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Abstract

A complementation analysis was performed in 
Escherichia coli to evaluate the efficiency of ß-car- 
otene ketolases (CrtW) from the marine bacteria 
Brevundimonas sp. SD212, Paracoccus sp. PCI 
(.Alcaligenes PC-1), and Paracoccus sp. N81106 
(.Agrobacterium aurantiacum), for astaxanthin pro­
duction. Each crtW  gene was expressed in Escheri­
chia coli synthesizing zeaxanthin due to the 
presence of plasmid pACCAR25AcrtX. Carotenoids 
that accumulated in the resulting E. coli transfor­
mants were examined by chromatographic and 
spectroscopic analyses. The transformant carrying 
the Paracoccus sp. PCI or N81106 crtW  gene accu­
mulated high levels of adonixanthin, which is the 
final astaxanthin precursor for CrtW, and astaxan­
thin, while the E. coli transformant with crtW  from 
Brevundimonas sp. SD212 did not accumulate any 
adonixanthin and produced a high level of astaxan­
thin. These results show efficient conversion by 
CrtW of Brevundimonas sp. SD212 from adonixan­
thin to astaxanthin, which is a new-found charac­
teristic of a bacterial CrtW enzyme. The 
phylogenetic positions between CrtW of the two 
genera, Brevundimonas and Paracoccus, are distant, 
although they fall into a-Proteobacteria.
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Introduction

Astaxanthin (3,3'-dihydroxy-ß,ß-carotcnc-4,4'-dionc) 
is the most commonly found carotenoid pigment in 
marine animal tissues (Miki et al., 1982). Astaxan­
thin is being industrially exploited as a food dye, and 
particularly as a feed supplement in poultry farming 
and aquaculture. For example, sales of astaxanthin as 
a pigmentation source in salmon aquaculture in the 
United States amount to about U.S. $200 million per 
year (Lorenz and Cysewski, 2000). The diverse bio­
logical functions of astaxanthin include involve­
ment in the anti-oxidative activity of low-density 
lipoprotein (Iwamoto et al., 2000), anticancer activ­
ity (Tanaka et al., 1994; Chen et al., 1999), 
enhancement of immune responses (Chen and Park, 
2004), and singlet oxygen-quenching activity 
(Tatsuzawa et al., 2000). Therefore, its use in the 
pharmaceutical and food industries is expected to 
increase dramatically in the near future.

Organisms that are capable of synthesizing asta­
xanthin are limited, but include some marine eubac- 
teria (Yokoyama et al., 1994, 1996), the yeast 
Xanthophyllomyces dendrorhous (renamed from 
Phaffia rhodozyma; Andrewes et al., 1976), and the 
green algae Haematococcus pluvialis (Boussiba and 
Vonshak, 1991). The most comprehensive study on 
astaxanthin biosynthesis has been conducted with 
the marine bacteria Agrobacterium aurantiacum  and 
Alcaligenes sp. strain PC-1, which were respectively 
reclassified as Paracoccus sp. strain N81106 
(MBIC01143) and Paracoccus sp. strain PCI 
(MBIC03024) (see http://www.m bio.jp/m bic/ and 
Berry et al., 2003). The astaxanthin biosynthetic 
pathway has been elucidated at enzyme and gene 
levels by in vitro studies (Fraser et al., 1997) and in 
vivo studies (Misawa et al., 1995). Astaxanthin can be 
synthesized from ß-carotene (ß, ß-carotene) with the
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Fig. 1. Astaxanthin 
biosynthetic pathway in 
astaxanthin-producing 
bacteria and the catalytic 
functions of CrtZ and CrtW.

introduction of lceto and hydroxyl moieties at the 4,4' 
and 3,3' positions of the (ß-ionone rings by CrtW, ß- 
carotene ketolase (ß-carotene oxygenase; ß-C4-oxy- 
genase), and CrtZ, ß-carotene hydroxylase (ß-C3- 
hydroxylase), and is finally formed from the final as­
taxanthin precursors, adonixanthin (3,3' -dihydroxy- 
ß,ß-caroten-4-one) and adonirubin (phoenicoxanthin; 
3-hydroxy-ß,ß-carotene-4, 4'-dione), respectively, as 
shown in Figure 1. The in vitro enzymatic study has 
shown that for the CrtW enzymes of Paracoccus sp. 
PCI and N81106 and ß-carotene ketolase (BKT) of H. 
pluvialis, the conversion of adonixanthin to astaxan­
thin seems to be an important limiting step (Fraser et 
al., 1997). The in vivo study by a complementation 
analysis using E. coli has shown that adonixanthin 
accumulated up to 47% of the total carotenoids in 
recombinant E. coli strains carrying the crt genes re­
quired for zeaxanthin (3,3'-dihydroxy-ß, ß-carotene) 
synthesis, in addition to the Paracoccus PCI or 
N81106 crtW  gene (Misawa et al., 1995), and that 
adonixanthin was also often more predominant than 
astaxanthin in Paracoccus sp. N81106 (Yokoyama et 
al., 1994) and other marine bacteria (A. Yokoyama and 
W. Miki, unpublished data). These results suggest 
that the conversion efficiency with CrtW of adoni­
xanthin to astaxanthin may be an important step, not 
only for more efficient production in the marine bac­
teria, but also for artificial production of astaxanthin 
in transgenic organisms.

The astaxanthin-producing marine bacterium 
Brevundimonas sp., strain SD212, has been isolated 
from seawater around the Iwo islands in southern 
Japan (Yokoyama et al., 1996). A crtW  gene has more

recently been isolated from this Brevundimonas 
strain (Y. Nishida et al., unpublished data). The 
CrtW protein from Brevundimonas sp. SD212 pos­
sessed 45% identity to that of the Paracoccus sp. PCI 
or Paracoccus sp. N81106, whereas 75% identity 
existed between the two Paracoccus strains. We 
compare astaxanthin production with the CrtW en­
zymes from Brevundimonas sp. SD212, Paracoccus 
sp. PCI, and Paracoccus sp. N81106 by using the E. 
coli complementation system and discuss the phy­
logenetic positions of the known CrtW proteins, 
including these 3 ß-carotene ketolases.

Materials and Methods

Recombinant DNA Techniques. The restriction 
enzymes and DNA ligation kit were respectively 
purchased from New England BioLabs and Toyobo. 
DNA manipulation was conducted by the standard 
methods (Sambrook et al., 1989) or as instructed by 
the suppliers. Plasmid DNA was prepared with the 
Miniprep DNA Purification Kit (Takara). The poly­
merase chain reaction (PCR) was carried out by an 
automated thermal cycler (Techne) with pfu turbo 
DNA polymerase (Stratagene).

Construction of Expression Plasmids. The crtW  
genes of Brevundimonas sp. SD212, Paracoccus sp. 
PCI, and Paracoccus sp. N81106 were respectively 
amplified by PCR from plasmids p5Bre2-15, 
which contained a 12-kb carotenogenic fragment 
derived from Brevundimonas sp. SD212 genomic 
DNA (DDBJ/EMBL/GenBank accession number.
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Table 1. Oligonucleotides Used for Amplifying crtW  Genes encoding ß-Carotene Ketolases

Constructed plasm id Primer*

pUCBre-W

pUCParaPCl-W

pUCParaN8-W

F: 5'-TAC GAA TTC GAT GAG CGC CGC CGT CG-3'
R: 5'-TAG AGG ATC CTC AAG ACT CGC CGC GCC ACA A-3' 
F: 5'-TAC GAA TTC GAT GTC CGG ACG GAA GC-3'
R: 5'-TAG AGG ATC CTC ATG CGC GGC CTC CGG-3'
F: 5'-TAC GAA TTC GAT GAG CGC ACA TGC CC-3'
R: 5'-TAG AGG ATC CTC ATG CGG TGT CCC CCT-3'

aF and R respectively indicate forward and reverse primers. The TcoRI and BamHl sites are underlined.

AB181388), pPC17 (Misawa et al., 1995), and 
pAK96K (Misawa et al., 1995), using the 6 synthetic 
oligonucleotide primers described in Table 1. The 
PCR products were digested with TcoRI and Bam­
Hl, and then inserted into the corresponding sites of 
pUC18 (Toyobo) to respectively construct pUCBre- 
W (for Brevundimonas sp. SD212 crtW), pUC- 
ParaPCl-W (for Paracoccus sp. PCI crtW ), and 
pUCParaN8-W (for Paracoccus sp. N81106 crtW ), 
where ATG for the original starts of the respective 
crtW  genes were placed next to the TcoRI site 
(underlined) to form the CrtW proteins fused with 
the additional 7-amino-acid terminus of ß-glucosi- 
dase (LacZ) as follows (start codon of the crtW  
gene):

-ATG ACC ATG ATT ACG A A T  TCG ATG-
-Met Thr Met Ile Thr Asn Ser Met-

The nucleotide sequences of the inserted fragments 
of the 3 plasmids were confirmed using a DNA 
sequencing kit (Big dye terminator cycle sequencing 
ready reaction kit version 2, PerkinElmer) and a 
model 3700 DNA sequencer (PerkinElmer) according 
to the manufacturer’s instructions.

Cultures of E. coli. E. coli JM109 (Sambrook 
et al., 1989) carrying plasmid pACCAR25AcrtX that 
contained the 5 carotenoid biosysthesis genes, crtE, 
crtB, crtl, crtY, and crtZ, from Pantoea ananatis 
(D90087; renamed from Erwinia uredovora-, Misawa 
et al., 1995) was used as the host for producing as­
taxanthin. A Luria-Bertani medium (4 ml; Sambrook 
et al., 1989) containing appropriate antibiotics was 
inoculated with 40 pi of a fully grown culture of T. 
coli transformants, and incubated at 30°C while 
shaking. T. coli containing pACCAR25AcrtX re­
quired chloramphenicol (Cm) at a final concentra­
tion of 30 pg/ml, and T. coli carrying plasmid 
pACCAR25AcrtX, as well as pUCBre-W, pUCPa- 
raPCl-W, and pUCParaN8-W, each required Cm and 
ampicillin (100 pg/ml). When OD at 600 nm of the 
culture had reached about 0.5, isopropyl-ß-D-thioga- 
lactopyranoside was added to a final concentration of

0.5 mM. After cultivating for 6 to 48 hours, the cells 
were harvested by centrifugation at 4°C and stored at 
-70°C.

Analysis of Accumulated Carotenoids in E. 
coli. Frozen cells were vigorously shaken for 30 
minutes after adding a volume of acetone sufficient 
to extract the carotenoid pigments. The extract was 
centrifuged at 14,000g for 20 minutes and at 4°C to 
remove the cell debris. The carotenoid pigments 
were analyzed by high-performance liquid chroma­
tography (HPLC) with photodiode array (PDA) 
detection (Waters 2695-Waters 2996) or by HPLC- 
PDA-APCI (atmospheric pressure chemical ioniza- 
tion)-MS (mass spectrometry) with a Shiseido Nano 
Space SI-ThermoQuest UV600LP-ThermoQuest 
LCQ Advantage system.

The HPLC-PDA analysis was carried out on a 
TSK ODS-80Ts column (4.6 x 150 nm, Tosoh) as 
previously described (Yokoyama and Miki, 1995). 
The crude extract was eluted at a rate of 1 ml/min 
with solvent A (water-methanol, 5:95, v/v) for 5 
minutes, followed by a linear gradient from solvent 
A to solvent B (tetrahydrofuran-methanol, 3:7, v/v) 
for 5 minutes, solvent B alone for 8 minutes, and 
then back to solvent A. The relative percentage of 
each carotenoid was determined by comparing the 
HPLC peak area at 470 nm. The HPLC-PDA-APCI- 
MS analysis was conducted in a Develosil C30-UG-3 
column (1.0 mm i.d. x 150 nm, Nomura), with a 
Develosil C30-UG-S used as a precolumn. The crude 
extract was eluted at a rate of 0.09 m l/m in with 
solvent A for 15 minutes, followed by a linear gra­
dient from solvent A to solvent C (methanol-tert- 
butyl methyl ether, 3:7, v/v) for 100 minutes, solvent 
C alone for 20 minutes, and then back to solvent A. 
Mass spectra were monitored in the mass range of 
m /z  200-1200 by the LCQ Advantage instrument. 
The capillary temperature was set to 150°C, the 
APCI vaporizer temperature was held at 400°C, the 
capillary voltage was optimized to 23 V, and the 
sheath nitrogen gas flow was set to 28 (arbitrary 
units).
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Authentic samples of carotenoids were pur­
chased from Sigma or purified from the E. coli 
transformants expressing the crt genes derived from 
P. ananatis and Paracoccus sp. N81106 (Misawa 
et al., 1995).

Spectral Data for the Individual Carote­
noids. Astaxanthin (1): HPLC-PDA, retention time 
(RT) 5.8 minutes, ¿max 473 nm; HPLC-PDA-APCI- 
MS, RT 13.3 minutes, ¿max 476 nm, m /z 597 
[M+H]+.

Adonixanthin (2): HPLC-PDA, RT 7.6 minutes, 
¿max 462 nm ; HPLC-PDA-APCI-MS: RT 17.5 m in­
utes, ¿max 463 nm, m /z  583 [M+H]+.

Adonirubin (3): HPLC-PDA, RT 8.1 minutes, 
¿max 472 nm ; HPLC-PDA-APCI-MS, RT 20.9 m in­
utes, ¿max 470 nm, m /z  581[M+H]+.

Zeaxanthin (4): HPLC-PDA, RT 8.5 minutes, 
¿max 450, 479 nm ; HPLC-PDA-APCI-MS, RT 25.6 
minutes, ¿max 450, 476 nm, m /z  569 [M+H]+.

3-Hydroxyechinenone, 3-hydroxy-ß,ß-caroten-4- 
one (5): HPLC-PDA, RT 11.5 minutes, ¿max 463 nm ; 
HPLC-PDA-APCI-MS, RT 62.1 minutes, ¿max 464 
nm, m /z  567 [M+H]+.

Lycopene, ^T -carotene (6): HPLC-PDA, RT 13.4 
minutes, ¿max 446, 473, 505 nm; HPLC-PDA-APCI- 
MS, RT 90.3 minutes, ¿max 444, 471, 501 nm, m /z  
537 [M+H]+.

Phylogenetic Tree Analysis. The amino acid 
sequences having significant homology to CrtW of 
Brevundimonas sp. SD212 (AB181388) were
retrieved from the GenBank database with the 
BLAST program (Altschul et al., 1997), and aligned 
by CLUSTAL W (DDBJ version; http:// 
www.ddbj.nig.ac.fp/search/ex clustalw-J.html). A 
phylogenetic tree was constructed by using the 
CLUSTAL X program (Thompson et al., 1997). The 
evolutionary distances were computed with the 
Kimura 2-parameter model (Kimura, 1980), and the 
phylogenetic tree was constructed by using the 
neighbor-joining method (Saitou and Nei, 1987).

Results and Discussion

Identification of Accumulated Carotenids in E. 
coli. Plasmids pUCBre-W, which contained crtW  
from Brevundimonas sp. SD212 (AB181388), pUC- 
ParaPCl-W, which contained crtW  from Paracoccus 
sp. PCI (D58422), and pUCParaN8-W, which con­
tained crtW  from Paracoccus sp. N81106 (D58420), 
were constructed as shown in the "Materials and 
methods" section. The expression levels of the 
individual crtW  genes in these plasmids were ex­
pected to be identical, as they utilized the same
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Fig. 2. HPLC traces of the carotenoids accum ulated in a 
48-hour culture of E. coli carrying appropriate plasmids: A, 
pACCAR25AcrtX; B, pACCAR25AcrtX and pUCBre-W; C, 
pACCAR25AcrtX and pUCParaPCl-W; and D, pAC 
CAR25AcrtX and pUCParaN8-W. 1, astaxanthin,- 2, adon­
ixanthin; 3, adonirubin,- 4, zeaxanthin,- 5, 3-hydroxye- 
chinenone; 6, lycopene.

transcription and translation signals derived from 
vector pUC18, and the codon usage and GC content 
of the 3 crtW  genes were similar (GC content: 70% 
SD212 crtW} 64% PCI crtW} 65% N81106 crtW). The 
E. coli control strain carrying pACCAR25AcrtX 
synthesized zeaxanthin (4) after a 48-hour cultiva­
tion (Figure 2, A). When plasmids pUCBre-W, pUC- 
ParaPCl-W, and pUCParaN8-W were introduced into 
this E. coli strain, the resulting transformants pro­
duced astaxanthin (1) as the predominant pigment 
after a 48-hour cultivation (Figures 2, B, C and D). 
Adonirubin (phoenicoxanthin, 3), 3-hydroxyechine-

http://www.ddbj.nig.ac.fp/search/ex
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Fig. 3. Astaxanthin production by E. coli carrying the crtW  
genes from Brevundimonas sp. SD212, Paracoccus sp. 
PCI, and Paracoccus sp. N81106. The ratios of produced 
astaxanthin to the total carotenoids produced are shown. 
Symbols: ♦, E. coli (pACCAR25AcrtX and pUCBre-W); □, 
E. coli (pACCAR25AcrtX and pUCParaPCl-W); A, E. coli 
(pACCAR25AcrtX and pUCParaN8-W).

none (5), and lycopene (6) were detected in E. coli 
(pACCAR25AcrtX and pUCBre-W) as the interme­
diates for astaxanthin synthesis (Figure 2, B). In 
contrast, E. coli (pACCAR25AcrtX and pUCPa- 
raPCl-W) and E. coli (pACCAR25AcrtX and pUCP- 
araN8-W) accumulated high levels of adonixanthin 
(2), in addition to the carotenoids detected in E. coli 
(pACCAR25AcrtX and pUCBre-W) (Figure 2, C and 
D). Except for adonixanthin, the levels of the asta­
xanthin intermediates were similar among the E. 
coli transformants containing pACCAR25AcrtX, as 
well as the plasmids for expression of the crtW  genes 
(Figures 2, B, C and D). The production level of total 
carotenoids in these E. coli transformants was 
approximately 0.25 mg/g dry weight.

Comparison of Astaxanthin Production Effi­
ciency of Respective CrtWs. The respective E. coli 
transformants that expressed the crtW  genes from 
Brevundimonas sp. SD212, Paracoccus sp. PCI, and 
Paracoccus sp. N81106 were harvested after 10, 17, 
24, or 48 hours of cultivation, and the content of 
astaxanthin and its intermediates of each were 
measured by HPLC-PDA to compare their astaxan­
thin-producing ability. A result is shown in Figure 3. 
Throughout the growth phase, E. coli (pAC- 
CAR25AcrtX and pUCBre-W), which carried the 
Brevundimonas sp. SD212 crtW  gene, showed the 
highest level of the astaxanthin production effi­
ciency, compared with that by E. coli carrying 
Paracoccus sp. PCI and Paracoccus sp. N81106crtW 
(Figure 3). In particular, there was a large difference 
in their astaxanthin production efficiency up to 
stationary phase (0-19 hours). These results indicate

Ec
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Fig. 4. HPLC traces of the carotenoids accum ulated in a 6- 
hour culture of E. coli carrying appropriate plasmids: A, 
pACCAR25AcrtX and pUCBre-W; B, pACCAR25AcrtX and 
pUCParaPCl-W ; C, pACCAR25AcrtX and pUCParaN8-W. 
1, astaxanthin,- 2, adonixanthin,- 5, 3-hydroxyechinenone.

that the CrtW enzyme derived from Brevundimonas 
sp. SD212 was likely to have been the most efficient 
for astaxanthin production. Astaxanthin was formed 
from the final precursors, adonirubin and adonixan­
thin, by CrtZ and CrtW, respectively, as shown in 
Figure 1. High levels of adonixanthin were also de­
tected in E. coli (pACCAR25AcrtX and pUCPa- 
raPCl-W) and E. coli (pACCAR25AcrtX and 
pUCParaN8-W), which included crtW  from Para­
coccus sp., whereas no adonixanthin was detected in 
E. coli (pACCAR25AcrtX and pUCBre-W) (Figure 2). 
We also analyzed the accumulated carotenoids in the 
E. coli transformants after a 6-hour cultivation as 
shown in Figure 4. No adonixanthin was detected in 
E. coli expressing the Brevundimonas sp. SD212 
crtW  gene (Figure 4, A), although a large amount of 
adonixanthin had accumulated; accordingly, the as­
taxanthin contents were lower in E. coli expressing 
crtW  from Paracoccus sp. PCI and Paracoccus sp. 
N81106 (B and C). The level of astaxanthin seems to 
have been reversely associated with that of adoni-
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xanthin. This is the first report showing the intro­
duction of a bacterial CrtW capable of efficiently 
converting adonixanthin to astaxanthin.

Phylogenetic Positions of Respective CrtWs. Fig­
ure 5 shows the phylogenetic positions of proteins 
that have a degree of homology with CrtW from 
Brevundimonas sp. SD212. The phylogenetic posi­
tions of the CrtW proteins from Brevundimonas sp. 
and Paracoccus sp. were the most distant among the 
known CrtWs derived from a-Proteobacteria. The 
CrtW enzyme from the photosynthetic bacterium 
Bradyrhizobium  sp. ORS278 (a-Proteobacteria), 
which is responsible for the conversion from ß-caro­
tene to canthaxanthin (Fiannibal et al., 2000), was 
relatively close to Brevundimonas CrtW. Several cy­
anobacteria, Gloeobacter vilaceus PCC7421, Nostoc 
sp. PCC7120, and Nostoc punctiforme PCC73102, 
whose genome sequences are available, possessed 
proteins homologous to CrtWs from a-Proteobacte­
ria, and formed a group independent from the others. 
Steiger and Sandmann (2004) showed that N. puncti­
forme PCC73102 possessed 2 crtW  genes, crtW148 
and crtW38, and that they both mediated the conver­
sion from ß-carotene to canthaxanthin. It was also 
reported that CrtW 148 protein was able to introduce
4-keto groups into zeaxanthin, yielding astaxanthin, 
whereas CrtW38 was unable to catalyze this reaction 
(Steiger and Sandmann, 2004). Fiowever, it is difficult 
to explain the difference in their catalytic functions 
from their phylogenetic positions. It should be inter­
esting to examine whether CrtW from G. violaceus

PCC7421 or Nostoc sp. PCC7120 can catalyze the 
reaction from zeaxanthin to astaxanthin, or not. The 
CrtR enzyme from cyanobacterium Synechocystis 
PCC6803, which had the same catalytic function as 
that of CrtZ, ß-C3-hydroxylase (Masamoto et al., 
1998), had significant homology with CrtW, rather 
than with CrtZ (Figure 5).

Possibility for Use of Brevundimonas crtW. Sev­
eral attempts at metabolic engineering have been 
made to produce astaxanthin by using E. coli (Misa­
wa et al., 1995; Wang et al., 1999) and the food yeast 
Candida utilis (Miura et al., 1998), and the higher 
plants tobacco and tomato (Mann et al., 2000; Ralley 
et al., 2004). The crtW  gene of Paracoccus sp. N81106 
(MBIC01143) was used in many of these studies. It 
seems likely that the level of astaxanthin production 
can be improved by using the crtW  gene of Brevun­
dimonas sp. SD212 instead of the foregoing gene. 
Metabolic engineering has also been applied to 
transgenic higher plants for enhancing the produc­
tion of ß-carotene; for example, transgenic tomato 
plants with the phytoene desaturase gene (crtl) from 
Pantoea ananatis (Erwinia uredovora) produced 3- 
fold the amount of ß-carotene in the fruits (Romer et 
al., 2000). Overexpression of the phytoene synthase 
gene (crtB) of P. ananatis in transgenic rape seeds 
increased the carotenoid content of mature seed by 
up to 50-fold (Shewmaker et al., 1999). Rice grains are 
devoid of carotenoids, but the accumulation of ß- 
carotene in the rice endosperm has proved successful 
by the expression of the plant phytoene synthase

http://www.jgi.doe.gov
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[psy) and P. ananatis phytoene desaturase (citl) genes 
(Ye et al., 2000). In order to synthesize astaxanthin 
from ß-carotene, the 2 genes citW  and citZ  are nee­
ded. The citZ  gene of P. ananatis has been func­
tionally expressed in tobacco (Gotz et al., 2002). The 
Brevundimonas crtW  gene should be a promising 
candidate for expression in the higher plants to pro­
duce a high level of astaxanthin, as in the case of the 
P. ananatis crtZ gene.
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