IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels
Cuypers, E.; Yanagihara, A.; Karlsson, E.; Tytgat, J. (2006). Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett. 580(24): 5728-5732. dx.doi.org/10.1016/j.febslet.2006.09.030
In: FEBS Letters. ELSEVIER SCIENCE BV: Amsterdam. ISSN 0014-5793, more
Peer reviewed article  

Available in Authors 
    VLIZ: Open Repository 133931 [ OMA ]

Keywords
    Biological poisons; Desensitization; Envenomation; Marine invertebrates; Neurons; Noxious organisms; Public health; Venoms; Cnidaria [WoRMS]; Marine
Author keywords
    cnidaria; TRPV1; envenomation; pain; desensitization

Authors  Top 
  • Cuypers, E., more
  • Yanagihara, A.
  • Karlsson, E.
  • Tytgat, J., more

Abstract
    Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem. (

All data in IMIS is subject to the VLIZ privacy policy Top | Authors