IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Salinity stress, enhancing basal and induced immune responses in striped catfish Pangasianodon hypophthalmus (Sauvage)
Schmitz, M.; Ziv, T.; Admon, A.; Baekelandt, S.; Mandiki, S.N.M.; L'Hoir, M.; Kestemont, P. (2017). Salinity stress, enhancing basal and induced immune responses in striped catfish Pangasianodon hypophthalmus (Sauvage). J. Proteomics 167: 12-24. https://hdl.handle.net/10.1016/j.jprot.2017.08.005
In: Journal of Proteomics. Elsevier: Amsterdam. ISSN 1874-3919; e-ISSN 1876-7737, more
Peer reviewed article  

Available in  Authors 

Keyword
    Pangasianodon hypophthalmus (Sauvage, 1878) [WoRMS]
Author keywords
    Catfish; Infectious disease; Immunity; Osmoregulation; Label-freeproteomics

Authors  Top 
  • Schmitz, M., more
  • Ziv, T.
  • Admon, A.
  • Baekelandt, S., more
  • Mandiki, S.N.M., more
  • L'Hoir, M., more
  • Kestemont, P., more

Abstract
    In the Mekong Delta, striped catfish are faced with chronic salinity stress related to saltwater intrusion induced by global climatic changes. In this study, striped catfish juveniles were submitted to a prolonged salinity stress (up to 10 ppt) over three weeks followed by infection with a virulent bacterial strain, Edwardsiella ictaluri. Osmoregulatory parameters were investigated. In addition, a label free quantitative proteomics workflow was performed on kidneys. The workflow consisted of an initial global profiling of relative peptide abundances (by LC/MS, peak area quantification based on extracted ion currents), followed by identification (by MS/MS). The aim of the study was to highlight specific functional pathways modified during realistic salinity stress, particularly those involved in immunity. In kidney proteome, 2483 proteins were identified, of which 400 proteins were differentially expressed between the freshwater and the saline water conditions. Several pathways and functional categories were highlighted, mostly related to energy metabolism, protein metabolism, actincytoskeleton, signaling, immunity, and detoxification. In particular, the responsiveness of proteins involved in small GTPases and Mitogen Activated Protein Kinase p38 signaling, phagolysosome maturation, and T-cells regulation is discussed.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors