On the Gedus Plockmia, Sebmidt. ad on some other Sponges of the Order Eentyomats. By Steart O. Rideex, M.A. F.L.S. With Descriptions at two adilitional new Species of Dirchopalum by Prof. P. Miartin Duncas, M.B. Lond., F.R.S. F.L.S., \&e.
[Rearl Jupe 2, 1S51.]
(PLares Embiti is RILC)

Pabe I.

Introductory Rentarks, and Descriptions of Spccies of Dirrbopalum. By S. O. Ridekt.
Almovgu the genus Plocamia was only recognized as a distinct type in the year 1870^{*}, it now proves to be one of the most widely distributed, as well as one of the most beautiful, of the now numerous genera of the interesting order to which it belongs. Hitherto only three species have been assigned to it, viz. :-
Ptocamia gymnazusa, Schmidt, Spong ati. Geb. p. 62, pl. iv. fig. 18. Cuba, 270 fathoms.
P. clopetaria, Schmisit, l.c. p. 63, pl. iv. fig. 17. Florida, 195 tathoms.
P. plena. Sollas, Ann. S Mag. N. H. (5) iv. p. 44, pl. vi. W. Arica, Lat. $15^{\circ} \mathrm{S}$. Depth?
In the present paper I have described \dagger a new species from New Zealand, and given annotations on others previously described under other generic names; the latter are known, one from Ireland, another from Ceglon, and another from Cape Sl. Vinceat.
No species has been described from the Arctic regions; but Ehrenterg (Zweite deutsche Nordpolarfahrt, pl. iv. fig.S) figures from the sea in the neighbourhood of either Spitzbergen or East Greenland a cylindrical spicule, entirely spined, arcuately curved, slightly enlarged at the ends, which probably belongs to an unknown species ailied to Dirrhopalum (Hymeraphia) microcionides, Carter. Elirenberg names the spicule Amphidiscus aneeps.
The distribution of the genus is thus now seen to extend from the Equatorial Atlantic to the South Pacific Ocenn, and into the Iudian Ocean and North Atlantic.

* 0. Scamidt, Spong, ath. Geb. p. 62.
t Note.-The terminology here adopted is, in general, that of Mr. Carter (Ann_ Kag. N. H. (4) swi. p. 1 \&e). Measurements of spicules are the merage maximuz mensurements; the diamuters given aro the greatest dianeters of the spicales.

The name, under the forn Plocamium, was long ago applied to a genus of seaweeds by J. P. Lamouroux ('Résumé de Phytographie, vol. i. 1829, p. 38), and adopted by Kützing and subsequent writers. This genus has therefore precedence of Plocania; and as a change is obviously necessary, I shall adopt throughout the rest of this paper the name Dirthopalun*, which Prof. P. M. Danean has suggested for the genus distinguished by Schmidt.

Two definitions have been given of the genus, the one by Shmit (l. c. suprà), the other (ostensibly a definition of the new group to which be assigns it, but practicaily, as being the conly senus included. a generic diagnosis) by Sollas (dou. \& Mag. Nat. Hist. (5) iv. p. 47). Both need modification in the present state of our knowledge. Thus Schmidt, assuming, on insuificient grounds, that the second of his two species would prove to be upright and branched in the adult state, attributed this character to the genus, "Schwimme mit incrustirender Basis und daraut sich crhebendem istigem Geilecht," which must give war, considering that no branching specimens of the species in question have yet been described. Sollas's definition includes the same hitherto unjustified charncter. An examination or stuiy of the descriptions of the different species now assigned to the penus shows that the diagnosis should stand at present:-
\therefore Echinouematous Sponges. Growth iucrusting or upright: in the former case tormed by a basal hamina of a dumbbellshaped spieale characteristic of the genus, from which spring tufts of acuate or slightly spinalate spicules radiating from ases formed by larger smooth acuntes or subspinulates, which are enclosed br ceratinous or pseudo-ceratinous tibre; when the growth is upright, the spicular tufts are set in whorls on fibres which are at right angles to the asis of the stem, branch, or frond, and which are similarly connected by horizuntal fibres coutaining the dumbell spicule. Flesi-spicules, if present, a tricurvate (German 'Bogen') or equianchorate ('Haken '), or both."
With regard to the distinctness of the dumbbell form of spicule, which Las justly been made a prominent character of the genus, it must be remembered that it differs but littie in the principles of its coostraction from another type (the "tibiella" of Carter, "eylindrical" or "subfusiformi-cylindrical" of Bowerbankl occurring in several weil-known sponges, as in the geaus
 shaped spicale.

Alebion, Gray ($=$ Malichondria Paftersoni, Migricans, pulchella, Bowerbank, \&c.), and Tedania, Gray (T nigtescens, Trugjana, digitata, Schmidt, Se.), Cribrello hoppitalis, Schmidt, add foreshadowed in the long eylindricals al Suberotelites mercator, Sdt., and Desmaciion cohmella, Bowerbank, in which a magnifyingpower of about 400 diameters reveals a slight intlation. The "tibiella" also occurs in //ymeniacidon armatura. Bowerbank, Suberites fuliginosus and in Ifilichondria infrequens, Carter, aod Desmacidon tiana, emphysema, physa, nnceps, Sulımidt. is to its relations to other inear spicules, see p. A55, where the systematic position of the genus is discussed.

The dumbbell spicule may, however, be distinguished from the "tibiella" by its having the maximum length not exceeding 20 of its own maximum diameters, and by its being alwass arcuately curred.

I propose to give notes on the species to be assigned to the genus, addiug, in the case of those which are now assigned to it for the first time. the reasons which have led me to adopt this course in their respective cases. Berimming with Schoidt's own xpecies, those on which the genus was based, I find it necessary to supplement his short descriptions by fuller details, taked from the microscopic preparations supplied by himself to the British Museum. It will be seen that the result of an examination of these preparations justifies, in part, Sollas's supposition (anc. \& Mag. N. H. (b) iv. p. 46) that Schmidt bad perbaps overlooked the fiexh-spicules of his species.

1. Dimbiopatom Gromazos. (Plate NXTX. figs. 1, 2.)

Plocamia gymanzusa, Schmidh, Spong. ati. Gel. p. 62, pl. iv. lig. 17 .
To the details given by Sclmint (l. c. should be abled the following:-
Bases of echinatiog, and main-fibre spicules connected by yellow ceratinous (?)* material. No spinulate spicules as stated by Schmidt.

Sheleton-spicules of three liods:-(1) Long, sleuder, swooth, slightly eurved acuate, tapering from the base to the sharp poiut; size $2 \cdot 13$ to $2 \cdot 43$ by 04434 millim. (2) Stout smooth acuate, tapering to a sharp point from within quarter of its length from the base, and slightly tapering to the base from the same

* As the slide appears to hare a tale cover, the lest of polarimaion (sce p. 481 ad int. and now is inupplicable here.
point; bent, but not so sharply as in Schmidt's figure $17 b$; size 099 by 06334 millim. (3) Dumbbell or double-headed, curred, eylindrical spicule; size 479 by -06334 millim.

Flesh-spicules of two kiads:-(1) Tricursate acerate, bowshaped, tapering gradually from centre to sharp points; sizo -085 by 003167 millim. (2) Equianchorate, bipalmate, the palms with squarely truncate proximal margins, shaft almost straight: length about 010 millim.

2. Dibrbophlom? clofetarium.

Plocamia clopetaria, Sehmidt, l. c. p. 63, pl. iv. 6g. 18.
Consisting of a basal lamina, in which the dumbbell spicules and a peculiar pegtop-like form ($($) are united by ceratinous material (polarizing light) and sarcode, and of spicular tults rising from this lamina, and consisting ach of a very large basally-spiucd ncuate (1) surronnder by a considerable number of small spicules (2) of a similar kind; the bases of the spicules in the tult are united by cerationos roaterial.
It is possible that the points of the peculiar form (4) feebly echinate the basal lamioa. In any case they canoot be varietics of the dumbbell spicule, as stated by Schmidt (l.c.), for no transition forms occur in the same preparation, and tbeir independent esistence in the fossil state is undoubted (see p. 486).

Shelcton-spicules of four forms:-(1) Large, curved acuate, the base finely tuberculate ; length (none were found entire) probably about $1 \cdot \$$ millim., thickness 057 millim. (2) Small, struight icuate, basally spined, slightly constricted just above base; size $\cdot 29$ by 01108 millim. (3) Dumbbell spicule, curved so as to form about a third part of a circle, coarsely tuberculate in approximately verticillate whorls on shaft, evenly so over the ends; both ends and centre of shaft inflated to the same diameter; size $\cdot 152$ millim. long, inflated ends and centre 05067 millim. thick. (4) Short, rapidly tapering acuate (" pegtop "-shaped spicule), coarsely tuberculate: one sixth of the apical end is almost smooth, becomes more rapidly narrow than the rest, and is traversed to its extremity by the central caual; size 1647 by 076 millisn.

Flesh-spicules.-N゙one were found after careful search in the mounting (which, however, is small) in the Museum collection, unless tricurvates are represented by a single specimod of a fine barely tricurvate acerate; size 108 by 003167 millin.

Obs. If the flesh-spicules should really be wanting, this species
should perhaps, looking to the peculiarity and antiquity of its characteristic spicule (1), be made the type of a distinat genus. I shall, for the present, allude to forms which reserble it as belonging to the "clopetarium section" of the genus Dirrhopethom.

3. Dirmiopilutif excmed.

Plocomia plena, Solles, Ane. G. Mag. N. H. (5) iv. p. 44, pls. vi. \& vii.
A member of the rypical section of the genus, i.e. of that part which is represented by D. gynnazon, for it bas it smoothshated dumbell spicule cocxisting with equianchorate and tricurvate Hesi-spicules. The short-spined acuate (plate vi. fig. \bar{z}, \&c.), with the coarse and backwardly-directed spiaes of its shatt and the somewhat tubercular spines of its base, may perhaps represent the pegtop-like forto of D. clopetarium, and thus the species may form one link ia the chain, it it ever existed, between that species and D. gfmazon. This may well be, for if D. clopetorium is ultimately tound, like D. gynnazon, to hawe the fleshspicules, the only important pointsthenseparating it from D.plenum wonld be the tuberculation of the shat of the dumbbell spicule, the tuberculate character ot the short-spiaed acerate, and possibly (and, if so, most important of all) the nun-echinating position of this spicule, which is disiactly an echiuating form in D. plenum.

The arragement of the sheleton of D. plenum is also typically Dirrhopaline, showing a vertical or primary fibre echinated by an acuate and subspinulate spicule, and a horizontal or secondary fibre or tract containing the dumbell torm. The yellow colour ascribed to the sarcode, and the firm consistency of tho skeleton, appear to me to indicate that there is a decided admixture of a cerationous clement, or of some amologous substance, in it, in spite of Mr. Sollats's conclusions derived from facts of some importance. Whatever, however, may be the case with this species, it certainly seems to occur in an undoubted Dirrho. palum, viz. D. masaarense, Carter, which I have examined, where its prominence is the most striking point about the tibre of the stem, when freshly mounted in balsam or when treated with strong alcohol. I am inclined to think that some forms of ceratinous material have a refractive index so near that of Cauada balsam as to be hardly distinguishable when mounted in that medium. In opposition to this riew, however, Sollas's experiments with glycerine jelly still romain. The firmuess of uvion of the various spicules in this Echinonematous genus seems to demand some
more powerful uniting agent than mero sareode: sucb a material is sometimes to be distinctly seen, and when it is found to polarize light may perhaps be still held to be keratose; where it does not, it may be termed pseudokeratose*. Tbe tough, dark, keratose-like substance of the stem of D. manaarense exbibits decided polariag effects, but the similar matter in D. novizelanicum dues not.

The following must be added to the genus :
4. Dirabopactar corycetir. (Plate XXIX. Gigs, 3-7.)

Jsorlictya coniacea, Bowerbank, Mon. Brit. Spong. iii. p. 298, pl. lywi. figs. $\overline{-1 \%}$.
It was obtained in Strangford Lough, Ireland. The original deseription is ruisleading, so I qive the tollowing supplementary account of the structure, made from Dr. Bowerbank's onn preparations.

Skelcton.-Primary lines composed of (1) long, smooth auate and (2) shorter spined acuates, the latter chietly echinating the fibre by the lateral outward projection oi their points at a pery acute angle to it. Secondary lincs, one spicule in length, composed of from one to three dumbbell-sbaped spicules (3) at right angles to the primaries. Dermal sarode grandar, rery dark; subjacent sarcode dark; a yellowish material woites the prinary and secondary lices, but it does not polarize light.

Skeleton-xpicules of three hinds:-(1) Larre smooth acuates, slightly intlated, coustricted above base, thickest imroedistely above this constriction; size pariable, vix. 317 to $4+3-4$ by 01268 to $01+$ millim. (3) Smaler acuates thickly spined at base, Fery sparsely over the whole of the shaft; size 15 S by 0079 milim. (3) Cylindrical dumbbell-staped spicule; euds slightly inflated and well spined; the shaft less strongly spined (a conversoimpression is convered by fg. 12 of Mon. Brit. Spong. iii. pl. lanir.); size 115 by 0079 willim.

Flesh-spicules of two linds:-(1) Tricurvate acerate, much more slenuler in proportion to its length than as given in Dr. Bowerbank's figure (l. c. fig. 9), and the ends carry a few minate

* I bave experimeated with the polariscope in order to discover, if posible, some real difference in optical properties between ordinary sarcode and kentose in the living matter of Sponges. The results are remarkable: thus the borny matuer, mounted in balsam, of Tuba (a Chalinid), of Whizochaina olesteea, Hircinia Lingua, and Euspongie virgultosa polarizes light, while that of Chilina finitima does not; the sarcode was never found to polarize. Quekets (' Pratical Treatise on the use of the Microscope,' edit. i. p. 418) ranks sponge-fibremith hoof, bern, and other ceratimous bodies is baving this property of polarizing lght.
spines; size 19 by -003167 millim. (2) Equiaachorate ; it bas a web connecting the two lateral teeth all but the points; it thus approaches the form called " navicular" by Mr. Carter; it measures 0158 millim. in length. Considerable numbers, grouped and single. occur in the mounted specimen of the dermis.

5. Ditrifopalum microclomides.

Hymeraphia microcionides, Carter, Ann. \& Mag. N. H. (4) xvii. p. 390.

I am iadebted to Mr. Carter himself for pointing out the resemblanee which this species bears to the genus Dirrhopalum. Its clescription, together with sketches which Mr. Oarter has bindly furnished me, show that its structure is essentially the same is that of the other incrusting species which I have referred to the genus. A basal lamina contains the (1) doubly-beaded cylin-drical-spined spicules lying horizontally, also the equianchorate fesh-spicule; from the lawina project upwards (2) the long, smooth, and (3) the small, spined, and bnsally contracted aeuate side by side. It does not appear that the smaller spined acuates are grouped in whorls round the larger ones, as in D. clopecorimon. The colour is given as yellow, possibly owiug to the presence of a ceratinous uniting substance, as in other Dirrhopala. The ends of the cyliadrical spicule are slightly intlated, as I leara from Mr. Carter, and, as stated in his description, are more abundantly spined than the shaft. The locality is near Cape St. Vincent, the depth 374 frthoms. It belongs to the gymnawon section of the genus, but differs from the typical species, as at present knomo, in the absence of a tricurvate fesh-spicule.

6. Dirmopalua mandarense.

Dictyocylindrus manaareasis, Carter, Ann. \&. Wog. N. W. (5) Fi. p. 37, pl. iv. fig. 1.
Mr. Carter has given we all the belp which be possibly could with regard to its characters. An examination of mounted sections and fragments of a portion of the stern of the type specimen (for which I am indebted to Mr. Higgin, of the Liverpool Duseum) shows that, as I bad been led to suspect, the structure is esseatially Dirrhopaline.

Skeleton-In the stem a very horoy primary fibre (probably less horay in the branches), ruaning towards the surfice, contains from one to three scries of stout acuates (1), the points of the outermost of which project through the dermis, and it is sparingly
echinated by small acuates. A horny secondary fibre, at approximaiely right angles to them, connects the primary fibres and contains the dumbells, which ajso occur sparingly in the primaries.

The dermal skelelon is formed of a reticulation of the dumbbell epicules lying generally in twos side by side, making angular meslies, their ends united by dark material polarizing light.

Of the skeletom-spicules:-(1) the smooth main acuate tapers slightly to its base, but otherwise agrees with Mr. Carter's description; size 475 by 0206 millim. (9) Short echinating acuate, smooth; is bent abruptly, like a scimitar, at about one third of its length from the sharp point; size 114 by $\cdot 095$ millim. (3) Fine acuate, smooth, slightly iuflated basally, scattered over bbres and in dermis, probably young form of (1) ; size about 3167 by -00633t millim. (4) Durnbbeli, with smooth curved sbaft aud distinet heads, very minutely wicrotuberculate rather than microspined (spines made too erideol in Mr. Carter's figure for the scale on which it is dramy); heads of same diameter as middle of shaft ; size 234 by 019 millim.

Flesh-spicules.-(1) Tricurvate, as giren by Mr. Carter; size -07 by 0025 millim. (2) Equianchorate, navicular ; shat nearly straight; prosimul edges of palms slighty bidentate: Jength -019 milim.
Obs. I had oceasion to examiae the specimen to settle a doubt as to the identity of the species with D. nooizelanicum, sp. n. (infio), aud so think it worth while giving these measurements and notes, which supplement and slightly correct Mr. Carter's careful description. It differs essentially from D. novizelnniczow in the smoother and raoce finisbed condition of the dnobbell spicule, in the proportions and shape of the sualler acuate, and in differences in the measurements of most of the spicules. On the whole, in spite of its locality (Gult of Mauaar, Ceylon), it is not far remored in structure from the Floridan species D. gywnazon.
7. Diermopalem novizelanicuy, sp. n. (Pi.XXIX. figs.8-16.)

Branching cylindrical stems of constant diameter, viz. about 3 millim., haring a delicate linear fucus for their axis; the branches sometimes anastomose. Apparently no rootiog base: all extremities, both upper and lower, consisting of rounded points. Surlace velvety, set with very slightly projectivg ends of spicules. Texture elastic, slightly compressible. Colour ia spirit dull umber.brown.

Fents. NoDe apparent.

Main skeleton.-Spiculo-fibres containing a large proportion of pseudo-keratose; the primary fibres at right angles to surface, contaiuing a siagle row of large, smooth acuate spicules (1), strrounded irregularly by two or three rows of shorter acuates (${ }^{2}$) , slightly spined basally, whose points project to the sides; a distinct margin of ceratinous material lies outside most of the spicules. The secondary fibres are numerous, irregular, formed of psendo-ceratinous material, surrounding and showing distinct margins outside the dumbbell spicules (3), which occur, one or two together, in each fibre; secondary fibres abont one spicule in leugth. Fine spinulate or supra-basally spinulate spicules (4) (probably young forms) scaitered over primary fibres.

Dermal skeleton indefinite; consists of a reticulation of the dumbell spicule, with the spinulates (4) scattered through it, perforated at interyals by the terminal long acuates (1) of the primary tibres.

Psendo-ceratinous material dense, pale amber-yellow.
Sarcole very slightly granular, of almost the same colour.
Sheleton-spicules.-(1) Strong, sroooth, slightly curved acuate, tapering to rounded base from a point at about 3 diameters from it and to sharp point from same place; size 5 by 025 . (2) Smaller acuate, slightly curyed, slightly constricted immediately above and very slightly microspined upon the base, and tapering to sharp point from just above the constriction; size 2724 by 0174 . (3) Dumbbell spicuies; shaft decidedly curved, and generally very sparsely microspined; exds well spined, separated from shafl by slight constriction; of about same diameter as middle of shatt ; size 177 by 0158 milim.

Flesh-spicutes.-(4) Long, straight, spinulate spicnles, or with head just above base: rarious in size, viz. 19 by 0021 to 86 by .00475 milim. Probably young forms of skeleton-spicules. (5) Fine, decidedly tricurrate acuate, bow-shaped, tapering to fine points from middle, smooth; size 06334 by 0021 . (6) Equianchorates, bipalmate, anvicular ; shaft almost straight; length - 019 millim.

Hab. Bay of Islands, north-eastern extremity of New Zealand (Antarctic Expedition). Depth?
Examined in spirit and monted in balsam from spirit.
Obs. One chiet mass, 45 milim. long, with about eight braches given off at sharp angles from the single sten, and tbree or four fragments of similar character, all utore or less growing over the
fucus above meationed, occur in the Museum collection. It is doubtful whether they were naturally upright in growth, and whether they ever were rooted. The nearest described ally is apparently D. gymnazon, but the generally smaller size of the spicules distinguishes it; it is also near D. manaarense from Ceylon (b. supura).

Systematic position of Dirrhopalum.
Prof Sollas has already mate the geous the type and sole occupaot of a new "group" paned Plocaylayins. I am inclided to think that in so doing he has exaggerated the distinctness of the genus, and that Clathria, Schmidt (as based on C. coralloides, Schmidt, \&c.), might with advantage be included in the group. The spiculation of the type species of that genus, as shoma by the mounting in the British Museum, much resembles that of Diryhopalum, consisting of a short cylindrical, two sizes of acuates (one of which is contracted at the base), a fine spinulate, and a navicular equianchorate; it has a rell-marked horny fibre of distinctly echinonematous structure. More 1 cannot add from Schmidt's description; but in support of my view I would bring forward Clathria rectangulosa, Schmidt, and the species which, in my riew, should be termed Clathria Beani, viz. Isodictya Beaniz, Bowerbank, Mou. Brit. Spong. ii. p. 334, iii. pl. kriii. Gg. 1-6.;

Clathria rectangulosa has suall acuate spicules tapering to their base, smooth cylindricals, stbspinulate acuates, delicate equianchorates and tricurvates.
The British C. Beani, Bowerbank, agrees in the wost extraordinary manner with Dirrhopalum coriaceum io the structure of its skeleton, and also in almost ererg particular of the forms and distribution of its spicules. It has a primary fibre composed of (1) large smooth acuate, surrounded by a group of (2) smaller ones, which are basally constricted; and a secondary fibre composed of (3) stort, thick, entirely spined acuates, basally ioflated, of almost the same diameter from the base to within a diameter of the point wioch abruptly terminates it. There are also a fine tricurvate and an equianchorate flesh-spicule. The spined acuate or spinulate (3) differs from the correspondingly placed dumbbell forw of D. coriacenm by the addition of a point to one end, and by the absence, as a rule, of a well-marked hoad or swelling at the distal end; this end, however, is frequently marked off from the rest of the shaft br a slight wcek, as if to form an incipient head,
and the point is sometirees so reduced in dimensions as to suggest that it might be readily lost altogether；in one instance it wis found replacerl by a blunted，but alonost smootb extremity；thus the only serious difference betseen these species lics in the cbaracter of the pointed end of this spicule．It seems to rue tbat We hare here the very point of fransition from Clathria to Dir． rhopalums，and for these reasons I believe in a close affinity between the two genera．And this fact is the more interesting，as Prof． Scbmidt has called atteation to the British Sponge－fauna as con－ sisting of an aggregation of indistinctly differentiated forms．

Sollas（ano．\＆Mag．N．H．（5）iv．P．49）found gradatious be－ tween the dumbleell spicule of D．plenten and the spined and basally inflated acuate of the skeletoo．RIay his transitional forms not show rather that the dumbbell spicule of the secondary fibre wns originally like that of D．Bomi，a spined spinolate or acuate， which is now ooly represented by these occisional reversions to the primitive type？

Existence of Dirrhopalum in the Fossil State．

This fact appears to be indicated with some probability by the Gigure given by Mr．Carter（Ana．\＆Mag．N．H．（4）rii．p．133， pl．ix．fig．50）of a spicule from the UPper Greensand of KIaldon Hill，near Exeter，which corresponds in size to the average dimen－ sious of the dumbbell spicules of Dirrhopalum．It bas a smooth shaft，and smooth large extremities sharply distinguisbed from the shaft．
Prof．Sollas（op．eit．（5）vi．p．392，pl．xx．fig．46）figures and describes，as the basis of a provisional dee genus and species called Rhopaloconus tuberculatus，a large subcouical spicule rounded at each end，and covered with stout tubercles，just such as those of the two distinctive spicules of D．clopetarium，Schmidt． Its size，howerer，is 95 by $\cdot 94$ millim．It may perbaps represent an ancient dirergeace from the spined acuate form in the direction of a simple cyliader．
A．K．Zittel，in his memoir on the geaus Celoptychium（Abh． matt－－phys．Kl．bayer．Akad．Wiss．xii．pt．iii．p．1），figures， among a large number of spicules obtained from fossil Sponges of that genus，some（viz．pl iv．figs．20，51，65）which seera likely to have belonged to species of Dirrhopalum of the clopetarium section；they belong to the Upper Chalk．His fig．17，a very remarkable form，with slight smooth shaft and large strongly
spined ends，wight bare been taken for an estreme form of dumb－ bell spicule but for Carter＇s observations，described and supported by Sollas（Ann．\＆Mag．N．H．（5）vi．p．394），which tend to show it to be merely a foraminifer－cast．

Further，Mr．G．J．Finde，in his inaugural dissertation en－ titled＇Fossil Spange－Spicules from the Dpper Cbalk＇Mumich， 18SO），figures at pl．i．figs． 19,20 ，two spicules of about the same contour as the＂pegtop＂form of D．elopetarium，but without tubercles，and of about three times the size of that spicule．The tubercles may have been lost by absorption，for the central capals are greatjy enlarged．Fig． 22 of his paper represents a similar but slightly smaller spicule，provided，how－ ever，with tubereles tending，is in D ．clopstariwm，to disappear towards the point，which is broken of．Mr．Hinde refers to D ． （Plocamia）gymnazon and clopetavium among other Sponges in couresinn with some accompanyiug large acuated（p．21，pl．i． figs．10－15）；but they can have，taken alone，no necessary con－ nexion with those species，although occurring in conjunction witb the conical types above mentioned，they seem to show very conclusively the existence of a Dirthopalum of the clopetarium section in the seas of the Chalk period．
A．Rutot（Annales Soc．Malac，Belg．ix．pl．iii．），nt fig． 7 fgures a dumblell spicule，at fig． 6 an elongated smoorh pegtop form， and at fig． $39 a$ a cylindrical，from the＂Gress＂of the lower and mildle Brussels strata（Eoceoe）．
We have，then，for the distribution of the genus in time as at present lnown：－

	苞	埐	$\begin{aligned} & \text { 总 } \\ & \text { 总 } \\ & \text { 总 } \\ & \stackrel{y}{3} \end{aligned}$	Lower Ohalk.	
D．gymnason group ．．．．．．．．．．．	＊	＊	\ldots	\cdots	＊
D．clopetarixm group．．．．．．．．．．．		＊？	＊	\ldots	\ldots

Part II.

Descripions of tho addilional new Species of Dirrhopalum. By Prof. P. Marevr Doxess.
During an examination of some debris which had been brought up by the dredge and tangles from the North atlantic by H.M.S. 'Porcupinc,' and from off the south-west coast of Spain in association with corals, I fomd an Echinus-spine, and also a darkly stained calice of a coral. Both were more or less covered with bristly sponges of an incrusting habit, adod with very remarkably shaped, bent, cylindrical, terminally-inflated spicula forming Whe hasis. A careful examination proved that they must be associated with Oscar Schmidt's genus Plocamia.
The first species to be described carue up with a mass of the coral Amphihelia ramea, Sars, from the Olobigerina-ooze in deep water from the North Atlantic; it corered in Echinus-spine.
The spine (PJ. XXIX. Gig. 18), about two thirds of an inch in lengih, has been fractured; but what remaios is covered with a very dclicate incrustation of a very spiculiferous siliceous sponge. This is silvery white in colour, and shows neither oscules nor pores; but a considerable number of regular minute elepations are visible, out of the centre of each of which projects a large glassy spiculum. A low magnilfing-power shows that the elerations are produced by whorls of spicula which radiate nearly at rigbt angles from one spot around each large glassy spicole. The blunt ends of the radiating spicula are towards and in contact with the asial spicule; and their sbarp terminations describe a circle, the periphery of which tonches those of the neighbouring whorls around other large spicula.

The whorls have the spicula close together near the grent or axial spicula, but they permit the sharp distal eads to be slightly separated. A sarcode fills up and covers all (Pl. XXIX. figs. 18 \& 30).
Underneath tbis layer of whorled spicula there is a close layer of eurved, cylindrical, globose-beaded, entirely-spined spicula, which rests on the Echinus-spine. The large glasgy axial spicula start from this layer and project at right angles to it (PI. XXIX. fig. 30).
There are several linds of spicula, which may be considered under the beads of those of the outer skeleton, the body, and the derm.

Outer Skeleton-LLarge and smaller aiteduato-acuates basally spined.

Subfusiform acuates with oroid basal inflations, minutely spinulate.

Body. - Curved, cylindrico-globose-headed, entirely-spined spicula.

Derm.-Cyliadrical, eylindrical laterally spined, linear eylindrical minute, and minute fusiform spicula.

One large bibanate spiculum is amongst a whorl of spicula; but as it is in company with a coccolith, it is probably a foreign body.

Description of the Spicula.-Tbe large skeleton-spicula, axial to the mhorls, few in number, protrude at right augles to the mass of the sponge and extend beyond any of the others, forming a regular series of nearly equidistant sharp projections, glassy in appearance. They are slightly beat, and gradually taper from their rounded base (which is placed amongst the cylindrical curved and bossed spicula of the body) to their apex (which becomes sharp ratuer suddeuly). The rounded bead is minutely and scantily spinulate and is about $\frac{1}{305}$ inch in diameter, and the whole spicule is $\frac{1}{20}$ inch long (PI. XXIX. figs. 28 \& 30). Sometimes very minute spinules exist for some distance up the spicule, which, moreover, has a minute axial canal. Some others (attenuato-acuates), smaller than these, but baving the same shape and direction, exist, and theyare evidently correspondingly immature spicula.

The whorled spieula (Pl. XXIX. figs. 24-27) are very slender, straight, and bave a basal indation of the ovispinulate type. This oriform enlargement is excessively minutely spinulate, and joins the suaftat a constricted neck. The shaft is fusiform, but the swelling is in the basal third of the spicule; thence the spicule becomes slenderer, and ends rather suddenly by becoming sharp-pointed. In some instances there are a few very minute point-like spines on the shaft near the neck. Some basal iuflations are very oroid, others are more globular; but in every instance the exteral or termial portion is narrower than that just within and nearer the neck. The usual length of these spicula is no inch, nad the breadth suve inch. The svelling of the shaft and the constricted neck and small-spined oroid base are very distinctive. They are very numerous, and are placed in one or two whorled layers; the bases are towards the
hns. Jodrn.-Zoology, Fol. Xy.
great atcennato-acuates, and the shaftes radiate at nearly right angles. The oxiform bases are in contact at their sides with their fellows, and at their ends with the great spine, which they surround ($\mathrm{Cl} . \mathrm{XXIX}$. fig. 30), The axial enal is not to be seen.

The body-spicula in contact with the spine of the Echinus are short, curred, cylindrical, having globose or subhemispherical ends, sliphty constricted where they join the body of the spicule. Ther are entirely bluntly spined. The spinulation is small and close on the rounded embs; but there is less of it on the constricted necks, and it is wider apart, stouter, and longer on the bodr. The boss-shaped ends are sider than the body (PI. XXLX. fig. 19). Usuady a laree axial canal is visible in these spiculs, and it extends far into the heads of the elongated carved dumb-bellas. These spiunta form one or two layers, one above the other; they are placed elose together, without order as regards their direction; but there is some diversily in their size and shape, owing wainly to age.

A typical spiculum of this lind has a perfectly cylindrical body, not more swollen out in any part than elsewhere; the cyliuder, slightly bent, is narrower than the termiual bosses, aud is more than double the lengtio of one of them.

The blunt spimulation surcounding the mhole surface is irregular, distant, and the tops of the projections, which differ in length, are blunt.

Farieties.-Spicula of the same length as the type, but lasing the boss more spherical and the constriction of the neck more decided, the spinules being scanty on the neck and harger than usual on the body. Spicula with one boss perfect and the other less so or smaller.

Jo all, the spiunlation of the boss-like ends is mirute and in a series of concentric circles; but there is no order in that of the curred stems, where it is larger.

The diameter of these body-spicula is Two inch, and the length $\frac{1}{2 \pi}$ inch.

The sarcode covered the radiating whorled spicala and the spaces between them; it closed in the spaces or ioterstices between the numerous whorls, and it extended further out, to the tops of the long skeletal spicula. The spicula of the derna are few in uumber; and some are apparently quite superficial. Three kinds are to be uoticed; but oue appears to be a young form. One is a minute cylindical rod; anotber is of the same
diameter, but is four or five lines longer (Pl. XXIX. fig. 29). The third kind is a very minute fusiform spicule, sharper at one end than at the other.

Amongst the whorls of spicula are some differing in shape and dimensions from the majority. They are placed between the radiating skeletal elements, and are free in the sarcode which unites the whole. They are much shorter and sleaderer then the others, and are cyliadrical and very slightly curved at one end. Some of them are about one third the dinmeter of the whorled spicula, and others are less than one sixth, appearing to be almost linear under a quarter-ol-in-inch object-glass (PI. XXIX. Ggs. 22, 23). Larger thau these, but still not equalling in breadth the common whorled spicula, are some cylindricul spicules with slightly bent ends, the shait being very sparingly aud minutely spinulate, but not the end (Pl. XXIX, fig. 21). Larger eylindrical spicula are rare ; they are straight, and miautely and sparsely spined, and oaly on the stem; their dianeter is greater than that of the whorled series, and is about equal to that of the curved eylindrical body-spicula (Pl. XXIX. (ig. 20).

The second species was found on the septuen of a dead rangn-nese-covered coral, uredged up from 1095 fathoms, the locality being of the coast of Spain, No. 17 uldedging, N. lat. $39^{\circ} 30^{\prime}$, W. Ione $5^{\circ}: 39^{\circ}$.

The sponge covers a large septum, is of a dirty-white colour, and is hirsute, with separate long acuates, which arise as it were out of a stubble of smaller spicula, grouped so as to radiate upwards and outwards, trom near the base ot the long spicula. Each long spiculum has thus a group of shorter ones around it, assuming the direction just mentioned. On separating these structural elements from the cora, a layer of large, curved, or bent, or nearly straight, cylindrical spicula, with one well-dereloped globose head at least, becones visible; they rest on a nembranous-looking derm, which is closely applied to the dark-coloured coral-surface. No oscules or pores can be distinguished, and there is no keratose fibre.

The curved body-spicula (Pl. XXIX, fig. 34) are large, and ofteu Tō inch in length; they are, in some instances, symmetrically curved, and have a rounded globose termination at either end, whieh is joined to the body by a very slight constriction. There is a small atod elose spinulation on the ends, and a larger and
scantier on the body. A second form of body-spicule has a less lecided currature and but one globose end, the other being a mere rounding of the cylindrical body. The spinulation resembles that of the Arst type (Pl. XXIX. fig. 35). A third is longer than the others, is bent more or less like a boomerang, bas a globose process at one end, and a narrow, cylindrical, and rounded termication at the other (Pl. XXIX. Gig. 36). The spinulation is scanty on the body. There are intermediate shapes, and on some there is a large spinule, in particular, on the cylindrical body (Pi. XXIX. fig. 37). These spicula are placed without order on the surface of the coral in one layer, and are not very close. Length

The long acuates, straight or sometiones slightly bent, project well beyond the other spicula, and were covered with sarcode. Their bases, rounded of and very minutely spinulate, are as thick as one of the cursed spicula just noticed; they slope gradually to a sharp point, and their axial caaal is very manifest near the base (PI. XXIX. Ags 32, 33). The radiating spicula are very numerous and are arranged in buadles, the fiaiatly enormispinulate beads of the spicula being close together and surrounding the stout long and large acuates. The shafts of the spicula are slightly swollen in the irst third, so that they are more or less fusiform, and the point suddenly becomes sharp, like a straigbt sword. The shafts project upwards and slightly outwards, and their points form a circle around the acuate spicule and tolerably close to it (PI. XXLX . fg. 31). The heads of the spicula (lexgth Tive to $\frac{1}{\text { J }}$ inch) are remarkable in shape; there is a cylindrical sweiling with a short neck, and then there is a projecting eud, which is longer than broad, cylindrical, and rounded. An excessively delicate and scanty spinulation is seen on the cylindrical part and also on the rounded end (PI. XXLX. fig. 39). There are no other spicula. The sarcodic structures enveloped the whole, and were stretched out to the tops of the long acuates; there was a definite basal mermbrane.
It is evident that this form is closely allied to the first species I bave described, from which it is distinguished by the shape of the deeply-seated spicula and the direction of the enormispinulates. It is possible that these distinctions may be racial; but. under existing circumatances, it is best to separate the forms specifically.
The first species I have named Dirrhopalum Carteri, and the second Dirrhopalum hystrix.

> Part III.
> On some Sponges of the Order Echinonemala. By S. O. Rideet.

Tbe concluding part of this paper deals with na hitherto unrecognized generic type, which may be assigned to the

Order ECHINONEMATA, Carter.
Family Axinafetod, Carter.
Group Moltrformin, Carter.

Echinodictyum", a. gen.-Spooge ezect; cup-shaped or ramose. Skeleton formed of spicules united into distinct coherent fibres. From the fibre project at right angles short strongly-spined cylindrical spicules tapering from their attached ends. Spicules of fibre smooth, acerate (doubly pointerl). No special Hest-spicules.

T'ype Spongia bilamelkata, Lamarck, Ano. Mus. Hist. Nat. xx. p. 434.
Obs. The nearest affinities of this genus appear to be with Dictyocylindrus, Bowerback, s. str., i.e. with those species which have a more or less distinct firmer axis and echinated fibre, combiued with a spiculation of smooth acuates and acerates in the fibre, smooth scuates and spined cyliadricals, or blunt acuates echinating it, and ao minute flesh-spicules (e.g. Dictyocylindrus hospidus, Bowk., Arinella damicornis, Scamidt, D. Pykei and laciniatus, Carter). It differs from Dictyocylindrus maiviy in the abseace of the smooth acuntes, usually so abuadaut in that geous, and in the much greater defuiteness of the fibre. It perhaps connects Dictyocyliadrus by these cbaracters with the Ectyonida (Carter).

As the typical species has never been described from a microscopic examination or figured, and as such fine specimens are available, I append a full description with figures.

Spongia bilamellata, Lamanck, Ann. Mus. Hist. Nat. xa, p. 434; Anim s. Fert. (2) ii. p. 556.
Sponge erect, hubinate, expanded, or compressed; the margin of the cup is prolonged in adult specimens into one or more broad expansions; a sbort pedicel. Internal surface of cup smooth (occasionally undulating), bearing the numerous scattered vents. Exteraal surface exfoliating so as to form obscure longitudinal ridges, which, together with the intermediate spaces, grow out into larger or smaller rounded excrescences, composed of reticulate fibrous tissue. Texture of inner surface dense, that of outer loose; in dry state firm, subelastic. Colour in dry state pale brown.

- exivos, a sea-urchin or hedgehog, and dixivoyr, a not.

Fents numerous, apparently only ou inner surface ot cup; round; diameter 1 to 3 min.

Mrin Skeleton-Arangement ratber irregula:. The stout, somewhat flexuous primary fibres run approxinately at right angles to the surface; they are counected, usually at short (2 to $\cdot 43 \mathrm{~mm}$.) intervals, by secondary fores, which run at acgles waryiug from 45 to 90°, with the primaries, and are often curved. Pseudocerations (antea, p. 131) material pale yellowish browa iv upper part of sponge, extending beyond the cargins of the sheleton-spicules ; does not polarize light. Primary fibres ending on surtace by amastomosis with a dermal set of secoudaries, or projecting beyoud it to a distance not exceediog \pm man. on the iuner, $4 \cdot 5$ mun. on the unter surface of spouge. Both primary and secondary fibres filled with paralel smooth acuates, apparently of two sizes; both generally s to 15 spicules broad, adod both echigated at short intervals by single-spined eylindrical spicules, which project at right angles to the surface of the fibre, and are attached by their extreme base.
Dermis. - Fibres rery tortuous, stout, formiug meshes of very rarious size and generally rounded outline: echinated by large numbers of the cylindrical spicule.
Sarcode.-In dried state transparent yellowish brown; that of the surface, however, almost covered by minute patches of a gronnlar reddish pigment.

Skeleton-spicules of two kinds:-(1) Smooth acerate pointed at both ends), more or less bent, rather sbarply, tapering to sharp points from within 3 diameters of the euds; size from 26 to 32 by 01.4 now. occurriog in all the fibres, and occasionally free in sarcode near fibre. (2) As no. 1 , but size from 19 to $\cdot 25$ by 011 to 0127 mra ; form the greater part of the fibre.

Echinating spicule.-Cylindrical, blunt at boti ends, tapering from attached ead, which is about twice the diameter of freo eud; covered with spines, especially thick!y at ends; spines prominent, sharp, the basal ones projecting at right angles to the axis of spicule, the remainder curved towards base; size 1 to $\cdot 12$ mo. by 0095 to 012 mm .

Hab. "Southeru Ocean" (Peron \& Lesucur ap. Lamarok); pearl-oyster bed on N. W. coast of Australia, and W. Australia? (Brit. Mus. coll.).

Examined. Dry aod in balsam.
Obs. Two specinoes of this specios are linown- the type specimen io the Paris BLuseum (cf. Lanarcli, loc, cal.), nud a fine specimeu receully purchascil lio the British- Maseum collection.

The latter is a remarkibly fiue and atmetive spectmen; has
the stape of corals of the genus Turbinaria, viz, an open enp; its short pedicel measures about $2 \frac{1}{4}$ inches in maximum diameter.

Maximum diameter of cup about 12 jaches, heigat 7 inches; thickness of wall near odge $\frac{1}{7}$ to $\frac{1}{2}$ iuch (6 to 12 plm.). It is attached to the upper valve of a pearl-oyster (Avicula margirififera), which wets evidently alive when taken from the sea, in spite of the presence of its bulky messmate.

The oceurreace of a third specimen is certified by a slide of spicules in the Museum collection, which, as it was presented by Mr. G. Cifton, to whom the Bowerbankian collection of foreign Sponges owes an immense series of very five specimens from Fremantle, S.W. Australia, probably was made from a sponge obtained in that region.

As the Museum bas been fortunate enough to obtain (owing to the liberality of M. E. Perrier of the Museum at the Jardin des Plantes, Paris) a fragment of Lamarck's original type specimen, I am enabled to give a comparative Table of some of the. chief characters of these three specimens, which will afford some iden of the range of variation within the species.

Echinodictyum bilamellatum.	Type, " Southern Ocean."	B.M. spee, N.F. Austratia.	Mr. Clidon's spec, W. Australia?
External form	Infundibularatbase, edges proloriged into two lamellas. Outer surface rouglened ("scrobiculated").	Infundibular, one side prolonged as an everted lip. Outer surface roughened (" scrobiculated").	?
Vents	On inner surface 1 or more mm. in diam.	On inner surfacs 1 to 3 mm . in diam.	$?$
Colour in dry state:	Pake yellowishbrown.	Pale yellowish brown.	?
Primary skeletonfibre (inner surface of sponge):	6 to 10 spicules thick.	8 to 15 spicules	$?$
Secondar? skeletonfibre:	6 to 10 spicules thick.	8 to 15 spicules thick.	?
Length of primary fibre between the secondarics (inner surface of sponge)	21 to 28 mma .		?
Large smooth acerate spicule :	306 by 014 num.	Shape as in type. 304 by .014 mm .	Sbape as in type. 3167 by .014 mm.
Smaller smooth acerate:	19 by 01268 rmm .	Rachermoreabrupt- ly pointed that in type 2216 by .011 mm .	Rathermoreabruptly pointed than in type. 2534 by .01268 mm .
Spined cylindrical..	Spines least numerous just above buse, 108 by 0095 ram.	Shape dea as in type. 114 by 0095 mm .	Spines coarser and equally distributed all orer. • 108 by -01268 mm .

Echinodictidu Nerfosom. (Plate XXVIII. figs. 7-10.)
Spongia nervosa, Lamanck ?, Amn. Mus. Hist. Nat. Paris, xx. p. 450 : Anim. s. Vert. (2) ii. p. 567.
Spongia cancellata, Lamarck?, Anr. Mus. Hist, Nai. Paris, xx. p. 456; Amim. s. Yert. (2) ii. p. 5 /1.
Sponge branched in one plane from almost obsolete stem; Uranches long, anastomosing at pointa, which are generally adjacent in the various branches; near base irregularly cylindrical, becoming flattened bigber up; apices digitiform, adjacent edges oarrow, knile-like. Surface normally covered by dense white incrustation; minutely reticulate on back, and minately hispid in front of frond when this is removed. Texture hardish; it is slightly elastic, but easily broken. Colour in dried state pale yellowish white.

Pents numerous, in one side ouly of frood (the front), scattered, numerous, 1 to 2 mm in diameter, indistinctly defined. Pores?

Irain skeleton composed of spiculo-fibre, in which the smooth acerate spicules alwost entirely conceal the ceratinous uniting substance; primary fibres straight, at right angles to surface, from 3 to 0 spicules in diameter; secondary fibres shori, about I spicule long aod 2 to 3 broad, connecting primaries at various angles; both sets of fibres sparsely echinated by single, short, entirelyspined cylindrical spicules.

Dermal skelaton consisting of broad, icregularly anastomosing tracis of smooth acuate spicules slightly echinated by spined spicules.

Sarcode transparent. Ceratinous material amber-yellow in basal skeleton, almost colourless in bramehes; polarizes light.
Skeleton-spicutes of one kind:-Smooth stout acerate, bent at a slight angle, and tapering to sharp points from about the centre (as oceasional variations they may have one or both ends rounded of) ; size 39 (occasionally -46) by 03167 (occasionally -038) mm.

Echinating spicule short, straight, spined, cylindrical, tapering slightly from rounded base (which is slightly intlated in some cases) to distal rounded end; spines abundant, strong, and recurFate over distal half, slighter and curved towards apex on base. very slight or absent on part immediately above the base; size -114 by 0174 mm .

Hab. S.E. coast of Arabia (Carter) (Lidian Ocean ?, Lamarch). Examined. Dry and roounted in balsam.
Obs. The dry specimen in the Bowerbank collection is 9 inches high, and about the same jo breadth at the broadest part.

Another species of this genus is known to me, to which I bope to refer on some future occasion.

DESCRIPTIOY OF THE PLATES.

Peare XXVILI.

Figs. 1-6. Exhinodictyum bilamellaitum. 1. Portion of surface of inner aspect of sponge, from type in Paris Museum, $\times 38$ dian. 2. External part of section perpendicalar to inner (upper) surface of cup, $\times 38$ diam. (from the British-3Iuseum specimen from N.W. Austraiia). $3 \& 4$. Skeleton acerato spicules, $\times 68$ diara, from type specimen. 5. Spined cylindrical echinating spicule, $\times 370$ diam., from type specimen. 6. The British-Museum sponge (E bilamellatum) from N.W. Australia, reduced to one third nat. size.
7-10. Echinodictyum nervosum. 7. Part of surface, $\times 50$ diam. \& Part of section perpendicular to brancb, $\times 50$ diam. 9 . Skeleton acernto spicule, \times is diam. 10. Spined cylindrical spicule, $\times 370$ diam.

Plate XXIX.

Figs, 1 \& e. Dirrhopahm gymanazon. 1. Tricurvate flesh-spicule, $\times 370$ diam. 2. Equiauchorate llesh-spicule, $\times 370$ diam,
3-1. Dirrhopahum coriaceum. 3. Equiauchorate flesh-spicule, $\times 370$ diam. 4. Dumbell spicule, $\times 370$ diam. 5 . Tricurvate flesh-spicule, $\times 185$ diam. b. Smaller (spined) acuate spicule, $\times 185$ diam. 7. Head of larger (smootb) acuate, $\times 350$ diam.
\&-17. Dirrhapalum nowizelanioun. 8, Large skeleton acuato (no. 1). $\times 68$ diam.? 9 Smaller skeleton acuate (no. 2) $\times 68$ diam. $10^{\text {. }}$ The same, head, $\times 370$ diam. $11 \& 12$. Fine spinulates of flesh (no. 4), $\times 68$ diam. 13. Equianchorate fesh-spicule, $\times 370$ diam. 14. Tricurvate flesh-spicule, $\times 370$ dian. 15. Dumbbell spicule, $\times 370$ diam. 16. Portion of surface, $\times 30$ diam. 17. Section across long axis of sponge, $\times 30$ diam.
1ミ-30a. Dirchopalum Carteri 18. The sponge, around portion of an Echinus-spine, nat. size. 19. Curved cylindrical, globose-headed, entirely-spined axial spicule, magnibed. 20 . Oylindrical straigat spiruiate, magnified. 2. Cyindrical curved spinulate, magaified. 22 ix 23. Small cyliadrical curved spictles, magnified. 24. Orispinulate subfusiform whorl-spicule, magnified. 25-27. Diferent forms of head of 24 , more highly magnified. 28. Base of the large acuate, magnified. 29. Three minute cylindrical derm-spicules, magniffed. 30 . Diagram of the position of the spicules $19,24,28$. 30 a A whorl of spicules round a large acuate one, which is seen in section, magnified.
31-39. Dirrhopalum hystrix, magnifiod. 31. Diagram of the position of the spicules 32533 . Dase of long acuate, magnified, showing a plain ending and terminal spinulation respectively. 34. Curved dirrhopalato spicule, magnified. 35. Curved cylindrical spicule, magnified. 36. Spicule with an irregular bend, and owly one globose end, magnified. 37. Cursed cylindrical bent spiculo with large spinule on it, magnified. 38. Spicule with an irregular bend and only one globose end, magnitied. 39. Encrmispinulate, magnified.

LINX. JOORN.-ZOOLOGY, VOL. SY,

Linn Soc Journ Zool Vol XV PL, 28

STRUCTURAL DETAILS SPECIES OF DIRRHOPALUM.
($=$ PLOCAMIA, Os, Schmudt)

