IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

International study on Artemia : 48. The effect of temperature on cyst hatching larval survival and biomass production for different geographical strains of brine shrimp Artemia spp.
Vanhaecke, P.; Sorgeloos, P. (1989). International study on Artemia : 48. The effect of temperature on cyst hatching larval survival and biomass production for different geographical strains of brine shrimp Artemia spp., in: IZWO Coll. Rep. 19(1989). IZWO Collected Reprints, 19: pp. chapter 31
In: (1989). IZWO Coll. Rep. 19(1989). IZWO Collected Reprints, 19[s.n.][s.l.], more
In: IZWO Collected Reprints. Instituut voor Zeewetenschappelijk Onderzoek: Bredene. ISSN 0772-1250, more

Also published as
  • Vanhaecke, P.; Sorgeloos, P. (1989). International study on Artemia : 48. The effect of temperature on cyst hatching larval survival and biomass production for different geographical strains of brine shrimp Artemia spp. Ann. Soc. R. Zool. Bel. 119: 7-23, more

Available in  Authors 

Keywords
    Aquaculture techniques; Biomass; Brine shrimp culture; Growth; Larvae; Survival; Temperature effects; Artemia Leach, 1819 [WoRMS]; Marine

Authors  Top 
  • Vanhaecke, P., more
  • Sorgeloos, P., more

Abstract
    The effect of temperature on different geographical strains of Artemia has been studied for the following criteria: the hatchability of the cysts, the resistance of the larvae to high temperature (34°C) and the biomass production of larvae cultured under standard conditions. Experimental temperatures ranged from 25° to 37°C for the hatching criteria and from 20° to 32.5°C for the biomass production.Both the hatching percentage and growth performance are affected by temperature. However, the relative and quantitative impact of temperature varies widely among Artemia strains. This is also the case for the temperature resistance of the larvae. The impact of increasing temperatures on cyst hatching as well as the temperature resistance of the larvae is related to the genetic classification of Artemia in different sibling species, i.e. Artemia franciscana strains are most resistant whereas Artemia tunisiana and Artemia persimilis strains are very sensitive to high temperatures. Intra-specific differences in tolerance may be due to genetic differentiation, or in the case of survival tolerance to genetic adaptation.On the basis of these results guidelines are provided for the utilisation of Artemia strains in aquaculture, e.g. optimal hatching temperature, strain selection for inoculation purposes and for biomass production purposes, temperature selection for culturing.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors