IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders
Weber, T.C.; De Robertis, A.; Greenaway, S.F.; Smith, S.; Mayer, L.; Rice, G. (2012). Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders. Proc. Natl. Acad. Sci. U.S.A. 109(50): 20240-20245. hdl.handle.net/10.1073/pnas.1108771108
In: Proceedings of the National Academy of Sciences of the United States of America. The Academy: Washington, D.C.. ISSN 0027-8424, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine
Author keywords
    Deepwater Horizon oil plume Gulf of Mexico acoustic remote sensing

Authors  Top 
  • Weber, T.C.
  • De Robertis, A.
  • Greenaway, S.F.
  • Smith, S.
  • Mayer, L.
  • Rice, G.

Abstract
    As part of a larger program aimed at evaluating acoustic techniques for mapping the distribution of subsurface oil and gas associated with the Deepwater Horizon-Macondo oil spill, observations were made on June 24 and 25, 2010 using vessel-mounted calibrated single-beam echo sounders on the National Oceanic and Atmospheric Administration ship Thomas Jefferson. Coincident with visual observations of oil at the sea surface, the 200-kHz echo sounder showed anomalously high-volume scattering strength in the upper 200 m on the western side of the wellhead, more than 100 times higher than the surrounding waters at 1,800-m distance from the wellhead, and weakening with increasing distance out to 5,000 m. Similar high-volume scattering anomalies were not observed at 12 or 38 kHz, although observations of anomalously low-volume scattering strength were made in the deep scattering layer at these frequencies at approximately the same locations. Together with observations of ocean currents, the acoustic observations are consistent with a rising plume of small (< 1-mm radius) oil droplets. Using simplistic but reasonable assumptions about the properties of the oil droplets, an estimate of the flow rate was made that is remarkably consistent with those made at the wellhead by other means. The uncertainty in this acoustically derived estimate is high due to lack of knowledge of the size distribution and rise speed of the oil droplets. If properly constrained, these types of acoustic measurements can be used to rapidly estimate the flow rate of oil reaching the surface over large temporal and spatial scales.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors