IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [260039]
Contrasting population genetic structures of sympatric, mass-spawning Caribbean corals
Severance, E.G.; Karl, S.A. (2006). Contrasting population genetic structures of sympatric, mass-spawning Caribbean corals. Mar. Biol. (Berl.) 150(1): 57-68. http://dx.doi.org/10.1007/s00227-006-0332-2
In: Marine Biology: International Journal on Life in Oceans and Coastal Waters. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Severance, E.G.
  • Karl, S.A.

Abstract
    Coral reef conservation management policy often focuses on larval retention and recruitment of marine fish with scant data available on important, less motile reef-building species such as corals. To evaluate the concept of population connectivity in corals, we tested whether broadcast spawning reproduction per se confers the same degree of dispersal to two sister species, Montastraea annularis (Anthozoa: Scleractinia; Ellis and Solander 1786) and M. faveolata (Ellis and Solander 1786), both dominant taxa in reefs of the northern Caribbean. Genetic analyses of ten nuclear DNA loci (seven microsatellite and three single-copy RFLP) reveal strikingly different patterns of population genetic subdivision for these closely related, sympatric species, in spite of likely identical dispersal abilities. Strong population genetic structure typified the architecture of M. annularis, whereas M. faveolata populations were principally genetically well mixed. A higher level of clonality was observed in M. annularis potentially because of a susceptibility to physical fragmentation. Clonality did not, however, significantly contribute to population genetic structure or low-level Hardy–Weinberg and linkage disequilibria observed in some populations. The lack of consistent association between reproductive mode and dispersal reinforces the perspective that population connectivity is not so much a function of predictable marine population source and sink relationships as is due to a more complex interface of oceanic currents interacting with and amplifying stochastic fluctuations in larval supply and settlement success. Our results support others promoting an overall ecosystem approach in marine protected area design.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors