IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation
Šupraha, L.; Gerecht, A.C.; Probert, I.; Henderiks, J. (2015). Eco-physiological adaptation shapes the response of calcifying algae to nutrient limitation. NPG Scientific Reports 5(16499): 8 pp.
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Šupraha, L.
  • Gerecht, A.C.
  • Probert, I.
  • Henderiks, J.

    The steady increase in global ocean temperature will most likely lead to nutrient limitation in the photic zone. This will impact the physiology of marine algae, including the globally important calcifying coccolithophores. Understanding their adaptive patterns is essential for modelling carbon production in a low-nutrient ocean. We investigated the physiology of Helicosphaera carteri, a representative of the abundant but under-investigated flagellated functional group of coccolithophores. Two strains isolated from contrasting nutrient regimes (South Atlantic and Mediterranean Sea) were grown in phosphorus-replete and phosphorus-limited batch cultures. While growing exponentially in a phosphorus-replete medium, the Mediterranean strain exhibited on average 24% lower growth rate, 36% larger coccosphere volume and 21% lower particulate inorganic carbon (PIC) production than the Atlantic strain. Under phosphorus limitation, the same strain was capable of reaching a 2.6 times higher cell density than the Atlantic strain due to lower phosphorus requirements. These results suggest that local physiological adaptation can define the performance of this species under nutrient limitation.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors