IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Reproductive biology of the tiger shark (Galeocerdo cuvier) in Hawaii
Whitney, N.M.; Crow, G.L. (2007). Reproductive biology of the tiger shark (Galeocerdo cuvier) in Hawaii. Mar. Biol. (Berl.) 151(1): 63-70.
In: Marine Biology. Springer: Heidelberg; Berlin. ISSN 0025-3162; e-ISSN 1432-1793, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Whitney, N.M.
  • Crow, G.L.

    The tiger shark (Galeocerdo cuvier) is the largest shark in the family Carcharhinidae and the only carcharhinid with aplacental viviparous (ovoviviparous) reproduction. Despite its size and prevalence, many details of tiger shark reproductive biology are unknown. Size at maturity and litter size have been reported by several authors, but a lack of large numbers of pregnant females has made it difficult to determine gestation period, seasonality, and timing of the female reproductive cycle. Here we analyze data from shark control program fishing and incidental catches in Hawaii (n = 318) to construct the most complete picture of tiger shark reproduction to date. Males reached maturity at approximately 292 cm total length (TL) based on clasper calcification, whereas females matured between 330 and 345 cm TL based on oviducal gland and uterus widths. Litter sizes ranged from 3 to 57 with a mean of 32.6 embryos per litter. Data from 23 litters from various months of the year indicate that tiger sharks are usually 80–90 cm TL at birth, and that the gestation period is 15–16 months. Mating scars were observed in January–February and sperm is presumably stored for 4–5 months until ovulation takes place in May–July. Gestation begins in June–July and pups are born in September–October of the following year. Our data suggest that female tiger sharks in Hawaii give birth only once every three years. This could have major implications for conservation and management of this species, as it suggests that tiger shark fecundity is 33% lower than previously thought. This could greatly reduce the ability of this species to rebound from fishing pressure.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors