VLAAMS INSTITUUT VOOR DE ZE
Available online at www.sciencedirect.cam doi 10 1016/ jessime 2004, 08. 009 gosime 2004,08.009 Eielgium

Performance of precautionary reference points in providing management advice on North Sea fish stocks

G. J. Piet and J. C. Rice

Piel, G. J., and Rice, J. C 2004. Performance of precautionary reference points in providing management advice on North Sea fish slocks. - ICES Joumal of Marine Science, 61: 1305-1312.

For 17 slocks in the North Sea, the performance and effectiveness of management advice using precautionary reference points was evaluated. Three crileria were used to identify whether a slock was within safe hinlogical timits: $\mathrm{SSB}<\mathrm{B}_{\mathrm{pa}}, \mathrm{F}>\mathrm{F}_{\mathrm{pa}}$. or $\mathrm{SSB}<\mathrm{B}_{\mathrm{pa}}$ and $\mathrm{F}>\mathrm{F}_{\mathrm{pa}}$. Four scenarios were considered, comparing the advice in the assessment year with what is retrospectively (2002 assessment) known to be the status of the stock at that time: (1) slock oulside safe biological limits, advice to reduce fishing; (2) stock outside safe biological limils, advice for slofus quo harvesting; (3) stock within safe biological limits, advice to reduce fishing: and (4) stock within safe biological limuls, advice for srarus quo (or increased) harvesting. Signal Detection Theory was applied to these scenarios, and the proportion of Hils (1 and 4), Misses (2), and False Alarms (3) were determined for cach year as the proportion of the stocks for which the respective scenatios applied. Using both B_{pa} and F_{pa} was deemed the approach with the lowest error rate, and il resulted in about the same propartion of Hits in management advice as when B_{pa} alone was used (62%), but the proportion of Misses was slighlly lower (24% vs. 26%). Therefore, the suggested EcoQ element would be the proportion of commercial fish stocks within safe biological limits (i.e $\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}, \mathrm{F}<\mathrm{F}_{\mathrm{pa}}$), and the Ecological Quality Objective (EcoQO) should be that this EcoQ should be al or above a desired level. This desired level is a societal/political decision relative to the EcoQ reference level (i.e. where the anthropogenic influence on the ecological system is minimal), which by definition is 100%. At present, probahly $<10 \%$ of North Sea fish stocks are within safe biological limits, despite the relatively high Hit rate of $>60 \%$. A possible explanation is that most of these stocks (e.g. flatfish and roundfish) are caught in a mixed fisbery, for which TAC management is less effective.
(4) 2004 Intemational Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.

Keywords: FcoQO framework. stock assessment, TAC management.
Received 20 December 2003; accepred 14 August 2004.
G. J. Pief: Animal Sczences Group, Wageningen UR. Netherlands Instizute for Fisheries Research, PO Box 08,1970 AB. DJmuden, The Netherlands $I C$ Rice: Canadian Science Advisory Secretartat, Fusheries and Oceans Canada. 200 Kent Street, Sin 12S015. Ottowa. Onfario KIA OE6, Canada. Correspondence to (.). I Piet: tel: +31255 564690; fax: +31 255 564644; e-mail: gerjan piet(@)wur.nt.

Introduction

Until recently, ecosystem considerations or biological interactions between species played only a minor role in setting objectives and decision-making in fisheries management. The development of an ecosystem approach to management of the North Sea (Anon., 1997) required the fommlation of clear objectives both al a general level, as overall or integrated objectives, and at a specific level, as more detailcd and operational objectives (FAO, 2003). I.anters et al. (1999) describe a gencral methodology for evaluating Ecological Quality (EcoQ) and setting of Ecological Quality Objectives (EcoQOs). As part of this
framework, ten issues and their related elements have been proposed. covering the structural and functional aspects of the ecosystem at different hierarchical levels: ecosystem, communities, habilats, and specics (Anoll, 2002). At a species level, the "spawning-stock hiomass of commercial fish species" was identificd as an Ecological Quality element. The associated EcoOO is that the stock biomass should be "above precautionary reference points for commercial fish species where these have been agreed by the competent authority for fisheries management". The relevant precautionary reference points are those for "spawning-stock biomass, also taking into account fishing mortality, used in advice given by lCES in relation to
fisheries management". ICES has established B_{pa} and F_{pa} as the respective precautionary reference points for spawning-stock biomass (SSB) and fishing mortality (F) for use in formulating advice (sensu FAO, 1996a, b). They are set on a stock-specific basis, and take account of stock dynamics as well as uncertainties in the assessment. B_{pa} is the level at and above which there is a low probability that true SSB is so low that productivity is impaired. $F_{p a}$ is the mortality level at and below which true fishing mortality has a low probability of leading to stock collapse.]CES reilcrates annually in its advice that precautionary reference points should not be used as targets. Rather they are to be used as "upper bounds on fishing mortality and lower bounds on biomass", a phrase repeated in the advice of several North Sea stocks (e.g. herring, plaice).

For this study we evaluated the performance of fisheries management advice using precautionary reference points. The aim was to formulate an EcoQO for exploited North Sca slocks in the sense expressed in the Bergen Declaration, based on the precautionary approach for fisheries management. To do this, we looked at the historical performance of this EcoQO. and tested the effectiveness of management advice for the conservation of the stocks. Advantage was taken of the convergence property of most analytical assessments. In other words, although there is substantial uncerlainly in the estimates of SSB and F in the assessment year (year i). uncertainty in those years aboul SSB and F in year i is reduced as more catch and survey data accumulate in years $i+1, i+2$, elc., so estimates become more consistent.

Material and methods

For EcoQOs relating to SSB or F , the appropriate source of information for North Sea stocks is the regular assessments by the lCES Working Groups reporting to ACFM. The "North Sea" is here interpreted as the greater North Sea area, as defined by the Oslo-Paris (OSPAR) Convention (Figure 1). This includes the whole of ICES Area IV (the geographic North Sea), llla, b (the Skagerrak and Kattegat), Vlld, e (Eastern and Western Channel), and part of Vla (North and West of Scotland). Of the slocks that fall within the OSPAR-defined North Sea area and for which ICES provides quantitative scienlific analysis (Table 1), stocks were excluded if:

- they are not assessed, and cstimates of SSB are not available, even though they may be fished commercially;
- they are Kattegat slocks thal are assessed along wilh stocks in the Baltic;
- they are North of Scotland stocks, and the assessment unit was Area Vl as a whole;
- they are Western Channel stocks that are assessed along with fish in the Celtic Sea or Bay of Biscay:

Figure 1. The ICES Areas that fall within the OSPAR-defined Norh Sea.

- no precautionary levels of SSB or F have been identified [herring in Divisions VIa (South) and VIlb, c];
- the state of the stock was not assessed in 2002 [North Sea horse mackerel in Division IIla (eastern part) and Divisions IVb, c, and VIId; cod in Division Vlb]:
- no total allowable catch (TAC) is set for management (spral in Division 1V).

To evaluate the performance of fisherics management advice using precautionary reference points, we used three criteria 10 delermine whether a stock was within safe biological limits, and hence that the EcoQO was met:

- SSB was ahove the precautionary reference point $\left(\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}\right)$;
- F was below the precautionary reference point ($\mathrm{F}<\mathrm{F}_{\mathrm{pa}}$):
- both the above $\left(\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}\right.$ and $\mathrm{F}<\mathrm{F}_{\mathrm{pa}}$).

For each stock the evaluation of the actual annual management advice and actions, as tabulated in the Calch Dala and assessmenl nulput tabies from the ICES ACFM 2002 report (JCES, 2002) was based on four scenarios (see Table 2):

1. Stock does not meet EcoQO; advice to reduce fishing: the estimate of SSB and/or F in the assessment year led to advice to reduce calch when the converged eslimate of SSB and/or F in the 2002 assessment now indicates that the Ecological Quality (EcoQ) of the stock did not meet its objective (EcoQO), i.e., respectively, $\mathrm{SSB}<\mathrm{B}_{\mathrm{pa}}, F>\mathrm{F}_{\mathrm{pa}}$. or $\mathrm{SSB}<\mathrm{B}_{\mathrm{pa}}$ and $\mathrm{F}>\mathrm{F}_{\mathrm{pa}}$. A Hit.
2. Stock does not meet EcoQO: advice for status quo (or increased) fishing: the estimate of SSB and/or F in the assessment year led to advice for status quo or increased TAC when the converged estimate of SSB

Table 1. List of slocks used in the analysis.

Fishery	Species	Area
Flatfish	Plaice	Division VIId (Eastern Channel)
		Division VIle (Weslem Channel)
		Subarea IV (Norlh Sea)
	Sole	VIld (Easlern Channel)
		Division Vlle (Western Channel)
		Subarea IV (North Sea)
Indusirial	Norway poul Sandeel	Subarea IV (Norih Sea) and
		Division Illa (Skagerrak and Kattegal)
		Subarea IV
Pelagic	Herring	Divisions Via (South) and VIIb, c
		Subarea IV Division VIld and Division 1lla (aulumn spawners)
	Mackerel	Combined Soulhers. Western and
		North Sea spawning componenls
Roundfish	Cod	Division Vla (West of Scottand)
		Subarea IV (North Sca), Division Vild (Eastern English Channel) and Division Illa
		(Skagerrak)
	Haddock	Division Vla (West of Scolland)
		Subarea IV (North Sea) and Division IIla (Skagerrak and Kallegat)
	Sailbe	Subarea IV (North Sca), Division Illa
		(Skagerrak) and Subarea V]
		(West of Scolland and Rockall)
	Whring	Subarca IV (North Sea) and Division
		Vlld (Eastern Channel)

and/or F in the 2002 assessment now indicales that the stock did not meet its objeclive (EcoQO), A Miss.
3. Stock meets EcoQO; advice to reduce fishing: the estimate of SSB and/or F in the assessment year led to advice to reduce catch when the converged estimate of SSB and/or \mathbf{F} in the 2002 assessment now indicates that the stock met its objective (EcoQO). A False Alarm.

Table 2. The application of Signal Deteclion Theory in the evaluation of management advice.

		Advice (ascescment year)			
		Reduce TAC	Staites qua nt increased TAC		
		$\begin{gathered} 1 \\ \text { (Hil) } \end{gathered}$	2 (Miss)		
		$\begin{gathered} 3 \\ \text { (False Alarm) } \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{Hil}) \end{gathered}$		

4. Sinck meets EcoOO; advice for slatus quo or increased fishing: the estimate of SSB and/or \mathbf{F} in the assessment year led to advice for status quo or increased TAC when the converged estimale of SSB and/or \mathbf{F} in the 2002 assessment now indicates that the stock met its objective (EcoQO). A Hit.

Signal Detection Theory (Helstrom, 1968) was applied to these scenarios, and the proportion of Hits (1 and 4), Misses (2), and False Alarms (3) was determined for each year as the proportion of the stocks for which the respective scenarios applied. This well-established theoretical framework has a direct link with practical management.

Scenarios (Hits) 1 and 4 (Table 2) are considered "correct advice", in that the advice given in the assessment year (and presumably the action taken on the basis of the advice) is consistent with the advice appropriate to the converged estimate of SSB and/or F , which in lum determines the EcoQO status. For example, the advice in the assessment year was to reduce the TAC. and according to the 2002 assessment, the stock was outside safe biological limils in the assessment year, and hence the EcoQO was not met. Altenatively, the advice in the assessment year was a status quo or increased TAC, and according to the 2002 assessment, the stock was within safe biological limits in the assessment year. and hence the EcoQO was met.

Conversely. scenarios 2 and 3 can be considered "incorrect advice", in that the advice given in the assessment ycar (and presumably the action taken on the basis of the advice) is inconsistent with the advice appropriate to the converged estimate of SSB and/or F in the assessment year.

Results

The quality of advice varies depending on the type of fishery and the crilcria used (Table 3). Overall, using just F will result in relatively low rates of False Alarm, but high Miss rates. Using SSB only results in a strong decrease in the rate of Misses, logether with a markedly higher proportion of False Alarms. The best results were achieved using both criteria, with an overall 62% Hit rate ($35+27 \%$), 14% Miss rate, and 24% rate of False Alarm. For the pelagic and industrial fisheries, there appears to be a significant ($p<0.05$) relationship between the accuracy of advice and the status of the slock; if the stock does not meet its EcoQO, the proportion of correct advice is smaller than when the stock does meel its EcoQO. This is particularly apparent when only SSB was used as a criterion.

Table 4 gives a quantitalive indication of the true impact of the advice depending on the scenario, not just that advice was provided, but how management actually responded to the advice and the indicator. These management actions may reflect the impact of how the advice is phrased. particularly how sources and magnitudes of uncertainlics

Table 3. Percentage of Hits (1, 4), Misses (2), or False Alarms (3: for explanation, see Table 2), depending on the criteria used, i.e SSB ($\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}$), $\mathrm{F}\left(\mathrm{F}<\mathrm{F}_{\mathrm{ra}}\right.$), and the type of fishery. N is the number of cases (stockswyears). The proportion of conrect advice is calculated for the situation where the stock is outside (0) or within (1) safe biological limits from the ralio between. respectively, Hit:Miss and Hit:False Alarm rales. The p-value is for the χ^{2} test on the hypothesis that there is no relationship between the accuracy of advice and the status of the stack.

Fishery	Criterion	N	Hit		$\frac{\text { Miss }}{0}$	$\frac{\text { False Alamm }}{1}$	Percentage of carrecl advice		p-value
			0	1			0	1	
			1	4	2	3	$1: 2$	4:3	
All	F	217	45	6	46	4	49	57	0.51
Flalfish	F	86	49	5	43	3	53	57	0.84
Industrial	F								
Pelagic	F	30	20	10	67	3	23	75	003
Roundfish	F	101	49	5	42	5	54	50	0.82
All	SSB	242	34	29	26	12	57	70	0.03
Flatfish	SSB	R9	36	29	18	17	67	63	0.75
Indusirial	SSB	19		63	21	16		80	0.00
Pelagic	SSB	30	13	47	30	10	31	82	000
Roundfish	SSB	104	44	16	32	8	58	68	038
All	SSB \& F	217	35	27	24	14	59	66	033
Flatish	SSB \& F	86	34	30	17	19	66	62	070
Industrial	SSA \& F								
Pelagic	SSB \& F	30	13	47	30	10	31	82	000
Roundfish	SSA \& F	101	42	19	28	12	60	61	0.90

are expressed. For example, if Misses are largely the result of highly uncertain estimates of SSA and F, the cnthusiasm for an increased quota might be less compared with the case if the advice for an increased harvest came from a very solid assessment, with a true positive Hit.

The results also show, in general, that the advice was appropriate with regard to consequences. If the FcoOO

Table 4. The average percentage change of the TAC actually implemented by management in relation to the distribution of His (1, 4), Misses (2), or False Alarms (3): for explanation, see Tahle 2.

Fishery	Crilerion	Hil		$\frac{\text { Miss }}{2}$	$\frac{\text { False Alarm }}{3}$
		1	4		
All	F	-17	7	12	-18
Flatish	F	-12	13	12	-10
Pelagic	F	-25	2	10	-13
Roundfish	F	-20	6	13	-23
Ali	SSB	-18	11	10	-13
Flacfish	SSR	-12	13	10	-11
Industrial	SSB		3	0	-9
Pelagic	SSH	-25	9	8	-22
Roundfish	SSR	-21	16	12	-17
A]	SSR \& F	-18	12	11	-15
Flatish	SSB \& F	-12	1.1	9	-11
Pelagic	SSB \& F	-25	9	8	-22
Roundfish	SSB \& F	-21	12	13	-19

was not met, a strong reduction in TAC of about 18% was suggested in the case of correct advice (a true negative Hit), whereas there was a smaller increase in TAC averaging between 10% (SSB only) and 12% (F only) in the case of a Miss. If the EcoQO was met, correct advice (a rue positive Hi1) reculted in a suggested increase of the TAC of between $7 \%(\mathrm{~F})$ and 12% (SSB and F), whereas in the case of a False Alarm, the suggested decrease in TAC was between 13% (SSB) and 18% (F). Overall, the advice using SSB only, or SSB and F. appears more appropriate. with relatively small changes to the TAC in the case of a Miss or a False Alarm, bul relatively bigger changes to the TAC in the case of a Hill.

There are also marked quantitative differences in advice between the types of fishery. Managers appear generally to apply smaller TAC reductions to flatfish, but relatively large reductions to pclagic and roundfish stocks. In cases where an increase is advised, managers appear generally to apply smaller relalive increases to indusirial and pelagic stocks, and larger increases to flatfish and roundfish sincks, Although this difference between the types of fisheries appears largely independent of the status of the stock (i.e. it applies to Hits, as well as to False Alarms or Misses), the suggested decreases are always larger when the EcnOn is not met. and the increases are larger if the EcoQD is met. Management aclions are stronger when the advice, in relrospect, was in the rightful direction, suggesting perhaps that there is some shading th the text of the advice corresponding to how reliable the advice later tums out to be.

Hislorical trajectories of the performance of management advice showed no clear trends in Hits when based on F only (Figure 2a). However, when based on SSB only, or SSB and F together, the proportion of Hits appeared to have been lower in the mid-1990s (Figure 2a), whereas Misses (Figure 2b) were particularly common. Independent of the criteria used, the number of Hits seems to increase while the number of Misses decreases from the mid-1990s. Because the assessments have not converged enough to be confident what the "true" (at least stable) estimates of F and SSB in 2002 will be, that year was not included in the analysis The historical trajectories of the suggested EcoQ metrics for the commercial species are shown in Figure 3. In recent years, SSB was above B_{pa} for about 40% of the slocks, and F was below F_{pa} for $<20 \%$ of the stocks. The percentage of slocks that meet both criteria is consistently (except for the last year) below 10%.

Figure 4 shows the relationship between the history of management advice and the relative deviation of SSB in 2002 from precautionary levels. In several cases (all stocks, as well as flatfish and mundfish separately, when SSB. or SSB and F were used as criteria), the relationship was significant (Table 5). Remarkably, this relationship indicates that stocks that in 2002 were below precautionary levels have a hislory of relatively many Hits. Many of these

(b)

Figure 2. Historical frajectory of performance of advice expressed as the proportion of (a) Hits and (b) Misses, depending on the criteria used, i.e. SSB (SSB $>\mathrm{B}_{\mathrm{pa}}$), and $\mathrm{F}\left(\mathrm{F}<\mathrm{F}_{\mathrm{ra}}\right.$).
consistent Hits are Irue negatives, where the stock has been outside safe biological limits perhaps for several years, and [CES has been cortccily advising reductions in quotas. It contrast, stocks that were ahove precautionary reference levels in 2002 have a history of many Misses and False Alarms, suggesting that relatively few stocks are kept consistently within safe biological limits. The relationship with scenario 4 (Hil when the stock was within safe biological limits) was the weakest, and (independent of the criterion used) not significant at $\mathrm{p}<0.1$ (Table 5).

Discussion

If the results of the evaluation of the perfomance of management advice show a high Hil rale, bul low rates of Misses and False Alamm, they support the view that precautionary reference points are a robusi basis for fisheries managemenr advice. Managers are then generally advised to take actions that would move the stock in the рroper direclion. High Miss rates would suggest that precautionary reference points, as currently used, do not lead to advice that is sufficiently restrictive to ensure that stocks remain within safe biological limits. High rates of False Alarm indicate that precautionary reference points, as currenlly used, lead to overly inlrusive management advice.

The results show that the use of B_{pa}, rather than $\mathrm{F}_{\text {pa }}$ results in more Hits and less Misses. However, applying both criceria rather than either of them separately, results in aboul an equal number of Hits, but a lower number of Misses, so can be considered the most consistent with sound management. Based on these results, it would scem appropriate to redefine the EcoQO. Rather than stating that the "spawting-stock biomass of commercial fish species" should be "above precautionary reference poinls...", where the reference points are "those for the spawning-stock biomass also taking into account fishing mortality,...", the Eco@O should be based explicitly on the proportion of stocks within safe binlogical limits, where $\mathrm{SSB}>\mathrm{B}_{\mathrm{pa}}$ and $\mathrm{F}<\mathrm{F}_{\mathrm{pa}}$ are considered together. Moreover, as all existing

Figure .3. Proporion of stncks within affe hiological limils, hased on SSA, F, and SSB and F.

Figure 4. Relationship between the relative deviation of SSB from $\mathrm{SSB}_{\mathrm{pa}}\left(\mathrm{SSB}_{26022}-\mathrm{SSB}_{\mathrm{pa}}\right) / \mathrm{SSB}_{\text {pa }}$, and the proportion of the respectuve advice scenarios (indicated in upper right comer of each panel; for explanation, see Table 5). The different types of fishery are indicated.
management approaches for individual slocks are based on the objective of exploiling the stocks within safe biological limits (i.e. SSB above $\mathrm{B}_{\text {pa }}$. F sustainable), the wording of the EcoQO could he changed so that it would simply condense this information into a fonm that gives an appropriate overview of the overall status of commercial North Sea fish stocks. Thus, the suggested EcoQ element would be the "proportion of commercial fish stocks within safe biological limits (i.e SSB $>\mathrm{B}_{\mathrm{pa}}$ and $\mathrm{F}<\mathrm{F}_{\mathrm{pa}}$)", and the objective (EcoQO) should be that this EcoQ should be at or above a desired level. The desired level is a societal/ political decision relative to the EcoQ reference level (i.e. where the anthropogenic influence on the ccological system is minimal), which by definition is 100%. On biological grounds, however, there is no reason why all stocks could not be kept within safe biological limits (avoiding SSBs so low that recruitment is impaired), even though biological interactions among stocks may make it impossible to keep all stocks at biomasses producing maximum single-species yields simultancously.

Care must be taken in interpreting this paired EcoQO for two reasons. In the past, some stocks dropped out of the assessment system when they fell to very low biomass (e.g. North Sea mackerel). Also, several commercial slocks were

Table 5. Pearson correlation coefficient (R), and the level of significance (bold, $p \leq 0.05$: italics $p<0.1$) of the linear relatuonship between the relative deviation of SSB from $\mathrm{SSB}_{\mathrm{pa}}$ ($\mathrm{SSB}_{2002}-\mathrm{SSB}_{\mathrm{pa}}$)/SSB $\mathrm{SS}_{\text {pl }}$ and the proportion of the respective advice scenarios.

Fishery	Criterion	N	Hil		$\frac{\text { Miss }}{2}$	False Alarm 3
			1	4		
All	F	16	-0.44	0.29	0.12	0.23
Flatfish	F	6	- 0.76	0.21	0.77	0.63
Industrial	F	0				
Pelagic	F	2				
Roundfish	F	8	-0.38	0.27	-0.05	006
All	SSA	18	-0.56	-0.36	0.50	0.46
Flaıtish	SSB	6	-0.89	0.91	0.92	0.91
Industrial	SSB	2				
Pelagic	SSB	2				
Roundfish	SSB	8	-0.76	-0.72	0.90	0.86
All	SSB \& F	16	-0.60	-0.36	0.51	0.52
Flatfish	SSB \& F	6	-0.89	-0.90	0.98	0.90
Indusitial	SSB \& F	0				
Pelagic	SSB \& F	2				
Roundfish	SSB \& F	8	-0.83	-0.61	11.77	0.87

depleled to a fraction of their former abundance (e.g. spurdog Squalus acanthias, thomback ray Raja clavata), hul are not assessed regularly by ICES. As the value of the metric depends on the stocks included in estimating the percentages, rigorous criteria should be used to determine the stocks that should be included, and this list should be clearly slated when using the EcoQO .

When evaluating the historical performance of this EcoQ element, the 2002 results were not included in the analysis, because the assessments had not converged enough to be confident what the Irue estimates of SSB and F were in that year. This argument, however, may apply to the last few years. As such. the increasc of at least the EcoQ element in 2001 (Figure 3) should be viewed with caution. This means that the proportion of stocks that are within safe biological limits is probably $<10 \%$.

Our evaluation of $B_{p \pi}$ and $F_{p a}$ as reference points shows that use of $F_{p a}$ separately results in a Miss rate of 46%, and a False Alarm rate of 4%, suggesting that F aione is a dangerous basis for management advice, at least where stock-specific reference points for F are positioned at present. Use of $\mathrm{B}_{\text {pa }}$ separately results in rates of 26% (Miss) and 12% (False Alamm), while use of both R_{pa} and F_{pa} results in rates of 24% and 14%, respectively. This indicates that, as advice becomes more precautionary, Miss rates decrease, but False Alarm rates increase. Moving from the context of fisheries management to EcoQOs, it would be desirable (from the perspective of conservation) to reduce Miss rales. This can be achieved by selecting different positions for the reference points (higher B_{pa}, lower F_{pa}), but with present knowledge this is likely to
increase the False Alarm rale ij.e. unnecessary calch reductions) more often. Even though False Alarms are more ecologically precautionary than Misses, this may nol please all customers for the advice.

The increasing symmetry of errors (Misses and False Alarms abous equally likely; see Table 3) when both SSB and F are used in the advice, and an error rate of about 25% whenever SSB is used (very close for Misses). are consistent with managers commonly treating B_{p} as a target. despite frequent lCES admonitions to the contrary, If managers are trying merely to maintain stocks at or just above $B_{\text {pa, }}$, then even modest uncertainties in assessments are going to result in assessments estimating the stock to be just above $B_{p a}$ in one ycar, and just below in another, while the stock itself varies around this "pseudo-target". If the chance variation in assessment estimates and stock status is independent. then one would expect the 25% Miss rate observed. A False Alarm rate markedly helow the expected 25% would he consistent with the true slatus of some stocks being far enough above B_{pa} that Ihey are rarely estimated to be below that value, even when an individual estimated SSB is lower than the true stock size.

In single-year management contexis, both Misses and False Alarms are considered "incorrect advice", i.c. advising managers to take the wrong action. Management actions based on crtoneous advice will amplify the difference helween the actual stock size and the reference point, i.e. it wilf increase the signal tos he detected. Hence, the next ascessment would have a higher likelihood of correctly identifying the sign of the discrepancy between the true stock and the reference point, and a greater likelihood of correct advice.

This self-correcting propeny of an annual programme of assessment and advice needs 10 be taken into account when moving to multi-year management programmes. Management responses to Misses and False Alarms will be in place for the multi-year period. This will make the signal to be detected even larger at the next assessment, so the likelihood of corrections will be even greater. However, stock condition could have deteriorated substantially if management is based on advice that "missed" a stock being outside safe hiological limits. Therefore, multi-year management approaches should strive to keep stocks well above B_{pa}. so that opporlunities for Misses will be rare.

More generally. using both SSB and F will provide the best management advice. However, with current stock conditions, SSR and F together would not yield recommendalions for catch reductions, when in fact they are needed for aboul one stock in four, while catch reduclions are recommended for one out of six slocks, when those slocks are within safe biological limits. Rebuilding stocks farther abnve $B_{p a}$ than at present ought in reduce both Miss and False Alarm rates, because the gap between the precautionary reference point and the true stock slatus becomes greater than the uncertainty in the annual assessments. making true posilive hits the most likely (as well as
the most desirable) outcome. As ICES often stresses in its advice, there are almosI always yield benefits when SSR is kept well above B_{pa} (ICES, 2002), so this stralegy will improve hoth quality of advice and value of fisheries,

The Fcological Quality Objective proposed by the 5 th North Sea Conference (Anon., 2002) could be interpreted to mean that the (rends in SSB relative to B_{pa} and/or F relative to $F_{p a}$ should he reported for every stock (see Table 1), or That a composite indicator recording the proportion of stocks within safe biological limits should be produced. where the target and reference levels would both be 100%. This target and reference level is consistent with the management goals for individual stocks, as assessed by the Advisory Commitlee for Fisheries Management (ACFM). For each of these stocks, the goal is to keep SSB above B_{pa}, and F below F_{pa}. In this context, the adoption of ecosystembased management would nol result in lower conservation slandards than are already in place. and can therefore not have any adverse impari on the conservation and management goals for target stocks. However, it would be necessary for management to be highly risk-intolerant with regard to achieving this target of 100%.

When considering how performance of this EcoQO can the improved. we should also consider the reliability of the assessments themselves. Assessments are known to be imperfect, because there is uncertainty in both the analyrical formulations of processes such as natural mortality and age-specific catchability of fleets, as well as in parameter estimates, owing In sampling error in the inpul data. Hence, the annual cstimates of SSB and F can be expected to have some error (and assessment outpuls always provide cstimates of the magnitude of estimation ertors). As long as errors are only variance, they might render estimates of SSB and F less sensilive as indicalors for EcnQOs (with Hit rates of about 60%). but they should nol hias performance. However. if the errors in estimaling SSB and F reflect systematic bias, performance might be impaired. This is a real risk, because some assessments have been known to suffer from retrospective bias (ICES, 2002), such that successive assessmerts recalibrate the ahsolute estimates for a numher of past years. The more common pattem is for SSB in be overestimated and fishing morlality to be undercstimated for the current and recent pasi years. consistent with (hul not proof of) underreporting of the number of fish aclually killed (i.e. Jandings and/or discards) by the fishery. This bias means that the B_{pa} values from any single assessment may not be perfectly biologically calibrated with SSB estimates from assessments in earlier or later years. In other words, if B_{pa} is taken from an assessment in, say, 1999, it may not reflect perfectly the boundary of sale hiological limits on the SSA from an asscssment in 1996 or 2002

Expert groups are working on this aspect of precautionary reference points. but new estimates of B_{pa} are not yel available. The relatively high Miss rates in the mid-1990s are consistent with the relrospective hias found in assessments in
the late 1990s, which were strongly influenced by those catches. The relatively high Miss rates during a period when many assessments are now known to have suffered retrospective bias suggest that, with improved data, it may be possible to reduce Misses without increasing False Alarm rales unacceptably. In order 10 imponve data quality in the assessments, monitoring protocols have been developed for catch reporting, catch monitoring, and conduct of rescarcí vessel surveys. However, prolocols for catch reporting are driven more by enforcement capabilities and requirements of fishing plans, than by the needs of good science.

A Hit rate of just $>60 \%$ might be taken to suggest that $\mathrm{B}_{\mathrm{p} \Delta}$ and F_{pa} are, in facl, poor precautionary reference points, and that the suggested EcoQO is not useful for conservalion purposes. This conclusion would be premature becausc correct management action was advised most of the time. and the signal-detection nature of an annual assessment and advisory process makes it likely thal incorrect advice in one year is corrected in the subsequent assessment. Moreover, knowledge of actual performance of this EcoQO in practice only exists bccause of a long history of use of the indicators of the status of the stock, SSB and F. This use has been in conlexts where their strenglhs and weaknesses are examined critically on essentially an annual basis. and potential biases. such as the retrospective pattem in assessments, have heen discovered and examined. It may be naive to assume that indicators associated with other EcoQOs, with which the scientific community oflen has less experience, and in far less critical environments, will necessarily be less vulnerable to bias or high variance.

The test of the effectiveness of management advice shows counter-intuitive results: the expectation was that slocks that are currently oulside safe biological limits have a history of many Misses. while slocks that are within safe biological limits have a history of many Hits. Resulls. however, show the opposite: the number of Hits is highest for those stocks for which SSB is farthest below precautionary reference levels, whereas the number of Misses and False Alarms is highest for those stocks that are above precautionary reference levels. This suggests that possibly cause and effect are the other way around: advice performs better for slocks that are in poor shape. but the quality of advice hardly affects the status of the stock. This
slatemenl applies mainly to flatfish and roundfish stocks Ihat, because of their numbers, drive this analysis. Therefore, a tentative conclusion would be that TAC management, even if precautionary. is probably nol effective for stocks caught in a mixed fishery (Van Beck and Pastoors. 1999).

Acknowledgements

We thank the ICES "Working Group for the Ecosystem effects of Fishing" (WGFCO) for providing the slimulus and the intellectual input. The work was funded by the Eurnpean Commision: Eurnpean Fisheries Ecosyslem Plan (FFEP. EU project Q5RS-2001-01685).

References

Anon. 1997. Statement of Conclusions from the Intermediate Ministerial Meeting on the Integration of Fisheries and Environmental Issues, Bergen, Norway, March 1997.
Anon. 2002. Ministerial Declaration of the 5th lncemational Conference on the Proteclion of the North Sea. Bergen, Norway, March 2002.
FAO 1096a, Precautionary apprnach to fisheries. 1. Guidelines on the precautionary approach to caplure fisheries and species introductions. FAO Fisheries Technical Paper, 350/1. 52 pp.
FAO. 1996b. Precautionary apprnach to fisheries. 2. Scientific papers. FAO Fisheries Technical Paper, 350/2. 210 pp,
FAO. 2003. The ecosystem approach in fisheries. FAO Technical guidelines for Responsible Fisheries, 4(Suppl. 2): 112 pp . http:// fip lao.org/docrep/fao/005/y4470e/y4470e00.pdf.
Helsirom. C. W. 1968. Stacistical Theory of Signal Detection. Pergamon Press, New York. 470 pp.
ICES. 2002. Report of the ICES Advisory Commurae on Fishery Management, 2002. ICES Conperative Research Report. 255
T.anters. R. L. P. Skjoldal. H. R., and Noji, T. T. 1999. Ecolngical Quality Objectives Sor the Narth Sea. Septomber 1999 Scheveningen, Netherlands. Joint report: Netherlands Ministry of Transport, Public Works \& Water Management. Directorare General of Public Works and Water Managemenl. National Institute for Coaslal and Marine Management (RIKZ)/Norwegian Institute of Marine Research. RIKZ Report 99.015 ISSN 0927-3980/Fisken og Havel $10-1999$. ISSN 007]-5683. 57 pp
Van Beek. F. A., and Pastoors, M. A. 1999. Evalualing ICES carch forecasts: the relationship helween implied and realised fishing martality. ICES Document. CM 1999/R: 04. 22 pp .

$$
d_{1}=3^{3}
$$

