IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Kinematics of mouthbrooding in Oreochromis niloticus (Cichlidae)
Van Wassenbergh, S.; Joris, I.; Desclée, M.; Liew, H.J.; De Boeck, G.; Adriaens, D.; Aerts, P. (2016). Kinematics of mouthbrooding in Oreochromis niloticus (Cichlidae). J. Exp. Biol. 219(10): 1535-1541. https://hdl.handle.net/10.1242/jeb.131631
In: Journal of Experimental Biology. Cambridge University Press: London. ISSN 0022-0949; e-ISSN 1477-9145, more
Peer reviewed article  

Available in  Authors 

Keywords
    Cichlidae Bonaparte, 1835 [WoRMS]; Oreochromis niloticus (Linnaeus, 1758) [WoRMS]
    Brackish water; Fresh water
Author keywords
    Cichlids; Tilapia; Ventilation; Opercula; Jaw protrusion; Churning;Hydrodynamics; Biomechanics

Authors  Top 

Abstract
    Many species from several different families of fishes perform mouthbrooding, where one of the sexes protects and ventilates the eggs inside the mouth cavity. This ventilation behaviour differs from gill ventilation outside the brooding period, as the normal, small-amplitude suction-pump respiration cycles are alternated with actions including near-simultaneous closed-mouth protrusions and high-amplitude depressions of the hyoid. The latter is called churning, referring to its hypothetical function in moving around and repositioning the eggs by a presumed hydrodynamic effect of the marked shifts in volume along the mouth cavity. We tested the hypothesis that churning causes the eggs located posteriorly in the mouth cavity to move anteriorly away from the gill entrance. This would prevent or clear accumulations of brood at the branchial basket, which would otherwise hinder breathing by the parent. Dual-view videos of female Nile tilapias (Oreochromis niloticus) during mouthbrooding showed that churning involves a posterior-to-anterior wave of expansion and compression of the head volume. Flow visualisation with polyethylene microspheres revealed a significant inflow of water entering the gill slits at the zone above the pectoral fin base, followed by a predominantly ventral outflow passing the ventrolaterally flapping branchiostegal membranes. X-ray videos indicated that particularly the brood located close to the gills is moved anteriorly during churning. These data suggest that, in addition to mixing of the brood to aid its oxygenation, an important function of the anterior flow through the gills and buccal cavity during churning is to prevent clogging of the eggs near the gills.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors