Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

The reponse of planktonic phosphate uptake and turnover to ultraviolet radiation in Lake Erie
Allen, C.D.; Smith, R.E.H. (2002). The reponse of planktonic phosphate uptake and turnover to ultraviolet radiation in Lake Erie. Can. J. Fish. Aquat. Sci. 59(5): 778-786
In: Canadian Journal of Fisheries and Aquatic Sciences = Journal canadien des sciences halieutiques et aquatiques. National Research Council Canada: Ottawa. ISSN 0706-652X; e-ISSN 1205-7533, more
Peer reviewed article  

Available in  Authors 

    Aquatic communities > Plankton > Phytoplankton
    Chemical compounds > Phosphorus compounds > Phosphates
    Radiations > Electromagnetic radiation > Ultraviolet radiation
    ANW, Canada [Marine Regions]
    Fresh water

Authors  Top 
  • Allen, C.D.
  • Smith, R.E.H.

    The hypothesis that ambient ultraviolet radiation (UVR), at near-surface intensities, may diminish phosphorus availability to phytoplankton was tested in Lake Erie in July and August of 1998 and 1999. Relative to samples exposed to photosynthetically active radiation (PAR, 400-700 nm) only, those exposed to ultraviolet-B (UVB, 280-320) and (or) ultraviolet-A (UVA, 320-400 nm) in natural sunlight, or kept in darkness, had diminished phosphate uptake rates at elevated (1 µM P) dissolved phosphate concentrations. By contrast, the specific uptake rate of dissolved phosphate at ambient concentrations (turnover rate) was not significantly affected by UVR or darkness. Turnover was usually dominated by particles smaller than 0.8 µm, whereas uptake from elevated concentrations was dominated by larger particles. The size distribution of turnover and uptake activity was not affected by radiation treatment. Chlorophyll a concentrations were decreased by sufficient exposure to UVB and (or) UVA and increased by deprivation of PAR (dark controls), but the concentration of bacterial cells was unaffected. The results showed that UVR inhibited the phosphate uptake potential of larger, probably algal, plankton but did not change the apparent severity of phosphate limitation at ambient concentrations.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors