IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition
Galeotti, S.; DeConto, R.; Naish, T.; Stocchi, P.; Florindo, F.; Pagani, M.; Barrett, P.; Bohaty, S.M.; Lanci, L.; Pollard, D.; Sandroni, S.; Talarico, F.M.; Zachos, J.C. (2016). Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science (Wash.) 352(6281): 76-80.
In: Science (Washington). American Association for the Advancement of Science: New York, N.Y. ISSN 0036-8075, more
Peer reviewed article  

Available in  Authors 

    Ice sheets; Sea level changes; Marine

Authors  Top 
  • Galeotti, S.
  • DeConto, R.
  • Naish, T.
  • Stocchi, P., more
  • Florindo, F.
  • Pagani, M.
  • Barrett, P.
  • Bohaty, S.M.
  • Lanci, L.
  • Pollard, D.
  • Sandroni, S.
  • Talarico, F.M.
  • Zachos, J.C.

    Why did the Antarctic Ice Sheet begin to grow 34 million years ago, and what does that have to do with us? Galeotti et al. studied a marine sediment core recovered from just off the coast of Antarctica (see the Perspective by Lear and Lunt). The ice sheet did not begin to grow until atmospheric CO2 concentrations had dropped to below around 600 parts per million. Indeed, the ice sheet was unstable when CO2 was higher. As modern atmospheric CO2 concentrations continue their rise, a shift back to an unstable Antarctic Ice Sheet could increase harmful rises in sea level.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors