IMIS | Vlaams Instituut voor de Zee

Vlaams Instituut voor de Zee

Platform voor marien onderzoek


Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (1): toevoegen | toon Print deze pagina

one publication added to basket [202886]
Snout allometry in seahorses: Insights on optimisation of pivot feeding performance during ontogeny
Roos, G.; Van Wassenbergh, S.; Herrel, A.; Adriaens, D.; Aerts, P. (2010). Snout allometry in seahorses: Insights on optimisation of pivot feeding performance during ontogeny. J. Exp. Biol. 213(13): 2184-2193.
In: Journal of Experimental Biology. Cambridge University Press: London. ISSN 0022-0949; e-ISSN 1477-9145, meer
Peer reviewed article  

Beschikbaar in  Auteurs 
    VLIZ: Open Repository 218926 [ OMA ]

    Biogeny > Ontogeny
    Syngnathidae Bonaparte, 1831 [WoRMS]
Author keywords
    Syngnathidae; pivot feeding; ontogeny; scaling

Auteurs  Top 

    As juvenile life-history stages are subjected to strong selection, these stages often show levels of performance approaching those of adults, or show a disproportionately rapid increase of performance with age. Although testing performance capacity in aquatic suction feeders is often problematic, in pivot feeders such as seahorses models have been proposed to estimate whether snout length is optimal to minimise the time needed to reach the prey. Here, we investigate whether the same model can also explain the snout lengths in an ontogenetic series of seahorses, explore how pivot feeding kinematics change during ontogeny, and test whether juveniles show disproportionate levels of performance. Our analysis shows that the dimensions of the snout change during ontogeny from short and broad to long and narrow. Model calculations show that the snout lengths of newborn and juvenile seahorses are nearly optimal for minimising prey reach time. However, in juveniles the centre of head rotation in the earth-bound frame of reference is located near the posterior end of the head, whereas in adults it is shifted forward and is located approximately above the eye. Modelling shows that this forward shift in the centre of rotation has the advantage of decreasing the moment of inertia and the torque required to rotate the head, but has the disadvantage of slightly increasing the time needed to reach the prey. Thus, the snout lengths of juvenile seahorses appear to be close to optimal, suggesting that they reach levels of performance close to adult levels, which illustrates the pervasive nature of selection on performance in juveniles.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs