IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Southern Ocean deep-sea biodiversity: sampling strategies and predicting responses to climate change
Kaiser, S.; Barnes, D.K.A. (2008). Southern Ocean deep-sea biodiversity: sampling strategies and predicting responses to climate change. Clim. Res. 37: 165-179. https://dx.doi.org/10.3354/cr00761
In: Climate Research. Inter-Research: Oldendorf/Luhe. ISSN 0936-577X; e-ISSN 1616-1572, more
Also appears in:
Fortier, L.; Hawkins, S.; Kleypas, J.; Lima, M.; Ottersen, G.; Pörtner, H.O.; Shirayama, Y.; Stenseth, N.Ch. (Ed.) (2008). Effects of Climate Change on Marine Ecosystems: selected papers from Inter-Research Symposium No. 2, held in conjunction with the 42nd European Marine Biology Symposium (EMBS), August 27-31, 2007, Kiel, Germany. Climate Research, 37, 2-3(CR Special 18). Inter-Research: Oldendorf. 121-270 pp., more
Peer reviewed article  

Available in  Authors 

Keywords
    Isopoda [WoRMS]
    Marine/Coastal
Author keywords
    Antarctic; Abyssal; Regional warming; Scale; Patchiness; Macrobenthos; Isopoda

Authors  Top 
  • Kaiser, S.
  • Barnes, D.K.A.

Abstract
    The deep sea surrounds Antarctica and constitutes about 80% of the Southern Ocean (SO) seabed. Scientific cruises (e.g. ANDEEP) reveal that SO abyssal life can be highly abundant, rich and endemic. With a vast water volume, the buffering effect of ice, data paucity and low sampling effort, signals of regional change may not be detected there for some time. The deep sea is likely to change in many ways, particularly becoming more acid and warmer, but over centuries or millennia. More immediate is the possibility of abrupt change in the thermohaline circulation driven by massive surface freshening from glacial melt-water. This could strongly stratify the water column, decrease ocean overturning and the flow of oxygen to the global deep sea. Impacts on abyssal biota will be hard to detect because we know so little about it. The most important first step is to generate a baseline of abyssal biodiversity and key factors generating and maintaining it. Recent work has shown abundance of a model taxon varied similarly in samples 1000s, 100s and 10s of kilometres apart. Most taxa were extremely patchy, and new sampling is needed to reveal patch size, spacing and importantly what structures abyssal patches. We examined the ‘big picture’ where factors at scales of less than kilometres may drive variability. The understanding of these patterns should make estimates of deep-sea biodiversity meaningful and give a baseline indicating the scale, taxon and environmental feature to look at in order to detect the inevitable signal of climate change in this huge, remote environment.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors