WestBanks
understanding benthic, pelagic and air-borne ecosystem interactions in shallow coastal seas

WestBanks Metadata Database
List all

By choosing an item from the pick list, you can list all the projects, persons, institutes, literature and datasets in the database.

[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Differential sensitivity of fatty acids and lipid damage in Microcystis aeruginosa (cyanobacteria) exposed to increased temperature
de la Rosa, F.; De Troch, M.; Malanga, G.; Hernando, M. (2020). Differential sensitivity of fatty acids and lipid damage in Microcystis aeruginosa (cyanobacteria) exposed to increased temperature. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 235: 108773. https://dx.doi.org/10.1016/j.cbpc.2020.108773
In: Comparative Biochemistry and Physiology. Part C. Toxicology and Pharmacology. Elsevier: New York. ISSN 1532-0456; e-ISSN 1878-1659
Peer reviewed article  

Beschikbaar in  Auteurs 

Trefwoord
    Microcystis aeruginosa (Kützing) Kützing, 1846 [WoRMS]
Author keywords
    Fatty acids; Lipid damage; Temperature ?6/?3 ratio

Auteurs  Top 
  • de la Rosa, F.
  • De Troch, M.
  • Malanga, G.
  • Hernando, M.

Abstract
    Changes in fatty acid (FA) composition can mean a mechanism of acclimation of Cyanobacteria to climate change. The objective of the present study was to evaluate the effects of increased temperature on M. aeruginosa cultures in terms of FA content, lipid damage, biomass and reactive oxygen species (ROS). Unicellular cultures were exposed to high (29 °C) and control (26 °C) temperature for 12 days. Differential sensitivity of ?3 FAs was observed after 2 days of exposure to elevated temperature (29 °C). Also, no significant differences in ROS content at different temperatures were observed although there was a significant decrease compared to the value at the start of the incubation. Thus, low FA peroxidation of selected ?6 PUFAs and potentially increased activation of antioxidant systems, resulting in lower lipid damage (on average 35%), could explain the strong acclimation to high temperature as shown by the increased growth rate (11%) compared to the control conditions. In high temperature conditions we found a retarded desaturation to 18:3?3 and 18:4?3 PUFAs which were 40% lower compared with control at the end of incubation.

    Overall, growth rate and omega-6 FA were increased at high temperature as a mechanism of successful acclimation. This is highly relevant for the ecological role of M. aeruginosa as food source for grazers. A reduced FA level can have serious implications for the flow of energy and thus the overall functioning of the ecosystem.


Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs 
Westbanks is a project Supported by the Belgian Science Policy (BELSPO): SSD Science for sustainable Development
General coordination: Magda Vincx & Jan Vanaverbeke
Hosted by the Flanders Marine Institute VLIZ