IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Observation de la Posidonie par acoustique
Hermand, J.-P. (2010). Observation de la Posidonie par acoustique, in: Stephan, Y. et al. Surveillance, étude et reconnaissance de l'environnement par acoustique discrète: le séminaire SERENADE. Annales hydrographiques, 7(776): pp. 9.1-9.8
In: Stephan, Y. et al. (2010). Surveillance, étude et reconnaissance de l'environnement par acoustique discrète: le séminaire SERENADE. Annales hydrographiques, 7(776). Service hydrographique et océanographique de la marine: Paris. , more
In: Annales hydrographiques. Dépôt général de la Marine: Paris. ISSN 0373-3629, more
Peer reviewed article  

Available in Author 
    VLIZ: Open Repository 235529 [ OMA ]

Keyword
    Marine

Author  Top 
  • Hermand, J.-P., more

Abstract
    The possibility of using acoustic methods to monitor in situ the response of sea grasses to environmental factors is investigated. The effects of photosynthesis on sound propagation have been observed in prairies of Posidonia oceanica (L.) Delile. This paper reports some results of one of the experiments conducted in the marine reserve of the island of Ustica, off Sicily, in September 1999. The long-range propagation of an acoustic signal and the ambient noise were measured during four days under well controlled experimental conditions. Low-frequency, broad-band, frequency-modulated signals were transmitted repeatedly between a sound source and a distant two-hydrophones receiver 53 m apart. The frequency range was 0.2–16 kHz. Ground truth data of dissolved oxygen and temperature were obtained along the acoustic transect with an oceanographic probe. Detailed statistical analyses of the medium impulse responses, and in particular of their energy time distribution, allow extracting cyclic variations of the sound propagation characteristics. Some of the latter are strongly correlated with the release of photosynthetic oxygen measured above the foliage by a dissolved oxygen sensor. Photosynthesis is shown to cause excess attenuation of multipaths and faster decay of reverberation.The main variations are attributed to undissolved gases that are present in the air channels running inside the length of the leaf blades and to oxygen microbubbles that stick to the blade surface. Other variations can be attributed to gas movement in the rhizome and root systems. The Posidonia grasses form a thick layer where gas void fraction varies with the phase of photosynthesis cycle. During the active phases, sound speeds which is lower than in bubblefree seawater, absorption and scattering modify the multiple reflections from the rock substratum. Modeling results explained why the multipaths with intermediate grazing angles are the most sensitive to photosynthesis in our experimental setup. The results confirm the ones obtained in a first test in May 1995, even if conducted under different environmental conditions and with different measurement geometry. They indicate that in situ measurements of photosynthesis by acoustic methods can provide new insights into the mechanisms and adaptive responses of sea grasses to environmental factors at the scale of a prairie.

All data in IMIS is subject to the VLIZ privacy policy Top | Author