolutionary distances were computed with the Kimura 2-parameter model (Kimura, 1980), and the phylogenetic tree was constructed by using the neighbor-joining method (Saitou and Nei, 1987).


Results and Discussion

Identification of Accumulated Carotenids in E. coli. Plasmids pUCBre-W, which contained crtW from Brevundimonas sp. SD212 (AB181388), pUC-ParaPCl-W, which contained crtW from Paracoccus sp. PC1 (D58422), and pUCParaN8-W, which contained crtW from Paracoccus sp. N81106 (D58420), were constructed as shown in the "Materials and methods" section. The expression levels of the individual crtW genes in these plasmids were expected to be identical, as they utilized the same

Fig. 2. HPLC traces of the carotenoids accumulated in a 48-hour culture of *E. coli* carrying appropriate plasmids: **A**, pACCAR25ΔcrtX; **B**, pACCAR25ΔcrtX and pUCBre-W; **C**, pACCAR25ΔcrtX and pUCParaPCl-W; and **D**, pACCAR25ΔcrtX and pUCParaN8-W. **1**, astaxanthin; **2**, adonixanthin; **3**, adonirubin; **4**, zeaxanthin; **5**, 3-hydroxyechinenone; **6**, lycopene.

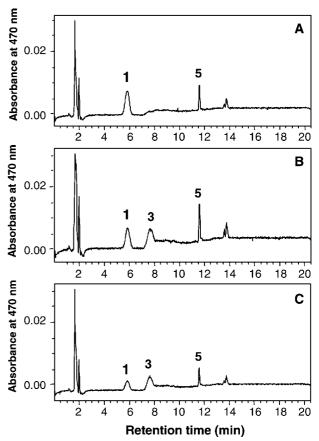

transcription and translation signals derived from vector pUC18, and the codon usage and GC content of the 3 crtW genes were similar (GC content: 70% SD212 crtW; 64% PC1 crtW; 65% N81106 crtW). The E. coli control strain carrying pACCAR25\Delta crtX synthesized zeaxanthin (4) after a 48-hour cultivation (Figure 2, A). When plasmids pUCBre-W, pUC-ParaPCl-W, and pUCParaN8-W were introduced into this E. coli strain, the resulting transformants produced astaxanthin (1) as the predominant pigment after a 48-hour cultivation (Figures 2, B, C and D). Adonirubin (phoenicoxanthin, 3), 3-hydroxyechine-

Fig. 3. Astaxanthin production by *E. coli* carrying the *crtW* genes from *Brevundimonas sp.* SD212, *Paracoccus* sp. PC1, and *Paracoccus* sp. N81106. The ratios of produced astaxanthin to the total carotenoids produced are shown. Symbols: ◆, *E. coli* (pACCAR25 Δ crtX and pUCBre-W); □, *E. coli* (pACCAR25 Δ crtX and pUCParaPC1-W); ♠, *E. coli* (pACCAR25 Δ crtX and pUCParaN8-W).

none (5), and lycopene (6) were detected in *E. coli* (pACCAR25ΔcrtX and pUCBre-W) as the intermediates for astaxanthin synthesis (Figure 2, B). In contrast, *E. coli* (pACCAR25ΔcrtX and pUCParaPC1-W) and *E. coli* (pACCAR25ΔcrtX and pUCParaN8-W) accumulated high levels of adonixanthin (2), in addition to the carotenoids detected in *E. coli* (pACCAR25ΔcrtX and pUCBre-W) (Figure 2, C and D). Except for adonixanthin, the levels of the astaxanthin intermediates were similar among the *E. coli* transformants containing pACCAR25ΔcrtX, as well as the plasmids for expression of the *crtW* genes (Figures 2, B, C and D). The production level of total carotenoids in these *E. coli* transformants was approximately 0.25 mg/g dry weight.

Comparison of Astaxanthin Production Efficiency of Respective CrtWs. The respective E. coli transformants that expressed the crtW genes from Brevundimonas sp. SD212, Paracoccus sp. PC1, and Paracoccus sp. N81106 were harvested after 10, 17, 24, or 48 hours of cultivation, and the content of astaxanthin and its intermediates of each were measured by HPLC-PDA to compare their astaxanthin-producing ability. A result is shown in Figure 3. Throughout the growth phase, E. coli (pAC-CAR25\(\Delta\)crtX and pUCBre-W), which carried the Brevundimonas sp. SD212 crtW gene, showed the highest level of the astaxanthin production efficiency, compared with that by E. coli carrying Paracoccus sp. PC1 and Paracoccus sp. N81106crtW (Figure 3). In particular, there was a large difference in their astaxanthin production efficiency up to stationary phase (0-19 hours). These results indicate

Fig. 4. HPLC traces of the carotenoids accumulated in a 6-hour culture of *E. coli* carrying appropriate plasmids: **A**, pACCAR25ΔcrtX and pUCBre-W; **B**, pACCAR25ΔcrtX and pUCParaPC1-W; **C**, pACCAR25ΔcrtX and pUCParaN8-W. **1**, astaxanthin; **2**, adonixanthin; **5**, 3-hydroxyechinenone.

that the CrtW enzyme derived from Brevundimonas sp. SD212 was likely to have been the most efficient for astaxanthin production. Astaxanthin was formed from the final precursors, adonirubin and adonixanthin, by CrtZ and CrtW, respectively, as shown in Figure 1. High levels of adonixanthin were also detected in E. coli (pACCAR25\DeltacrtX and pUCParaPC1-W) and E. coli (pACCAR25 Δ crtX and pUCParaN8-W), which included crtW from Paracoccus sp., whereas no adonixanthin was detected in E. coli (pACCAR25ΔcrtX and pUCBre-W) (Figure 2). We also analyzed the accumulated carotenoids in the E. coli transformants after a 6-hour cultivation as shown in Figure 4. No adonixanthin was detected in E. coli expressing the Brevundimonas sp. SD212 crtW gene (Figure 4, A), although a large amount of adonixanthin had accumulated; accordingly, the astaxanthin contents were lower in E. coli expressing crtW from Paracoccus sp. PC1 and Paracoccus sp. N81106 (B and C). The level of astaxanthin seems to have been reversely associated with that of adoni-

Fig. 5. Neighbor-joining tree based on the CrtW (β-carotene ketolase) sequences. The phylogenetic position of CrtR (β-carotene hydroxylase) from *Synechocystis* sp. PCC6803 is also shown. The number shown next to each node indicates the bootstrap value of 100 replicates (Felsenstein, 1985), and the scale bar indicates a genetic distance of 0.2 (*Knuc*). The DDBJ/EMBL/GenBank accession numbers are as follows: AB181388, *Brevundimonas* sp. SD212; AY166610, *Brevundimonas aurantiaca*; AF218415, *Bradyrihizobium* sp. ORS278; AP006574, *Gloeobacter vilaceus* PCC7421; AP003592, *Nostoc* sp. PCC7120; D58422, *Paracoccus* sp. PC1; Y15112, *Paracoccus marcussi*; D58420, *Paracoccus* sp. N81106; D90906, *Synechocystis* sp. PCC6803. The nucleotide sequences of the two genes *crtW148* and *crtW38*, which were derived from *Nostoc punctiforme* PCC73102, were obtained from *www.jgi.doe.gov*

xanthin. This is the first report showing the introduction of a bacterial CrtW capable of efficiently converting adonixanthin to astaxanthin.

Phylogenetic Positions of Respective CrtWs. Figure 5 shows the phylogenetic positions of proteins that have a degree of homology with CrtW from Brevundimonas sp. SD212. The phylogenetic positions of the CrtW proteins from Brevundimonas sp. and Paracoccus sp. were the most distant among the known CrtWs derived from α-Proteobacteria. The CrtW enzyme from the photosynthetic bacterium Bradyrhizobium sp. ORS278 (α-Proteobacteria), which is responsible for the conversion from β -carotene to canthaxanthin (Hannibal et al., 2000), was relatively close to Brevundimonas CrtW. Several cyanobacteria, Gloeobacter vilaceus PCC7421, Nostoc sp. PCC7120, and Nostoc punctiforme PCC73102, whose genome sequences are available, possessed proteins homologous to CrtWs from α-Proteobacteria, and formed a group independent from the others. Steiger and Sandmann (2004) showed that N. punctiforme PCC73102 possessed 2 crtW genes, crtW148 and crtW38, and that they both mediated the conversion from β-carotene to canthaxanthin. It was also reported that CrtW148 protein was able to introduce 4-keto groups into zeaxanthin, yielding astaxanthin, whereas CrtW38 was unable to catalyze this reaction (Steiger and Sandmann, 2004). However, it is difficult to explain the difference in their catalytic functions from their phylogenetic positions. It should be interesting to examine whether CrtW from G. violaceus

PCC7421 or *Nostoc* sp. PCC7120 can catalyze the reaction from zeaxanthin to astaxanthin, or not. The CrtR enzyme from cyanobacterium *Synechocystis* PCC6803, which had the same catalytic function as that of CrtZ, β-C3-hydroxylase (Masamoto et al., 1998), had significant homology with CrtW, rather than with CrtZ (Figure 5).

Possibility for Use of Brevundimonas crtW. Several attempts at metabolic engineering have been made to produce astaxanthin by using E. coli (Misawa et al., 1995; Wang et al., 1999) and the food yeast Candida utilis (Miura et al., 1998), and the higher plants tobacco and tomato (Mann et al., 2000; Ralley et al., 2004). The crtW gene of Paracoccus sp. N81106 (MBIC01143) was used in many of these studies. It seems likely that the level of astaxanthin production can be improved by using the crtW gene of Brevundimonas sp. SD212 instead of the foregoing gene. Metabolic engineering has also been applied to transgenic higher plants for enhancing the production of β-carotene; for example, transgenic tomato plants with the phytoene desaturase gene (crtI) from Pantoea ananatis (Erwinia uredovora) produced 3fold the amount of β-carotene in the fruits (Romer et al., 2000). Overexpression of the phytoene synthase gene (crtB) of P. ananatis in transgenic rape seeds increased the carotenoid content of mature seed by up to 50-fold (Shewmaker et al., 1999). Rice grains are devoid of carotenoids, but the accumulation of βcarotene in the rice endosperm has proved successful by the expression of the plant phytoene synthase

(psy) and P. ananatis phytoene desaturase (crtI) genes (Ye et al., 2000). In order to synthesize astaxanthin from β-carotene, the 2 genes crtW and crtZ are needed. The crtZ gene of P. ananatis has been functionally expressed in tobacco (Gotz et al., 2002). The Brevundimonas crtW gene should be a promising candidate for expression in the higher plants to produce a high level of astaxanthin, as in the case of the P. ananatis crtZ gene.

Acknowledgments

We thank Seiko Tateshita for her technical contribution. This work was supported by Biotechnology and Medical Technology Development Department of New Energy and Industrial Technology Development Organization (NEDO).

References

- 1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipmann DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402
- 2. Andrewes AG, Phaff HJ, Starr MP (1976) Carotenoids of *Phaffia rhodozyma*, a red-pigmented fermenting yeast. Phytochemistry 15, 1003–1007
- 3. Berry A, Janssens D, Humbelin M, Jore JPM, Hoste B, Cleenwerck L, Vancanneyt M, Bretzel W, Mayer AF, Lopez-Ulibarri R, Shanmugam B, Swings J, Pasamontes L (2003) *Paracoccus zeaxanthinifaciens* sp. nov., a zeaxanthin-producing bacterium. Int J System Evol Micr 53, 231–238
- 4. Boussiba S, Vonshak A (1991) Astaxanthin accumulation in the green alga *Haematococcus pluvialis*. Plant Cell Physiol 32, 1077–1082
- 5. Chen BP, Park JS (2004) Carotenoid action on the immune response. Nutr 134, 257S–261S
- 6. Chen BP, Park JS, Wong MW, Wong TS (1999) A comparision of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice *in vivo*. Anticancer Res 19, 1849–1853
- 7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791
- 8. Fraser PD, Miura Y, Misawa N (1997) *In vitro* characterization of astaxanthin biosynthetic enzymes. J Biol Chem 272, 6128–6135
- 9. Gotz T, Sandmann G, Romer S (2002) Expression of a bacterial carotene hydroxylase gene (*crtZ*) enhances UV tolerance in tobacco. Plant Mol Biol 50, 129–142
- Hannibal L, Lorquin J, D'Ortoli NA, Garcia N, Chaintreuil C, Masson-Boivin C, Dreyfus B, Giraud E (2000) Isolation and characterization of the canthaxanthin biosynthesis genes from the photosynthetic bacterium *Bradyrhizobium* sp. strain ORS278. J Bacteriol 182, 3850–3853
- 11. Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W, Kamiyama M, Itakura H, Yamamoto S,

- Kondo K (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7, 216–222
- 12. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120
- 13. Lorenz RT, Cysewski GR (2000) Commercial potential for *Haematococcus* microalgae as a natural source of astaxanthin. Trends Biotechnol 18, 160–167
- Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18, 888–892
- Masamoto K, Misawa N, Kaneko T, Kikuno R, Toh H (1998) β-Carotene hydroxylase gene from the cyanobacterium *Synechocystis* sp. PCC6803. Plant Cell Physiol 39, 560–564
- 16. Miki W, Yamaguchi K, Konosu S (1982) Comparison of carotenoids in the ovaries of marine fish and shellfish. Comp Biochem Physiol 71B, 7–11
- 17. Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S, Saito T, Ohtani T, Miki W (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177, 6575–6584
- Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64, 1226–1229
- 19. Ralley L, Enfissi EM, Misawa N, Schuch W, Bramley PM, Fraser PD (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J 39, 477–486
- Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18, 666–669
- 21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425
- 22. Sambrook J, Fritsch EF, Maniatis T (1989) *Molecular Cloning: A Laboratory manual*, 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press)
- 23. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20, 401–412
- 24. Steiger S, Sandmann G (2004) Cloning of two carotenid ketolase genes from *Nostoc punctiforme* for the heterologous production of canthaxanthin and astaxanthin. Biotechnol Lett 26, 813–817
- 25. Tanaka T, Morishita Y, Suzui M, Kojima T, Okumura A, Mori H (1994) Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogenesis 15, 15–19
- Tatsuzawa H, Maruyama T, Misawa N, Fujimori K, Nakano M (2000) Quenching of singlet oxygen by carotenoids produced in *Escherichia coli*–attenuation of singlet oxygen–mediated bacterial killing by carotenoids. FEES Lett 484, 280–284

- 27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24, 4876–4882
- 28. Wang C-W, Oh M-K, Liao JC (1999) Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng 62, 235–241
- 29. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (betacarotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305
- 30. Yokoyama A, Miki W (1995) Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium *Agrobacterium aurantiacum*. FEMS Microbial Lett 128, 139–144
- 31. Yokoyama A, Miki W, Izumida H, Shizuri Y (1996) New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci Biotech Biochem 60, 200–203
- 32. Yokoyama A, Izumida H, Miki W (1994) Production of astaxanthin and 4-ketoxanthin by the marine bacterium, *Agrobacterium aurantiacum*. Biosci Biotech Biochem 58, 1842–1844