dr. Fettweis, Xavier |
ORCID
|
Université de Liège; Faculté des Sciences; Département des Sciences Géographiques; Institut de Géographie; Unité de Géographie physique et Quaternaire; Laboratoire de Climatologie et de topoclimatologie (Ulg/CLIMATO), meer
Contact op het instituut:
E-mail:
| |
A1 publicaties (109) [show] |
- Dietrich, L.J.; Steen-Larsen, H.C.; Wahl, S.; Faber, A.K.; Fettweis, X. (2024). On the importance of the humidity flux for the surface mass balance in the accumulation zone of the Greenland Ice Sheet. Cryosphere 18(1): 289-305. https://dx.doi.org/10.5194/tc-18-289-2024, meer
- Ran, J.; Ditmar, P.; van den Broeke, M.R.; Liu, L.; Klees, R.; Khan, S.A.; Moon, T.; Li, J.; Bevis, M.; Zhong, M.; Fettweis, X.; Liu, J.; Noël, B.; Shum, C.K.; Chen, J.; Jiang, L.; van Dam, T. (2024). Vertical bedrock shifts reveal summer water storage in Greenland ice sheet. Nature (Lond.) 635(8037): 108-113. https://dx.doi.org/10.1038/s41586-024-08096-3, meer
- Akperov, M.; Eliseev, A.V.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Dembitskaya, M.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dethloff, K.; Fettweis, X.; Gutjahr, O.; Heinemann, G.; Koenigk, T.; Sein, D.; Laprise, R.; Mottram, R.; Nikiema, O.; Sobolowski, S.; Winger, K.; Zhang, W.X. (2023). Future projections of wind energy potentials in the arctic for the 21st century under the RCP8.5 scenario from regional climate models (Arctic-CORDEX). Anthropocene 44: 100402. https://dx.doi.org/10.1016/j.ancene.2023.100402, meer
- Box, J.E.; Nielsen, K.P.; Yang, X.; Niwano, M.; Wehrlé, A.; van As, D.; Fettweis, X.; Køltzow, M.A.Ø.; Palmason, B.; Fausto, R.S.; van den Broeke, M.R.; Huai, B.; Ahlstrom, A.P.; Langley, K.; Dachauer, A.; Noël, B. (2023). Greenland ice sheet rainfall climatology, extremes and atmospheric river rapids. Meteorol. Appl. 30(4): e2134. https://dx.doi.org/10.1002/met.2134, meer
- Gantayat, P.; Banwell, A.F.; Leeson, A.A.; Lea, J.M.; Petersen, D.; Gourmelen, N.; Fettweis, X. (2023). A new model for supraglacial hydrology evolution and drainage for the Greenland Ice Sheet (SHED v1.0). Geosci. Model Dev. 16(20): 5803-5823. https://dx.doi.org/10.5194/gmd-16-5803-2023, meer
- Mattingly, K.S.; Turton, J.V.; Wille, J.D.; Noël, B.; Fettweis, X.; Rennermalm, Å.K.; Mote, T.L. (2023). Increasing extreme melt in northeast Greenland linked to foehn winds and atmospheric rivers. Nature Comm. 14(1): 1743. https://dx.doi.org/10.1038/s41467-023-37434-8, meer
- Maure, D.; Kittel, C.; Lambin, C.; Delhasse, A.; Fettweis, X. (2023). Spatially heterogeneous effect of climate warming on the Arctic land ice. Cryosphere 17(11): 4645-4659. https://dx.doi.org/10.5194/tc-17-4645-2023, meer
- Otosaka, I.N.; Shepherd, A.; Ivins, E.R.; Schlegel, N.J.; Amory, C.; van den Broeke, M.R.; Horwath, M.; Joughin, I.; King, M.D.; Krinner, G.; Nowicki, S.; Payne, A.J.; Rignot, E.; Scambos, T.; Simon, K.M.; Smith, B.E.; Sorensen, L.S.; Velicogna, I.; Whitehouse, P.L.; Geruo, A.; Agosta, C.; Ahlstrom, A.P.; Blazquez, A.; Colgan, W.; Engdahl, M.E.; Fettweis, X.; Forsberg, R.; Gallee, H.; Gardner, A.; Gilbert, L.; Gourmelen, N.; Groh, A.; Gunter, B.C.; Harig, C.; Helm, V.; Khan, S.A.; Kittel, C.; Konrad, H.; Langen, P.L.; Lecavalier, B.S.; Liang, C.C.; Loomis, B.D.; McMillan, M.; Melini, D.; Mernild, S.H.; Mottram, R.; Mouginot, J.; Nilsson, J.; Noel, B.; Pattle, M.E.; Peltier, W.R.; Pie, N.; Roca, M.; Sasgen, I.; Save, H.V.; Seo, K.W.; Scheuchl, B.; Schrama, E.J.O.; Schroder, L.; Simonsen, S.B.; Slater, T.; Spada, G.; Sutterley, T.C.; Vishwakarma, B.D.; van Wessem, J.M.; Wiese, D.; van der Wal, W.; Wouters, B. (2023). Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. ESSD 15(4): 1597-1616. https://dx.doi.org/10.5194/essd-15-1597-2023, meer
- Shu, Q.Y.; Killick, R.; Leeson, A.; Nemeth, C.; Fettweis, X.; Hogg, A.; Leslie, D. (2023). Characterising the ice sheet surface in Northeast Greenland using Sentinel-1 SAR data. J. Glaciol. First View: 12. https://dx.doi.org/10.1017/jog.2023.64, meer
- Tedesco, M.; Colosio, P.; Fettweis, X.; Cervone, G. (2023). A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR. Cryosphere 17(12): 5061-5074. https://dx.doi.org/10.5194/tc-17-5061-2023, meer
- Box, J.E.; Hubbard, A.; Bahr, D.B.; Colgan, W.T.; Fettweis, X.; Mankoff, K.D.; Wehrlé, A.; Noël, B.; van den Broeke, M.R.; Wouters, B.; Björk, A.A.; Fausto, R.S. (2022). Greenland ice sheet climate disequilibrium and committed sea-level rise. Nat. Clim. Chang. 12(9): 808-813. https://dx.doi.org/10.1038/s41558-022-01441-2, meer
- Huot, P.-V.; Kittel, C.; Fichefet, T.; Jourdain, N.C.; Fettweis, X. (2022). Effects of ocean mesoscale eddies on atmosphere-sea ice-ocean interactions off Adelie Land, East Antarctica. Clim. Dyn. 59: 41-60. https://dx.doi.org/10.1007/s00382-021-06115-x, meer
- Kittel, C.; Amory, C.; Hofer, S.; Agosta, C.; Jourdain, N.C.; Gilbert, E.; Le Toumelin, L.; Vignon, E.; Gallee, H.; Fettweis, X. (2022). Clouds drive differences in future surface melt over the Antarctic ice shelves. Cryosphere 16(7): 2655-2669. https://dx.doi.org/10.5194/tc-16-2655-2022, meer
- Li, Y.; Yang, K.; Gao, S.; Smith, L.C.; Fettweis, X.; Li, M. (2022). Surface meltwater runoff routing through a coupled supraglacial-proglacial drainage system, Inglefield Land, northwest Greenland. International Journal of Applied Earth Observation and Geoinformation 106: 102647. https://dx.doi.org/10.1016/j.jag.2021.102647, meer
- Sasgen, I.; Salles, A.; Wegmann, M.; Wouters, B.; Fettweis, X.; Noël, B.P.Y.; Beck, C. (2022). Arctic glaciers record wavier circumpolar winds. Nat. Clim. Chang. 12(3): 249-255. https://dx.doi.org/10.1038/s41558-021-01275-4, meer
- Topál, D.; Ding, Q.; Ballinger, T.J.; Hanna, E.; Fettweis, X.; Li, Z.; Pieczka, I. (2022). Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections. Nature Comm. 13(1): 6833. https://dx.doi.org/10.1038/s41467-022-34414-2, meer
- van de Wal, R.S.W.; Nicholls, R.J.; Behar, D.; McInnes, K.; Stammer, D.; Lowe, J.A.; Church, J.A.; Deconto, R.; Fettweis, X.; Goelzer, H.; Haasnoot, M.; Haigh, I.D.; Hinkel, J.; Horton, B.P.; James, T.S.; Jenkins, A.; LeCozannet, G.; Levermann, A.; Lipscomb, W.H.; Marzeion, B.; Pattyn, F.; Payne, A.J.; Pfeffer, W.T.; Price, S.F.; Seroussi, H.; Sun, S.; Veatch, W.; White, K. (2022). A high-end estimate of sea level rise for practitioners. Earth's Future 10(11): e2022EF002751. https://dx.doi.org/10.1029/2022EF002751, meer
- Wille, J.D.; Favier, V.; Jourdain, N.C.; Kittel, C.; Turton, J.V.; Agosta, C.; Gorodetskaya, I.V.; Picard, G.; Codron, F.; Leroy-Dos Santos, C.; Amory, C.; Fettweis, X.; Blanchet, J.; Jomelli, V.; Berchet, A. (2022). Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 3: 90. https://dx.doi.org/10.1038/s43247-022-00422-9, meer
- Colosio, P.; Tedesco, M.; Ranzi, R.; Fettweis, X. (2021). Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979-2019). Cryosphere 15(6): 2623-2646. https://dx.doi.org/10.5194/tc-15-2623-2021, meer
- Diener, T.; Sasgen, I.; Agosta, C.; Fürst, J.J.; Braun, M.H.; Konrad, H.; Fettweis, X. (2021). Acceleration of dynamic ice loss in Antarctica from satellite gravimetry. Front. Earth Sci. 9: 741789. https://dx.doi.org/10.3389/feart.2021.741789, meer
- Edwards, T.L.; Nowicki, S.; Marzeion, B.; Hock, R.; Goelzer, H.; Seroussi, H.; Jourdain, N.C.; Slater, D.A.; Turner, F.E.; Smith, C.J.; McKenna, C.M.; Simon, E.; Abe-Ouchi, A.; Gregory, J.M.; Larour, E.; Lipscomb, W.H.; Payne, A.J.; Shepherd, A.; Agosta, C.; Alexander, P.; Albrecht, T.; Anderson, B.; Asay-Davis, X.; Aschwanden, A.; Barthel, A.; Bliss, A.; Calov, R.; Chambers, C.; Champollion, N.; Choi, Y.; Cullather, R.; Cuzzone, J.; Dumas, C.; Felikson, D.; Fettweis, X.; Fujita, K.; Galton-Fenzi, B.K.; Gladstone, R.; Golledge, N.R.; Greve, R.; Hattermann, T.; Hoffman, M.J.; Humbert, A.; Huss, M.; Huybrechts, P.; Immerzeel, W.; Kleiner, T.; Kraaijenbrink, P.; Le Clec'h, S.; Lee, V.; Leguy, G.R.; Little, C.M.; Lowry, D.P.; Malles, J.-H.; Martin, D.F.; Maussion, F.; Morlighem, M.; O’Neill, J.F.; Nias, I.; Pattyn, F.; Pelle, T.; Price, S.F.; Quiquet, A.; Radic, V.; Reese, R.; Rounce, D.R.; Rückamp, M.; Sakai, A.; Shafer, C.; Schlegel, N.-J.; Shannon, S.; Smith, R.S.; Straneo, F.; Sun, S.; Tarasov, L.; Trusel, L.D.; Van Breedam, J.; van de Wal, R.; van den Broeke, M.; Winkelmann, R.; Zekollari, H.; Zhao, C.; Zhang, T.; Zwinger, T. (2021). Projected land ice contributions to twenty-first-century sea level rise. Nature (Lond.) 593(7857): 74-82. https://hdl.handle.net/10.1038/s41586-021-03302-y, meer
- Hanna, E.; Cappelen, J.; Fettweis, X.; Mernild, S.H.; Mote, T.L.; Mottram, R.; Steffen, K.; Ballinger, T.J.; Hall, R. (2021). Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41(51): E1336-E1352. https://hdl.handle.net/10.1002/joc.6771, meer
- Huot, P.-V.; Fichefet, T.; Jourdain, N.C.; Mathiot, P.; Rousset, C.; Kittel, C.; Fettweis, X. (2021). Influence of ocean tides and ice shelves on ocean-ice interactions and dense shelf water formation in the D'Urville Sea, Antarctica. Ocean Modelling 162: 101794. https://dx.doi.org/10.1016/j.ocemod.2021.101794, meer
- Huot, P.-V.; Kittel, C.; Fichefet, T.; Jourdain, N.C.; Sterlin, J.; Fettweis, X. (2021). Effects of the atmospheric forcing resolution on simulated sea ice and polynyas off Adelie Land, East Antarctica. Ocean Modelling 168: 101901. https://dx.doi.org/10.1016/j.ocemod.2021.101901, meer
- Inoue, J.; Sato, K.; Rinke, A.; Cassano, J.J.; Fettweis, X.; Heinemann, G.; Matthes, H.; Orr, A.; Phillips, T.; Seefeldt, M.; Solomon, A.; Webster, S. (2021). Clouds and radiation processes in regional climate models evaluated using observations over the ice-free Arctic ocean. JGR: Atmospheres 126(1): e2020JD033904. https://hdl.handle.net/10.1029/2020JD033904, meer
- Kittel, C.; Amory, C.; Agosta, C.; Jourdain, N.C.; Hofer, S.; Delhasse, A.; Doutreloup, S.; Huot, P.-V.; Lang, C.; Fichefet, T.; Fettweis, X. (2021). Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15(3): 1215-1236. https://hdl.handle.net/10.5194/tc-15-1215-2021, meer
- Le Toumelin, L.; Amory, C.; Favier, V.; Kittel, C.; Hofer, S.; Fettweis, X.; Gallee, H.; Kayetha, V. (2021). Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica. Cryosphere 15(8): 3595-3614. https://dx.doi.org/10.5194/tc-15-3595-2021, meer
- Mankoff, K.D.; Fettweis, X.; Langen, P.L.; Stendel, M.; Kjeldsen, K.K.; Karlsson, N.B.; Noël, B.; van den Broeke, M.R.; Solgaard, A.; Colgan, W.; Box, J.E.; Simonsen, S.B.; King, M.D.; Ahlstrom, A.P.; Andersen, S.B.; Fausto, R.S. (2021). Greenland ice sheet mass balance from 1840 through next week. ESSD 13(10): 5001-5025. https://dx.doi.org/10.5194/essd-13-5001-2021, meer
- Mottram, R.; Hansen, N.; Kittel, C.; Van Wessem, J.M.; Agosta, C.; Amory, C.; Boberg, F.; van de Berg, W.J.; Fettweis, X.; Gossart, A.; van Lipzig, N.P.M.; van Meijgaard, E.; Orr, A.; Phillips, T.; Webster, S.; Simonsen, S.B.; Souverijns, N. (2021). What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere 15(8): 3751-3784. https://dx.doi.org/10.5194/tc-15-3751-2021, meer
- Navari, M.; Margulis, S.A.; Tedesco, M.; Fettweis, X.; van de Wal, R.S.W. (2021). Reanalysis surface mass balance of the Greenland ice sheet along K-transect (2000-2014). Geophys. Res. Lett. 48(17): e2021GL094602. https://dx.doi.org/10.1029/2021GL094602, meer
- Payne, A.J.; Nowicki, S.; Abe-Ouchi, A.; Agosta, C.; Alexander, P.; Albrecht, T.; Asay-Davis, X.; Aschwanden, A.; Barthel, A.; Bracegirdle, T.J.; Calov, R.; Chambers, C.; Choi, Y.; Cullather, R.; Cuzzone, J.; Dumas, C.; Edwards, T.L.; Felikson, D.; Fettweis, X.; Galton-Fenzi, B.K.; Goelzer, H.; Gladstone, R.; Golledge, N.R.; Gregory, J.M.; Greve, R.; Hattermann, T.; Hoffman, M.J.; Humbert, A.; Huybrechts, P.; Jourdain, N.C.; Kleiner, T.; Kuipers Munneke, P.; Larour, E.; Le Clec'h, S.; Lee, V.; Leguy, G.; Lipscomb, W.H.; Little, C.M.; Lowry, D.P.; Morlighem, M.; Nias, I.; Pattyn, F.; Pelle, T.; Price, S.F.; Quiquet, A.; Reese, R.; Rückamp, M.; Schlegel, N.-J.; Seroussi, H.; Shepherd, A.; Simon, E.; Slater, D.; Smith, R.S.; Straneo, F.; Sun, S.; Tarasov, L.; Trusel, L.D.; Van Breedam, J.; van de Wal, R.; van den Broeke, M.; Winkelmann, R.; Zhao, C.; Zhang, T.; Zwinger, T. (2021). Future sea level change under coupled model intercomparison project phase 5 and phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48(16): e2020GL091741. https://dx.doi.org/10.1029/2020GL091741, meer
- Slater, T.; Shepherd, A.; McMillan, M.; Leeson, A.; Gilbert, L.; Muir, A.; Munneke, P.K.; Noël, B.; Fettweis, X.; van den Broeke, M.; Briggs, K. (2021). Increased variability in Greenland Ice Sheet runoff from satellite observations. Nature Comm. 12(1): 6069. https://dx.doi.org/10.1038/s41467-021-26229-4, meer
- Verjans, V.; Leeson, A.A.; McMillan, M.; Stevens, C.M.; van Wessem, J.M.; van de Berg, W.J.; van den Broeke, M.R.; Kittel, C.; Amory, C.; Fettweis, X.; Hansen, N.; Boberg, F.; Mottram, R. (2021). Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach. Geophys. Res. Lett. 48(7): e2020GL092060. https://dx.doi.org/10.1029/2020GL092060, meer
- Donat-Magnin, M.; Jourdain, N.C.; Gallee, H.; Amory, C.; Kittel, C.; Fettweis, X.; Wille, J.D.; Favier, V.; Drira, A.; Agosta, C. (2020). Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. Cryosphere 14(1): 229-249. https://dx.doi.org/10.5194/tc-14-229-2020, meer
- Fettweis, X.; Hofer, S.; Krebs-Kanzow, U.; Amory, C.; Aoki, T.; Berends, C.J.; Born, A.; Box, J.E.; Delhasse, A.; Fujita, K.; Gierz, P.; Goelzer, H.; Hanna, E.; Hashimoto, A.; Huybrechts, P.; Kapsch, M.-L.; King, M.D.; Kittel, C.; Lang, C.; Langen, P.L.; Lenaerts, J.T.M.; Liston, G.E.; Lohmann, G.; Mernild, S.H.; Mikolajewicz, U.; Modali, K.; Mottram, R.H.; Niwano, M.; Noël, B.; Ryan, J.C.; Smith, A.; Streffing, J.; Tedesco, M.; van de Berg, W.J.; van den Broeke, M.; van de Wal, R.S.W.; van Kampenhout, L.; Wilton, D.; Wouters, B.; Ziemen, F.; Zolles, T. (2020). GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere 14(11): 3935-3958. https://dx.doi.org/10.5194/tc-14-3935-2020, meer
- Goelzer, H.; Noël, B.P.Y.; Edwards, T.L.; Fettweis, X.; Gregory, J.M.; Lipscomb, W.H.; van de Wal, R.S.W.; van den Broeke, M.R. (2020). Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. Cryosphere 14(6): 1747-1762. https://hdl.handle.net/10.5194/tc-14-1747-2020, meer
- Goelzer, H.; Nowicki, S.; Payne, A.; Larour, E.; Seroussi, H.; Lipscomb, W.H.; Gregory, J.; Abe-Ouchi, A.; Shepherd, A.; Simon, E.; Agosta, C.; Alexander, P.; Aschwanden, A.; Barthel, A.; Calov, R.; Chambers, C.R.; Choi, Y.; Cuzzone, J.; Dumas, C.; Edwards, T.; Felikson, D.; Fettweis, X.; Golledge, N.R.; Greve, R.; Humbert, A.; Huybrechts, P.; Le Clec'h, S.; Lee, V.; Leguy, G.; Little, C.; Lowry, D.P.; Morlighem, M.; Nias, I.; Quiquet, A.; Rückamp, M.; Schlegel, N.-J.; Slater, D.A.; Smith, R.S.; Straneo, F.; Tarasov, L.; van de Wal, R.; van den Broeke, M. (2020). The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14(9): 3071-3096. https://hdl.handle.net/10.5194/tc-14-3071-2020, meer
- Hofer, S.; Lang, C.; Amory, C.; Kittel, C.; Delhasse, A.; Tedstone, A.; Fettweis, X. (2020). Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Comm. 11(1): 6289. https://hdl.handle.net/10.1038/s41467-020-20011-8, meer
- Lu, Y.; Yang, K.; Lu, X.; Smith, L.C.; Sole, A.J.; Livingstone, S.J.; Fettweis, X.; Li, M. (2020). Diverse supraglacial drainage patterns on the Devon ice Cap, Arctic Canada. Journal of Maps 16(2): 834-846. https://hdl.handle.net/10.1080/17445647.2020.1838353, meer
- Nowicki, S.; Goelzer, H.; Seroussi, H.; Payne, A.J.; Lipscomb, W.H.; Abe-Ouchi, A.; Agosta, C.; Alexander, P.; Asay-Davis, X.S.; Barthel, A.; Bracegirdle, T.J.; Cullather, R.; Felikson, D.; Fettweis, X.; Gregory, J.M.; Hattermann, T.; Jourdain, N.C.; Munneke, P.K.; Larour, E.; Little, C.M.; Morlighem, M.; Nias, I.; Shepherd, A.; Simon, E.; Slater, D.; Smith, R.S.; Straneo, F.; Trusel, L.D.; van den Broeke, M.R.; van de Wal, R. (2020). Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere 14(7): 2331-2368. https://hdl.handle.net/10.5194/tc-14-2331-2020, meer
- Richter, K.; Meyssignac, B.; Slangen, A.B.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Palmer, M.D.; Roberts, C.D.; Champollion, N. (2020). Detecting a forced signal in satellite-era sea-level change. Environ. Res. Lett. 15(9): 094079. https://dx.doi.org/10.1088/1748-9326/ab986e, meer
- Ryan, J.C.; Smith, L.C.; Wu, M.; Cooley, S.W.; Miège, C.; Montgomery, L.N.; Koenig, L.S.; Fettweis, X.; Noël, B.P.Y.; van den Broeke, M.R. (2020). Evaluation of CloudSat's cloud-profiling radar for mapping snowfall rates across the Greenland ice sheet. JGR: Atmospheres 125(4): e2019JD031411. https://hdl.handle.net/10.1029/2019JD031411, meer
- Sasgen, I.; Wouters, B.; Gardner, A.S.; King, M.D.; Tedesco, M.; Landerer, F.W.; Dahle, C.; Save, H.; Fettweis, X. (2020). Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 1(1): 8. https://dx.doi.org/10.1038/s43247-020-0010-1, meer
- Sedlar, J.; Tjernström, M.; Rinke, A.; Orr, A.; Cassano, J.; Fettweis, X.; Heinemann, G.; Seefeldt, M.; Solomon, A.; Matthes, H.; Phillips, T.; Webster, S. (2020). Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models With observations. JGR: Atmospheres 125(6): e2019JD031783. https://hdl.handle.net/10.1029/2019JD031783, meer
- Slater, D.A.; Felikson, D.; Straneo, F.; Goelzer, H.; Little, C.M.; Morlighem, M.; Fettweis, X.; Nowicki, S. (2020). Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution. Cryosphere 14(3): 985-1008. https://hdl.handle.net/10.5194/tc-14-985-2020, meer
- Tedesco, M.; Fettweis, X. (2020). Unprecedented atmospheric conditions (1948-2019) drive the 2019 exceptional melting season over the Greenland ice sheet. Cryosphere 14(4): 1209-1223. https://hdl.handle.net/10.5194/tc-14-1209-2020, meer
- Wang, S.; Tedesco, M.; Alexander, P.; Xu, M.; Fettweis, X. (2020). Quantifying spatiotemporal variability of glacier algal blooms and the impact on surface albedo in southwestern Greenland. Cryosphere 14(8): 2687-2713. https://hdl.handle.net/10.5194/tc-14-2687-2020, meer
- Wyard, C.; Scholzen, C.; Doutreloup, S.; Hallot, E.; Fettweis, X. (2020). Future evolution of the hydroclimatic conditions favouring floods in the south‐east of Belgium by 2100 using a regional climate model. Int. J. Climatol. 41(1): 647-662. https://dx.doi.org/10.1002/joc.6642, meer
- Agosta, C.; Amory, C.; Kittel, C.; Orsi, A.; Favier, V.; Gallee, H.; van den Broeke, M.R.; Lenaerts, J.T.M.; van Wessem, J.M.; van de Berg, W.J.; Fettweis, X. (2019). Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979-2015) and identification of dominant processes. Cryosphere 13(1): 281-296. https://dx.doi.org/10.5194/tc-13-281-2019, meer
- Akperov, M.; Rinke, A.; Mokhov, I.I.; Semenov, V.A.; Parfenova, M.R.; Matthes, H.; Adakudlu, M.; Boberg, F.; Christensen, J.H.; Dembitskaya, M.A.; Dethloff, K.; Fettweis, X.; Gutjahr, O.; Heinemann, G.; Koenigk, T.; Koldunov, N.V.; Laprise, R.; Mottram, R.; Nikiéma, O.; Sein, D.V.; Sobolowski, S.; Winger, K.; Zhang, W. (2019). Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global Planet. Change 182: 103005. https://hdl.handle.net/10.1016/j.gloplacha.2019.103005, meer
- Alexander, P.M.; LeGrande, A.N.; Fischer, E.; Tedesco, M.; Fettweis, X.; Kelley, M.; Nowicki, S.M.J.; Schmidt, G.A. (2019). Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: role of the ice sheet surface. JGR: Earth Surface 124(3): 750-765. https://dx.doi.org/10.1029/2018JF004772, meer
- Alexander, P.M.; Tedesco, M.; Koenig, L.; Fettweis, X. (2019). Evaluating a regional climate model simulation of Greenland ice sheet snow and firn density for improved surface mass balance estimates. Geophys. Res. Lett. 46(21): 12073-12082. https://hdl.handle.net/10.1029/2019GL084101, meer
- Ballinger, T.J.; Mote, T.L.; Mattingly, K.; Bliss, A.C.; Hanna, E.; van As, D.; Prieto, M.; Gharehchahi, S.; Fettweis, X.; Noël, B.; Smeets, P.C.J.P.; Reijmer, C.H.; Ribergaard, M.H.; Cappelen, J. (2019). Greenland Ice Sheet late-season melt: investigating multiscale drivers of K-transect events. Cryosphere 13(8): 2241-2257. https://dx.doi.org/10.5194/tc-13-2241-2019, meer
- Colgan, W.; Mankoff, K.D.; Kjeldsen, K.K.; Björk, A.A.; Box, J.E.; Simonsen, S.B.; Sørensen, L.S.; Khan, S.A.; Solgaard, A.M.; Forsberg, R.; Skourup, H.; Stenseng, L.; Kristensen, S.S.; Hvidegaard, S.M.; Citterio, M.; Karlsson, N.; Fettweis, X.; Ahlstrom, A.P.; Andersen, S.B.; van As, D.; Fausto, R.S. (2019). Greenland ice sheet mass balance assessed by PROMICE (1995–2015). Geological Survey of Denmark and Greenland Bulletin 43: e2019430201. https://dx.doi.org/10.34194/geusb-201943-02-01, meer
- Hofer, S.; Tedstone, A.; Fettweis, X.; Bamber, J.L. (2019). Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Clim. Chang. 9(7): 523-528. https://dx.doi.org/10.1038/s41558-019-0507-8, meer
- Le Clec'h, S.; Charbit, S.; Quiquet, A.; Fettweis, X.; Dumas, C.; Kageyama, M.; Wyard, C.; Ritz, C. (2019). Assessment of the Greenland ice sheet–atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. Cryosphere 13(1): 373-395. https://dx.doi.org/10.5194/tc-13-373-2019, meer
- MacFerrin, M.; Machguth, H.; van As, D.; Charalampidis, C.; Stevens, C.M.; Heilig, A.; Vandecrux, B.; Langen, P.L.; Mottram, R.; Fettweis, X.; van den Broeke, M.R.; Pfeffer, W.T.; Moussavi, M.S.; Abdalati, W. (2019). Rapid expansion of Greenland's low-permeability ice slabs. Nature (Lond.) 573(7774): 403-407. https://hdl.handle.net/10.1038/s41586-019-1550-3, meer
- Slater, D.A.; Straneo, F.; Felikson, D.; Little, C.M.; Goelzer, H.; Fettweis, X.; Holte, J. (2019). Estimating Greenland tidewater glacier retreat driven by submarine melting. Cryosphere 13(9): 2489-2509. https://dx.doi.org/10.5194/tc-13-2489-2019, meer
- The IMBIE Team (2019). Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature (Lond.) 579(7798): 233-239. https://dx.doi.org/10.1038/s41586-019-1855-2, meer
- Datta, R.T.; Tedesco, M.; Agosta, C.; Fettweis, X.; Munneke, P.K.; van den Broeke, M.R. (2018). Melting over the northeast Antarctic Peninsula (1999-2009): evaluation of a high-resolution regional climate model. Cryosphere 12(9): 2901-2922. https://dx.doi.org/10.5194/tc-12-2901-2018, meer
- Delhasse, A.; Fettweis, X.; Kittel, C.; Amory, C.; Agosta, C. (2018). Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 12(11): 3409-3418. https://dx.doi.org/10.5194/tc-12-3409-2018, meer
- Kittel, C.; Amory, C.; Agosta, C.; Delhasse, A.; Doutreloup, S.; Huot, P.-V.; Wyard, C.; Fichefet, T.; Fettweis, X. (2018). Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. Cryosphere 12(12): 3827-3839. https://dx.doi.org/10.5194/tc-12-3827-2018, meer
- Leeson, A.A.; Eastoe, E.; Fettweis, X. (2018). Extreme temperature events on Greenland in observations and the MAR regional climate model. Cryosphere 12(3): 1091-1102. https://hdl.handle.net/10.5194/tc-12-1091-2018, meer
- Mattingly, K.S.; Mote, T.L.; Fettweis, X. (2018). Atmospheric river impacts on Greenland ice sheet surface mass balance. JGR: Atmospheres 123(16): 8538-8560. https://hdl.handle.net/10.1029/2018JD028714, meer
- Pattyn, F.; Ritz, C.; Hanna, E.; Asay-Davis, X.S.; DeConto, R.; Durand, G.; Favier, L.; Fettweis, X.; Goelzer, H.; Golledge, N.R.; Kuipers Munneke, P.; Lenaerts, J.T.M.; Nowicki, S.; Payne, A.J.; Robinson, A.; Seroussi, H.; Trusel, L.D.; van den Broeke, M.R. (2018). The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Chang. 8(12): 1053-1061. https://dx.doi.org/10.1038/s41558-018-0305-8, meer
- Ran, J.; Vizcaino, M.; Ditmar, P.; van den Broeke, M.R.; Moon, T.; Steger, C.R.; Enderlin, E.M.; Wouters, B.; Noël, B.; Reijmer, C.H.; Klees, R.; Zhong, M.; Liu, L.; Fettweis, X. (2018). Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere 12(9): 2981-2999. https://dx.doi.org/10.5194/tc-12-2981-2018, meer
- The IMBIE Team (2018). Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature (Lond.) 558(7709): 219-222. https://dx.doi.org/10.1038/s41586-018-0179-y, meer
- Trusel, L.D.; Das, S.B.; Osman, M.B.; Evans, M.J.; Smith, B.E.; Fettweis, X.; McConnell, J.R.; Noël, B.P.Y.; van den Broeke, M.R. (2018). Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature (Lond.) 564(7734): 104-108. https://dx.doi.org/10.1038/s41586-018-0752-4, meer
- Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; van As, D.; Machguth, H.; Gallee, H. (2017). Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11(2): 1015-1033. https://hdl.handle.net/10.5194/tc-11-1015-2017, meer
- Fürst, J.J.; Gillet-Chaulet, F.; Benham, T.J.; Dowdeswell, J.A.; Grabiec, M.; Navarro, F.; Pettersson, R.; Moholdt, G.; Nuth, C.; Sass, B.; Aas, K.; Fettweis, X.; Lang, C.; Seehaus, T.; Braun, M. (2017). Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. Cryosphere 11(5): 2003-2032. https://dx.doi.org/10.5194/tc-11-2003-2017, meer
- Meyssignac, B.; Slangen, A.B.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Richter, K.; Palmer, M.D.; Roberts, C.D.; Champollion, N. (2017). Evaluating model simulations of twentieth-century sea-level rise. Part II: regional sea-level changes. J. Clim. 30(21): 8565–8593. https://dx.doi.org/10.1175/jcli-d-17-0112.1, meer
- Meyssignac, B.; Fettweis, X.; Chevrier, R.; Spada, G. (2017). Regional sea level changes for the twentieth and the twenty-first centuries induced by the regional variability in Greenland ice sheet surface mass loss. J. Clim. 30(6): 2011-2028. https://dx.doi.org/10.1175/JCLI-D-16-0337.1, meer
- Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; Richter, K.; Roberts, C.D.; Spada, G. (2017). Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change. J. Clim. 30(21): 8539–8563. https://dx.doi.org/10.1175/jcli-d-17-0110.1, meer
- Tedstone, A.J.; Bamber, J.L.; Cook, J.M.; Williamson, C.J.; Fettweis, X.; Hodson, A.J.; Tranter, M. (2017). Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere 11(6): 2491-2506. https://hdl.handle.net/10.5194/tc-11-2491-2017, meer
- Alexander, P.M.; Tedesco, M.; Schlegel, N.-J.; Luthcke, S.B.; Fettweis, X.; Larour, E. (2016). Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012). Cryosphere 10(3): 1259-1277. https://dx.doi.org/10.5194/tc-10-1259-2016, meer
- Blunden, J.; Arndt, D.S. (2016). State of the climate in 2015. Bull. Am. Meteorol. Soc. 97(8): Si-S275. https://hdl.handle.net/10.1175/2016bamsstateoftheclimate.1, meer
- Koenig, L.S.; Ivanoff, A.; Alexander, P.M.; MacGregor, J.A.; Fettweis, X.; Panzer, B.; Paden, J.D.; Forster, R.R.; Das, I.; McConnell, J.R.; Tedesco, M.; Leuschen, C.; Gogineni, P. (2016). Annual Greenland accumulation rates (2009-2012) from airborne snow radar. Cryosphere 10(4): 1739-1752. https://hdl.handle.net/10.5194/tc-10-1739-2016, meer
- Navari, M.; Margulis, S.A.; Bateni, S.M.; Tedesco, M.; Alexander, P.; Fettweis, X. (2016). Feasibility of improving a priori regional climate model estimates of Greenland ice sheet surface mass loss through assimilation of measured ice surface temperatures. Cryosphere 10(1): 103-120. https://dx.doi.org/10.5194/tc-10-103-2016, meer
- Schlegel, N.-J.; Wiese, D.N.; Larour, E.Y.; Watkins, M.M.; Box, J.E.; Fettweis, X.; van den Broeke, M.R. (2016). Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012). Cryosphere 10(5): 1965-1989. https://dx.doi.org/10.5194/tc-10-1965-2016, meer
- Slangen, A.B.A.; Church, J.A.; Agosta, C.; Fettweis, X.; Marzeion, B.; Richter, K. (2016). Anthropogenic forcing dominates global mean sea-level rise since 1970. Nat. Clim. Chang. 6(7): 701-705. http://dx.doi.org/10.1038/nclimate2991, meer
- Tedesco, M.; Mote, T.; Fettweis, X.; Hanna, E.; Jeyaratnam, J.; Booth, J.F.; Datta, R.; Briggs, K. (2016). Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Comm. 7: 6 pp. https://dx.doi.org/10.1038/ncomms11723, meer
- Agosta, C.; Fettweis, X.; Datta, R. (2015). Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere 9(6): 2311-2321. dx.doi.org/10.5194/tc-9-2311-2015, meer
- Belleflamme, A.; Fettweis, X.; Erpicum, M. (2015). Recent summer Arctic atmospheric circulation anomalies in a historical perspective. Cryosphere 9(1): 53-64. dx.doi.org/10.5194/tc-9-53-2015, meer
- Edwards, L; Fettweis, X.; Gagliardini, O; Gillet-Chaulet, F; Goelzer, H.; Gregory, M; Hoffman, M; Huybrechts, P.; Payne, J; Perego, M; Price, S; Quiquet, A; Ritz, C (2014). Effect of uncertainty in surface mass balance-elevation feedback on projections of the future sea level contribution of the Greenland ice sheet. Cryosphere 8(1): 195-208. dx.doi.org/10.5194/tc-8-195-2014, meer
- Edwards, T.L.; Fettweis, X.; Gagliardini, O.; Gillet-Chaulet, F.; Goelzer, H.; Gregory, J.M.; Hoffmann, M.; Huybrechts, P.; Payne, A.J.; Perego, M.; Quiquet, A.; Ritz, C. (2014). Probabilistic parameterisation of the surface mass balance–elevation feedback in regional climate model simulations of the Greenland ice sheet. Cryosphere 8(1): 181-194. https://dx.doi.org/10.5194/tc-8-181-2014, meer
- Hanna, E; Fettweis, X.; Mernild, H; Cappelen, J; Ribergaard, H; Shuman, A; Steffen, K; Wood, L; Mote, L (2014). Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol. 34(4): 1022-1037. dx.doi.org/10.1002/joc.3743, meer
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. (2014). Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. U.S.A. 111(9): 3292-3297. dx.doi.org/10.1073/pnas.1222469111, meer
- McMillan, M; Shepherd, A; Gourmelen, N; Dehecq, A; Leeson, A; Ridout, A; Flament, T; Hogg, A; Gilbert, L; Benham, T; van den Broeke, M; Dowdeswell, A; Fettweis, X.; Noel, B; Strozzi, T (2014). Rapid dynamic activation of a marine-based Arctic ice cap. Geophys. Res. Lett. 41(24): 8902-8909. dx.doi.org/10.1002/2014GL062255, meer
- Noël, B.; Fettweis, X.; van de Berg, J; van den Broeke, R; Erpicum, M. (2014). Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR. Cryosphere 8(5): 1871-1883. dx.doi.org/10.5194/tc-8-1871-2014, meer
- van As, D.; Andersen, M.L.; Petersen, D.; Fettweis, X.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Lea, J.M.; Boggild, C.E.; Ahlstrom, A.P.; Steffen, K. (2014). Increasing meltwater discharge from the Nuuk region of the Greenland ice sheet and implications for mass balance (1960-2012). J. Glaciol. 60(220): 314-322. https://dx.doi.org/10.3189/2014JoG13J065, meer
- Agosta, C.; Favier, V.; Krinner, G.; Gallee, H.; Fettweis, X.; Genthon, C. (2013). High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Clim. Dyn. 41(11-12): 3247-3260. https://dx.doi.org/10.1007/s00382-013-1903-9, meer
- Fettweis, X.; Hanna, E.; Lang, C.; Belleflamme, A.; Erpicum, M.; Gallée, H. (2013). "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet". Cryosphere 7(1): 241-248. https://dx.doi.org/10.5194/tc-7-241-2013, meer
- Fettweis, X.; Franco, B.; Tedesco, M.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R.; Gallee, H. (2013). Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7(2): 469-489. http://dx.doi.org/10.5194/tc-7-469-2013, meer
- Goelzer, H.; Huybrechts, P.; Fürst, J.J.; Nick, F.M.; Andersen, M.L.; Edwards, T.L.; Fettweis, X.; Payne, A.J.; Shannon, S. (2013). Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. 59(216): 733-749. https://dx.doi.org/10.3189/2013JoG12J182, meer
- Gregory, J.M.; White, N.J.; Church, J.A.; Bierkens, M.F.P.; Box, J.E.; den Broeke, M.R.; Cogley, J.G.; Fettweis, X.; Hanna, E.; Huybrechts, P.; Konikow, L.F.; Leclercq, P.W.; Marzeion, B.; Oerlemans, J.; Tamisiea, M.E.; Wada, Y.; Wake, L.M.; de Wal, R.S.W. (2013). Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J. Clim. 26(13): 4476-4499. dx.doi.org/10.1175/JCLI-D-12-00319.1, meer
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Irvins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S.; Whitehouse, P.L.; Zwally, H.J. (2013). Ice-sheet mass balance and climate change. Nature (Lond.) 498(7452): 51-59. dx.doi.org/10.1038/nature12238, meer
- Leeson, A.A.; Shepherd, A.; Sundal, A.V.; Johansson, A.M.; Selmes, N.; Briggs, K.; Hogg, A.E.; Fettweis, X. (2013). A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol. 59(218): 1179-1188. dx.doi.org/10.3189/2013JoG13J064, meer
- Machguth, H.; Rastner, P.; Bolch, T.; Molg, N.; Sorensen, L.S.; Aoalgeirsdottir, G.; van Angelen, J.H.; van den Broeke, M.R.; Fettweis, X. (2013). The future sea-level rise contribution of Greenland's glaciers and ice caps. Environ. Res. Lett. 8(2): 14 pp. dx.doi.org/10.1088/1748-9326/8/2/025005, meer
- Shannon, S.R.; Payne, A.J.; Bartholomew, I.D.; van den Broeke, M.R.; Edwards, T.L.; Fettweis, X.; Gagliardini, O.; Gillet-Chaulet, F.; Goelzer, H.; Hoffman, M.J.; Huybrechts, P.; Mair, D.W.F.; Nienow, P.W.; Perego, M.; Price, S.F.; Smeets, C.J.P.P.; Sole, A.J.; van de Wal, R.S.W.; Zwinger, T. (2013). Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise. Proc. Natl. Acad. Sci. U.S.A. 110(35): 14156-14161. dx.doi.org/10.1073/pnas.1212647110, meer
- van Angelen, J.; Lenaerts, J.; van den Broeke, M.; Fettweis, X.; van Meijgaard, E. (2013). Rapid loss of firn pore space accelerates 21st century Greenland mass loss. Geophys. Res. Lett. 40(10): 2109-2113. dx.doi.org/10.1002/grl.50490, meer
- Vernon, C.L.; Bamber, J.L.; Box, J.E.; van den Broeke, M.R.; Fettweis, X.; Hanna, E.; Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere 7(2): 599-614. https://dx.doi.org/10.5194/tc-7-599-2013, meer
- Franco, B.; Fettweis, X.; Lang, C.; Erpicum, M. (2012). Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. Cryosphere 6(3): 695-711. http://dx.doi.org/10.5194/tc-6-695-2012, meer
- Harper, J.; Humphrey, N.; Pfeffer, W.T.; Brown, J.; Fettweis, X. (2012). Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature (Lond.) 491(7423): 240-243. http://dx.doi.org/10.1038/nature11566, meer
- Masson-Delmotte, V.; Swingedouw, D.; Landais, A.; Seidenkrantz, M.; Gauthier, E.; Bichet, V.; Massa, C.; Perren, B.; Jomelli, V.; Adalgeirsdottir, G.; Christensen, J.; Arneborg, J.; Bhatt, U.; Walker, D.; Elberling, B.; Gillet-Chaulet, F.; Ritz, C.; Gallee, H.; van den Broeke, M.; Fettweis, X.; de Vernal, A.; Vinther, B. (2012). Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews: Climate Change 3(5): 427-449. dx.doi.org/10.1002/wcc.186, meer
- Tedesco, M.; Fettweis, X. (2012). 21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet. Environ. Res. Lett. 7(4): 045405. https://dx.doi.org/10.1088/1748-9326/7/4/045405, meer
- Franco, B.; Fettweis, X.; Erpicum, M.; Nicolay, S. (2011). Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Clim. Dyn. 36(9-10): 1897-1918. dx.doi.org/10.1007/s00382-010-0779-1, meer
- Steen-Larsen, H.C.; Masson-Delmotte, V.; Sjolte, J.; Johnsen, S.J.; Vinther, B.M.; Bréon, F.M.; Clausen, H.B.; Dahl-Jensen, D.; Falourd, S.; Fettweis, X.; Gallée, H.; Jouzel, J.; Kageyama, M.; Lerche, H.; Minster, B.; Picard, G.; Punge, H.J.; Risi, C.; Salas, D.; Schwander, J.; Steffen, K.; Sveinbjörnsdóttir, A.E.; Svensson, A.; White, J. (2011). Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. J. Geophys. Res. 116(D06108): 20 pp. dx.doi.org/10.1029/2010JD014311, meer
- Hanna, E.; Cappelen, J.; Fettweis, X.; Huybrechts, P.; Luckman, A.; Ribergaard, M.H. (2009). Hydrologic response of the Greenland ice sheet: the role of oceanographic warming. Hydrol. Process. 23(1): 7-30. https://dx.doi.org/10.1002/hyp.7090, meer
- Fettweis, X.; Hanna, E.; Gallée, H.; Huybrechts, P.; Erpicum, M. (2008). Estimation of the Greenland ice sheet surface mass balance for the 20th and 21st centuries. Cryosphere 2(2): 117-129. http://dx.doi.org/10.5194/tc-2-117-2008, meer
|
Peer reviewed publicaties (9) [show] |
- Lang, C.; Fettweis, X.; Doutreloup, S.; Erpicum, M. (2012). Evaluation of the regional climate model WRF over Svalbard. Geophys. Res. Abstr. 14, meer
- Fettweis, X.; van den Broeke, M.; van de Berg, W.J.; Belleflamme, A.; Franco, B.; Erpicum, M. (2011). Evaluation of the Greenland ice sheet surface mass balance simulated by a regional climate model forced by some selected IPCC AR5/CMIP5 AOGCMs over the current climate. Geophys. Res. Abstr. 13: EGU2011-9249, meer
- Franco, B.; Fettweis, X.; Belleflamme, A.; Erpicum, M. (2011). Impact of the spatial resolution of the Greenland ice sheet surface mass balance modelling using the regional climate model MAR with the aim to force an ice sheet model. Geophys. Res. Abstr. 13: EGU2011-9934, meer
- Franco, B.; Fettweis, X.; Erpicum, M. (2011). Impact of the spatial resolution on the Greenland Ice Sheet Surface Mass Balance modelling using the regional climate model MAR with the aim to force an ice sheet model. Geophys. Res. Abstr. 13, meer
- Sacré, B.; Fettweis, X.; Doutreloup, S.; Franco, B.; Hines, K.; Van den Broeke, M.; Erpicum, M. (2011). Comparison between different Regional Climate Models applied to the present climate (1995-2005) of Greenland. Geophys. Res. Abstr. 13: EGU2011-6703, meer
- Franco, B.; Fettweis, X.; Erpicum, M.; Nicolay, S. (2009). Greenland ice sheet projections from IPCC AR4 global models. Geophys. Res. Abstr. 11, meer
- Franco, B.; Fettweis, X.; Erpicum, M. (2009). Greenland ice sheet surface mass balance projections from IPCC AR4 global models. Geophys. Res. Abstr. 11: EGU2009-8371, meer
- Franco, B.; Fettweis, X.; Erpicum, M. (2008). Last century Greenland ice sheet surface mass balance projections from IPCC AR4 global models. Geophys. Res. Abstr. 10: EGU2008-A-03747, meer
- Franco, B.; Fettweis, X.; Erpicum, M. (2008). Last century Greenland ice sheet surface mass balance projections from IPCC AR4 global models. Geophys. Res. Abstr. 10, meer
|
Boekhoofdstukken (2) [show] |
- Fettweis, X.; Belleflamme, A.; Erpicum, M.; Franco, B.; Nicolay, S. (2011). Estimation of the sea level rise by 2100 resulting from changes in the surface mass balance of the Greenland ice sheet, in: Blanco, J. et al. (Ed.) Climate change: Geophysical foundations and ecological effects. pp. 503-520, meer
- Box, J.E.; Cappelen, J.; Decker, D.; Fettweis, X.; Mote, T.; Tedesco, M.; van de Wal, R.S.W. (2010). Greenland, in: Richter-Menge, J. et al. (Ed.) Arctic Report Card 2010. pp. 55-64, meer
|
Abstracts (8) [show] |
- Glaude, Q.; Noël, B.; Olesen, M.; Boberg, F.; van den Broeke, M.; Mottram, R.; Fettweis, X. (2023). The divergent futures of Greenland surface mass balance estimates from different regional climate models, in: EGU General Assembly 2023. Vienna, Austria & Online, 23–28 April 2023. pp. EGU23-7920. https://dx.doi.org/10.5194/egusphere-egu23-7920, meer
- Maure, D.; Kittel, C.; Lambin, C.; Fettweis, X. (2023). High resolution atmospheric and oceanic modelling over Antarctica: a coupling interface to study sea-ice processes, in: EGU General Assembly 2023. Vienna, Austria & Online, 23–28 April 2023. pp. EGU23-16638. https://dx.doi.org/10.5194/egusphere-egu23-16638, meer
- Paice, C.M.; Fettweis, X.; Huybrechts, P. (2023). Quantifying the response of the Greenland ice sheet in a high-end scenario until 2300 from a coupled high-resolution regional climate and ice sheet model, in: EGU General Assembly 2023. Vienna, Austria & Online, 23–28 April 2023. pp. EGU23-12281. https://dx.doi.org/10.5194/egusphere-egu23-12281, meer
- Vandecrux, B.; Fausto, R.S.; Box, J.E.; Covi, F.; Hock, R.; Rennermalm, A.; Heilig, A.; Abermann, J.; van As, D.; Løkkegaard, A.; Fettweis, X.; Smeets, P.C.J.P.; Kuipers Munneke, P.; van den Broeke, M.; Brils, M.; Langen, P.L.; Mottram, R.; Ahlstrom, A.P. (2023). Historical snow and ice temperature compilation documents the recent warming of the Greenland ice sheet, in: EGU General Assembly 2023. Vienna, Austria & Online, 23–28 April 2023. pp. EGU23-9080. https://dx.doi.org/10.5194/egusphere-egu23-9080, meer
- Fettweis, X.; Sievers, I. (2019). Impact of the recent oceanic anomalies around the Greenland ice sheet on its surface mass balance, in: 51st International Liège Colloquium on Ocean Dynamics. Polar Ocean facing changes. , meer
- Huot, P.-V.; Fichefet, T.; Jourdain, N.; Mathiot, P.; Rousset, C.; Kittel, C.; Fettweis, X. (2019). Impacts of tides on ocean-ice interactions in East Antarctica, in: 51st International Liège Colloquium on Ocean Dynamics. Polar Ocean facing changes. , meer
- Sievers, I.; Fettweis, X. (2019). Coupling of ocean model NEMO to regional climate model MAR over the arctic Ocean, in: 51st International Liège Colloquium on Ocean Dynamics. Polar Ocean facing changes. , meer
- Fettweis, X.; Franco, B.; Lang, C.; Erpicum, M. (2012). Future projections of the Greenland ice sheet surface mass balance simulated by the regional climate model MAR forced by three CMIP5 global models, in: Devleeschouwer, X. et al. Abstract Book. 4th International Geologica Belgica Meeting 2012, September 11-14, Brussels, Belgium. pp. 12, meer
|
Rapporten (2) [show] |
- Van Schaeybroeck, B.; Mendoza Paz, S.; Willems, P.; Termonia, P.; van Lipzig, N.; van Ypersele, J.P.; Fettweis, X.; De Ridder, K.; Stavrakou, T.; Lacroix, G.; Pottiaux, E. (2021). Coherent Integration of climate projections into Climate ADaptation plAnning tools for BElgium. Final Report. (BRAIN-be - (Belgian Research Action through Interdisciplinary Networks)). Belgian Science Policy Office: Brussels. 21 pp., meer
- Termonia, P.; Willems, P.; van Lipzig, N.; van Ypersele, J.P.; Fettweis, X.; De Ridder, K.; Gobin, A.; Stavrakou, T.; Ponsar, S.; Pottiaux, E.; Van Schaeybroeck, B.; De Cruz, L.; De Troch, R.; Giot, O.; Hamdi, R.; Vannitsem, S.; Duchêne, F.; Bertrand, C.; Tabari, H.; van Uytven, E.; Hosseinzadehtalaei, P.; Wouters, H.; Vanden Broucke, S.; Demuzere, M.; Marbaix, P.; Villanueva-Birriel, C.; Wyard, C.; Scholzen, C.; Doutreloup, S.; Lauwaet, D.; Bauwens, M.; Müller, J.-F.; Van den Eynde, D. (2018). Combining regional downscaling expertise in Belgium: CORDEX and beyond: Final Report. (BRAIN-be - (Belgian Research Action through Interdisciplinary Networks)). Belgian Science Policy: Brussels. 122 pp., meer
|
Overige publicaties (2) [show] |
- Docquier, D.; Pattyn, F.; Fettweis, X.; Huybrechts, P. (2013). Ice2sea: bijdrage van landijs aan de toekomstige zeespiegelstijging. Sci. connect. (Ned. ed.) 41: 40-43, meer
- Franco, B.; Fettweis, X.; Erpicum, M. (2009). Greenland ice sheet surface mass balance projections from IPCC AR4 global models, in: Meteoclim PhD Symposium - 28 January 2009, Louvain-la-Neuve. , meer
|
|