IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Neff strain
Quinet, T.; Samba-Louaka, A.; Héchard, Y.; Van Doninck, K.; Van der Henst, C. (2020). Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Neff strain. NPG Scientific Reports 10(1): 12109. https://hdl.handle.net/10.1038/s41598-020-68694-9
In: Scientific Reports (Nature Publishing Group). Nature Publishing Group: London. ISSN 2045-2322; e-ISSN 2045-2322, more
Peer reviewed article  

Available in  Authors 

Keywords
    Protozoa > Sarcomastigophora > Amoebida > Acanthamoebidae > Acanthamoeba > Acanthamoeba castellanii
    Marine/Coastal

Authors  Top 
  • Quinet, T., more
  • Samba-Louaka, A.
  • Héchard, Y.
  • Van Doninck, K., more
  • Van der Henst, C., more

Abstract
    Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non-adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantified over time. Multiple nuclei per cell are observed in different amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non-adherent conditions that can lead to biologically relevant advantages.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors