IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Implications of a microfossil-based transfer function in Holocene sea-level studies
Horton, B.P.; Edwards, R.J.; Lloyd, J.M. (2000). Implications of a microfossil-based transfer function in Holocene sea-level studies, in: Shennan, I. et al. (Ed.) Holocene land-ocean interaction and environmental change around the North Sea. Geological Society Special Publication, 166: pp. 41-54
In: Shennan, I.; Andrews, J. (Ed.) (2000). Holocene land-ocean interaction and environmental change around the North Sea. Geological Society Special Publication, 166. The Geological Society: London, UK. ISBN 1-86239-054-1. 326 pp., more
In: Hartley, A.J. et al. (Ed.) Geological Society Special Publication. Geological Society of London: Oxford; London; Edinburgh; Boston, Mass.; Carlton, Vic.. ISSN 0305-8719, more
Peer reviewed article  

Available in  Authors 
    VLIZ: Geology and Geophysics [6040]

Keyword
    Marine

Authors  Top 
  • Horton, B.P.
  • Edwards, R.J.
  • Lloyd, J.M.

Abstract
    Fifty-two sea-level index points are described from samples collected within the Land-Ocean Interaction Study area. The vertical relationship between relative sea-level and a reference water level for each index point was estimated using two contrasting methods: a lithological-based approach, which is routinely employed in sea-level studies, and a foraminiferal-based transfer function. Comparison of the two methods reveals that the range of the former is 0.14 ± 0.09 m smaller than the latter because the foraminiferal-based transfer function takes into account differences in tidal ranges between study sites. Furthermore, the reference water-level estimates of transgressive index points using the foraminiferal-based transfer function are on average 0.19 ± 0.12m higher than those of the lithological-based approach. This may be due to the rapid response time of foraminiferal assemblages relative to lithological indicators or the uneven spatial sampling within the contemporary foraminiferal data set. Whilst these inter-method differences are small in magnitude, they are comparable in size to the scale of changes under investigation by recent high-resolution sea-level studies. In contrast, the reference water levels of both methods are comparable for regressive and basis index points. Index points from clastic sediments were also produced using the foraminiferal-based transfer function. Calcareous Foraminifera from intertidal environments can be used to produce indicative meanings and supply material for accelerator mass spectrometry radiocarbon dating. This method expands the range of stratigraphic sequences that can be employed in sea-level reconstruction by redressing the over-reliance on transgressive and regressive contacts.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors