Training on Sea going measurements and sampling

Andre Cattrijsse, Francisco Hernandez & Delphine Vanhaecke

Viaams Instituut voor de Zee vzw Flanders Marine Institute

What is a profile and why do we want one?

Profiling = measuring a parameter from surface to bottom depth

Parameter =

salinity temperature

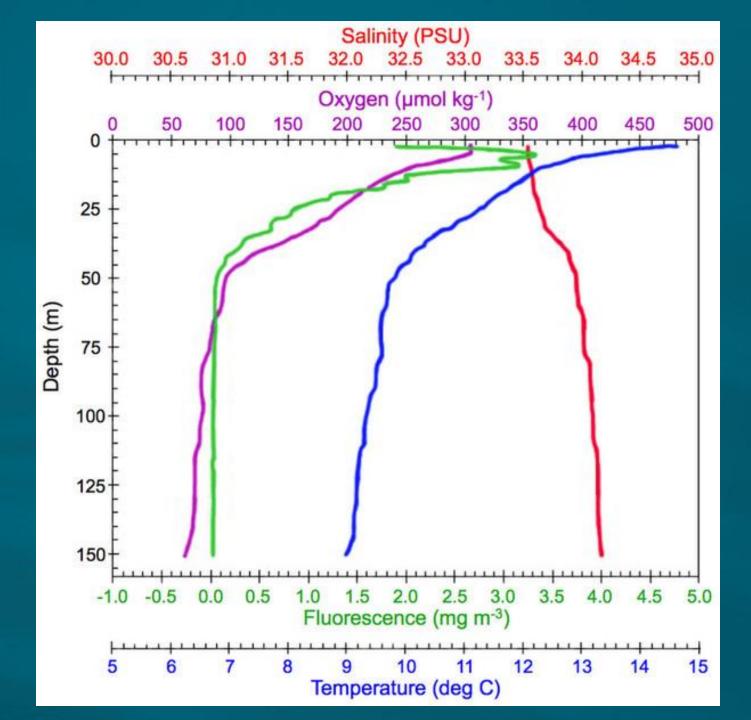
oxygen concentration

turbidity

light/chlorophyll a/pH/....

Ocean currents based on density profile

Boundaries of water masses eg. upwelling & sediment transport


Transport of pollutants in coastal areas

Sharp changes mean chemo-biological processes

Anoxic layers

Sound velocity profiles for acoustic instrumentation

Oceanographic terms

Stratification

Mixed Layer: surface of the ocean well mixed

(<200m depth)

Deep Layer: separated from top layer by a region of

change in density

Thermocline: drop in temperature

Halocline: increase in salinity

Pycnocline: increase in density

Oceanographic Parameters

Measure: Conductivity, Temperature and Pressure

Measure: Oxygen conc., turbidity, fluorescence,......

Calculate:

Depth: using Pressure & Latitude (and Atm. Pressure)

Salinity: using C, T & P

Density: using S, T & P

Sound Velocity = using S, T & P

Oceanographic Parameters

Salinity = amount of salts in one liter of water

Salinity cannot be measured in situ

Composition of seawater not fully equal worldwide

Conductivity = material's ability to conduct an electric current

Conductivity is a function of temperature Salinity is not depending on temperature

Oceanographic Parameters

Conductivity, Temperature & Pressure is measured

Salinity is calculated using C, T & P according to the Pratical Salinity Scale of 1978 PSS78

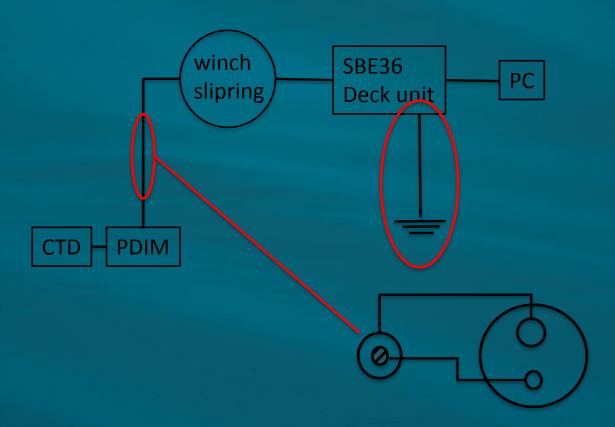
PSS78 uses International Temperature Scale 1968 ITS90 must be converted to ITS68 PSS78 only valid between -2 & 35°C

Profiling Equipment

CTD = **C**onductivity, **T**emperature & **D**epth

Electronic equipment that reads and stores C, T & P data

Evt. also data of integrated sensors (turbidity)



Profiling Equipment

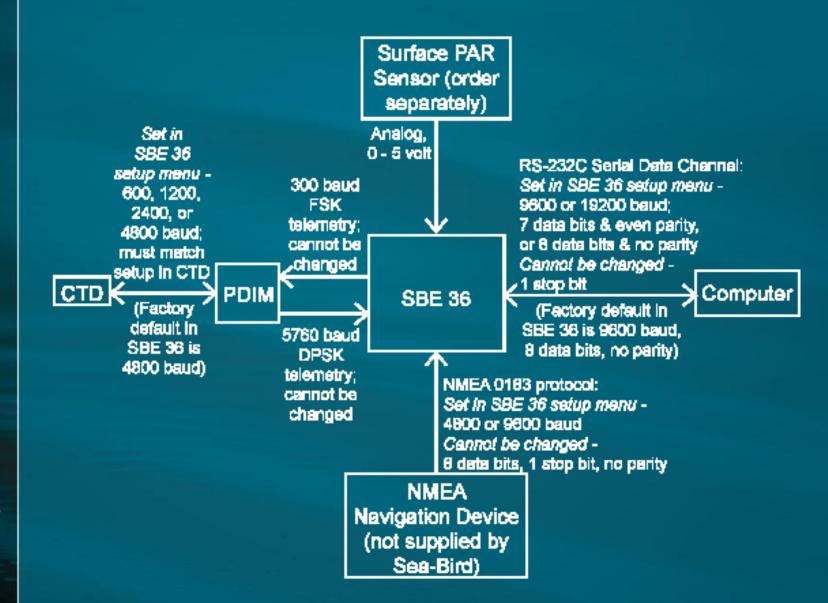
Real time deployments

= winch + slipring, termination on the sea-end of the cable,PDIM (power interface data module) & deckunit plus PC

Profiling Equipment

Deckunit

SWITCH OFF WHEN (DIS)CONNECTING CTD


Profiling Equipment

SeaTerm

= communicating with your instrument

Profiling Equipment

Profiling Equipment

SeaSave

- = communicating with your instrument in realtime mode
- = realtime data acquisition
- = visualising profiles

Profiling Equipment

Files

- = YYMMDD-3078.con = calibration values of instrument
- = YYMMDD-station.hdr = header file
- = YYMMDD-station.hex = raw data file

Profiling Equipment

Preparation

- = Check communication / take a bench cast
- = Check memory
- = Check batteries

Profiling Equipment

Preparation

- = Check communication / take a bench cast
- = Check memory
- = Check batteries

Taking a cast

Conductivity cell (& thermistor) only provide good data when water is pumped at constant flow through the cell

Plumbing

= tubing allows to air within the system to escape. Keep tubes clear

Mating connectors

- = use silicon grease to watertight & lubricate
- = mate correctly to keep pins in good condition
- = always cover pins with dummy plug or connecting plug

Check cables: clear of sensors, well tied

Taking a cast

SBE19 sampling rate = 2Hz (2times per second)

Profiling rate

- = descend/ascend rate =1m/sec (winch specs)
- = 2 readings / m
- = 1m resolution !!

Taking a cast

Soak CTD before starting

Allow air to vent

Allow sensors to equilibrate

Allow pump to start

Allows to check readings

Soaking in surface waters

3m, 2min in shallow water

10m, 10min in deep water

Taking care of sensors

Temperature sensors are very resistant to shock, drift will be caused by exposure to heat.

Drift is usually <0.0002°C/month (equal for SBE3)

Conductivity sensors are very sensitive to coatings inside cell

Drift is usually 0.0003 S/m /month

keep the cell clean!!

A thin layer of .002mm causes a drift of .035 PSU

Don't lower the CTD in oilfilms

Regularly clean/soak with Triton-X (soap)

Never use a brush to clean the cell

Taking care of sensors

Pressure sensors drift can be checked 'in air'
Pressure on deck should read zero
Offset can be entered in the con.file if needed

DON'T LOWER YOUR CTD BELOW 600m Depth

What are underway data and why do we want them?

Underway = measuring time stamped and geo-referenced parameters at regular time intervals

Parameter =

time UTC LAT/LON

Seawater Surface Temperature & Conductivity

Collecting basic environmental data while sailing/sampling

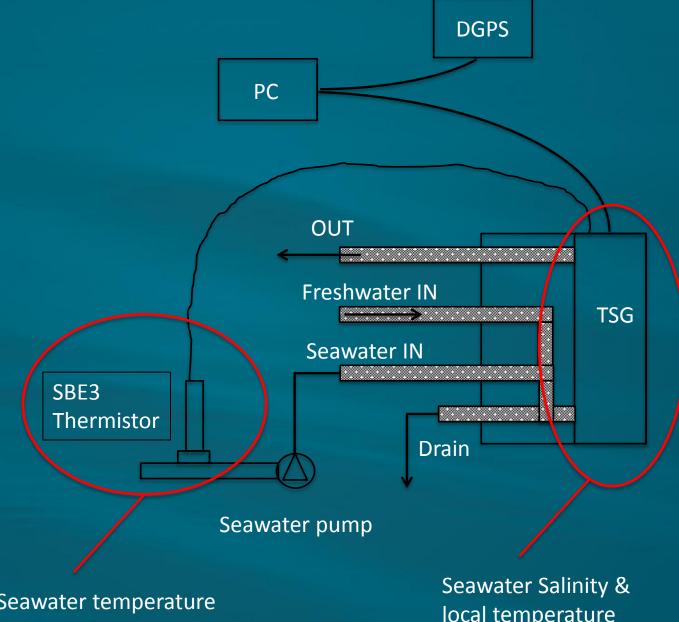
Keeping track of cruise whereabouts

Supply research on ocean currents, global warming, deep ocean overturning,... with large areal coverage data

TSG

<u>Thermo</u>salino raph SBE21

Pumped system installed on the ship


Takes water from approx. 3m depth

Flow rate should >0.8 <1.2 l/sec

Sampling interval 5sec (minimum)

TSG

Seawater temperature

local temperature

TSG

Maintain the SBE21

flush with freshwater at end of cruise store with freshwater rinse with non-ionic detergent (Triton-X) regularly

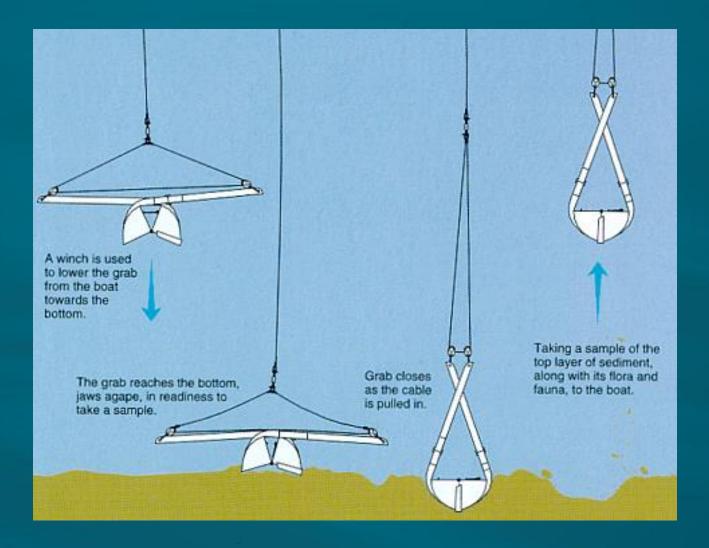
pumped systems are little critters heavens & sediment traps

My system doesn't work!! What now?

- 1. Check power source (power supply & batteries)
- 2. Does the CTD/SBE21 receive power?
- 3. Check fuse of SBE21
- 4. No data received : check sensor, check cable
- 5. Check baud rates
- 6. Test with datacable

Niskin Bottle

Mount the bottle above the CTD Messenger to close the bottle


Van Veen grab

Standard sampling tool for macrobenthos & sediment

Van Veen grab

Van Veen grab

Chemistry/sedimentology sampling: volume depends on research needs

Biology sampling:

full grab desirable (equal sample size) sieve over 1 of 0.5mm sieve sieve onboard or on land

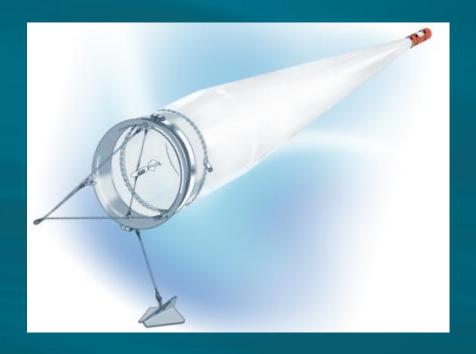
Plankton Net

Group	Size range	Examples
Megaplankton	> 20 mm	metazoans; <i>e.g.</i> jellyfish, ctenophores, pelagic tunicates, cephalopds, amphipods, pelagic tunicates, fish larvae
Macroplankton	2→20 mm	Metazoans <i>e.g.</i> Pteropods, chaetognaths, krill, ctenophores, jellyfish, pelagic tunicates, amphipods, fish larvae, fish eggs, crustacean larvae
Mesoplankton	0.2→2 mm	Metazoans <i>e.g.</i> copepods, jellies, cladocerans, ostracods, chaetognaths, pteropods, tunicates, Pteropods, crustacean larvae
Microplankton	20→200 μm	Large eukaryotic protists, most phytoplankton, Protozoa; Foraminifera, ciliates, rotifers, juvenile metazoans (nauplii, echinoderm larvae)
Nanoplankton	2→20 μm	small eukaryotic protists; small diatoms, small flagelallets, unicellular algae
Picoplankton	0.2 → 2 μm	small protists & bacteria, smallest phytoplankton
Femtoplankton	< 0.2 μm	marine viruses

Vertical Plankton Net Sampling

WP2 Closing Net
Net ring 57 cm diam. Net length 260 cm

WP3 Indian Ocean Standard Net
Net ring with 113 cm diameter Net length 470 cm.



Horizontal Plankton Net Sampling

Ring Trawl Net (Calcofi Net)

Net ring 100 cm diameter, net of 400 cm length, PVC net bucket, 200μm mesh size

