IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Stability of the Atlantic meridional overturning circulation: a model intercomparison
Weaver, A.J.; Sedlacek, J.; Eby, M.; Alexander, K.; Crespin, E.; Fichefet, T.; Philippon-Berthier, G.; Joos, F.; Kawamiya, M.; Matsumoto, K.; Steinacher, M.; Tachiiri, K.; Tokos, K.; Yoshimori, M.; Zickfeld, K. (2012). Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys. Res. Lett. 39(20): -. dx.doi.org/10.1029/2012GL053763
In: Geophysical Research Letters. American Geophysical Union: Washington. ISSN 0094-8276; e-ISSN 1944-8007, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Weaver, A.J.
  • Sedlacek, J.
  • Eby, M.
  • Alexander, K.
  • Crespin, E., more
  • Fichefet, T., more
  • Philippon-Berthier, G., more
  • Joos, F.
  • Kawamiya, M.
  • Matsumoto, K.
  • Steinacher, M.
  • Tachiiri, K.
  • Tokos, K.
  • Yoshimori, M.
  • Zickfeld, K.

Abstract
    The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%-25%; 5%-95% confidence limits) for RCP2.6, 26% (23%-30%) for RCP4.5, 29% (23%-35%) for RCP6.0 and 40% (36%-44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30 degrees-32 degrees S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming. Citation: Weaver, A. J., et al. (2012), Stability of the Atlantic meridional overturning circulation: A model intercomparison, Geophys. Res. Lett., 39, L20709, doi:10.1029/2012GL053763.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors