Vinaora Nivo SliderVinaora Nivo SliderVinaora Nivo SliderVinaora Nivo Slider
Phytoplankton bloom
MODIS ocean colour image
Foam on the beach: A natural phenomenon?
Monitoring the earth oceans from space

isecalogo

log in
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [238006]
Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters
Barnes, M.K.; Tilstone, G.H.; Smyth, T.J.; Suggett, D.J.; Astoreca, R.; Lancelot, C.; Kromkamp, J.C. (2014). Absorption-based algorithm of primary production for total and size-fractionated phytoplankton in coastal waters. Mar. Ecol. Prog. Ser. 504: 73-89. http://dx.doi.org/10.3354/meps10751
Peer reviewed article  

Available in  Authors 

Keywords
    Absorption
    Biological production > Primary production
    ANE, North Sea [Marine Regions]
Author keywords
    Micro-phytoplankton; Nano-phytoplankton; Western English Channel

Authors  Top 
  • Barnes, M.K.
  • Tilstone, G.H., more
  • Smyth, T.J.
  • Suggett, D.J.
  • Astoreca, R., more
  • Lancelot, C., more
  • Kromkamp, J.C.

Abstract
    Most satellite models of production have been designed and calibrated for use in the open ocean. Coastal waters are optically more complex, and the use of chlorophyll a (chl a) as a first-order predictor of primary production may lead to substantial errors due to significant quantities of coloured dissolved organic matter (CDOM) and total suspended material (TSM) within the first optical depth. We demonstrate the use of phytoplankton absorption as a proxy to estimate primary production in the coastal waters of the North Sea and Western English Channel for both total, micro- and nano+pico-phytoplankton production. The method is implemented to extrapolate the absorption coefficient of phytoplankton and production at the sea surface to depth to give integrated fields of total and micro- and nano+pico-phytoplankton primary production using the peak in absorption coefficient at red wavelengths. The model is accurate to 8% in the Western English Channel and 22% in this region and the North Sea. By comparison, the accuracy of similar chl a based production models was >250%. The applicability of the method to autonomous optical sensors and remotely sensed aircraft data in both coastal and estuarine environments is discussed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors 
adrinord vito PML greenwich

VLIZ.

nausicaa

cemare logo NIOZ2 

Part-financed by ERDF through the Interreg IV A 2 Seas Programme “Investing in your Future”
INTERREG IVa 2Seas Project

 “The document reflects the author's views. The INTERREG IVA 2 Seas Programme Authorities are not liable for any use that may be made of the information contained therein.”

Website developed and maintained by VLIZ

Subscribe This email address is being protected from spambots. You need JavaScript enabled to view it. to receive the ISECA newsletter by email