Catalogue | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

Catalogue

This search interface gives access to the reference database of VLIZ, an extensive collection of (inter)national marine scientific literature references.

You can limit your search to the Belgian marine literature only or to the VLIZ Library catalogue only by checking the 'VLIZ Library' box.

New search
[ report an error in this record ]basket (0): add | show Print this page

Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea
Brown, A.; Hauton, C.; Stratmann, T.; Sweetman, A.; Van Oevelen, D.; Jones, D.O.B. (2018). Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea. Royal Society Open Science 5: 172162. https://dx.doi.org/10.1098/rsos.172162

Additional info:
In: Royal Society Open Science. The Royal Society: London. ISSN 2054-5703, more
Peer reviewed article  

Available in  Authors 

Author keywords
    ecology; evolution; invertebrate; physiology; respiration

Authors  Top 
  • Brown, A.
  • Hauton, C.
  • Stratmann, T., more
  • Sweetman, A.
  • Van Oevelen, D., more
  • Jones, D.O.B.

Abstract
    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors