IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Large‐scale distribution of tuna species in a warming ocean
Erauskin-Extramiana, M.; Arrizabalaga, H.; Hobday, A.J.; Cabré, A.; Ibaibarriaga, L.; Arregui, I.; Murua, H.; Chust, G. (2019). Large‐scale distribution of tuna species in a warming ocean. Glob. Chang. Biol. 25(6): 2043-2060. https://dx.doi.org/10.1111/gcb.14630
In: Global Change Biology. Blackwell Publishers: Oxford. ISSN 1354-1013; e-ISSN 1365-2486, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Erauskin-Extramiana, M.
  • Arrizabalaga, H.
  • Hobday, A.J.
  • Cabré, A.
  • Ibaibarriaga, L.
  • Arregui, I.
  • Murua, H.
  • Chust, G.

Abstract
    Tuna are globally distributed species of major commercial importance and some tuna species are a major source of protein in many countries. Tuna are characterized by dynamic distribution patterns that respond to climate variability and long‐term change. Here, we investigated the effect of environmental conditions on the worldwide distribution and relative abundance of six tuna species between 1958 and 2004 and estimated the expected end‐of‐the‐century changes based on a high‐greenhouse gas concentration scenario (RCP8.5). We created species distribution models using a long‐term Japanese longline fishery dataset and two‐step generalized additive models. Over the historical period, suitable habitats shifted poleward for 20 out of 22 tuna stocks, based on their gravity centre (GC) and/or one of their distribution limits. On average, tuna habitat distribution limits have shifted poleward 6.5 km per decade in the northern hemisphere and 5.5 km per decade in the southern hemisphere. Larger tuna distribution shifts and changes in abundance are expected in the future, especially by the end‐of‐the‐century (2080–2099). Temperate tunas (albacore, Atlantic bluefin, and southern bluefin) and the tropical bigeye tuna are expected to decline in the tropics and shift poleward. In contrast, skipjack and yellowfin tunas are projected to become more abundant in tropical areas as well as in most coastal countries' exclusive economic zones (EEZ). These results provide global information on the potential effects of climate change in tuna populations and can assist countries seeking to minimize these effects via adaptive management.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors