IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Hydrographic and biological survey of a surface‐intensified anticyclonic eddy in the Caribbean Sea
van der Boog, C.G.; de Jong, M.F.; Scheidat, M.; Leopold, M.F.; Geelhoed, S.C.V.; Schulz, K.; Dijkstra, H.A.; Pietrzak, J.D.; Katsman, C.A. (2019). Hydrographic and biological survey of a surface‐intensified anticyclonic eddy in the Caribbean Sea. JGR: Oceans 124(8): 6235-6251. https://doi.org/10.1029/2018JC014877

Additional info:
In: Journal of Geophysical Research-Oceans. AMER GEOPHYSICAL UNION: Washington. ISSN 2169-9275; e-ISSN 2169-9291, more
Peer reviewed article  

Available in  Authors 
    NIOZ: NIOZ Open Repository 340305

Author keywords
    anticyclone Cabarrier layer; ecology; hydrographic; thermohaline staircases

Authors  Top 
  • van der Boog, C.G.
  • de Jong, M.F., more
  • Scheidat, M.
  • Leopold, M.F., more
  • Geelhoed, S.C.V., more
  • Schulz, K., more
  • Dijkstra, H.A.
  • Pietrzak, J.D.
  • Katsman, C.A.

Abstract
    In the Caribbean Sea, mesoscale anticyclonic ocean eddies impact the local ecosystem by mixing of low salinity river outflow with the nutrient‐rich waters upwelling along the Venezuelan and Colombian coast. To gain insight into the physics and the ecological impact of these anticyclones, we performed a combined hydrographic and biological survey of one Caribbean anticyclone in February 2018. We found that the anticyclone had a radius of 90 km and was surface intensified with the strongest velocities (0.72 m/s) in the upper 150 m of the water column. Below, isopycnal displacements were found down to 700 dbar. The core of the anticyclone entrained waters from the Orinoco River plume and contained slightly elevated chlorophyll concentrations compared to the surroundings. At the edge of the anticyclone we observed higher densities of flying fish but not higher densities of predators like seabirds and cetaceans. Below the surface, a strong temperature inversion (0.98 °C) was present within a barrier layer. In addition, we found thermohaline staircases that originated from double diffusion processes within Tropical Atlantic Central Water.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors