IMIS

Publicaties | Instituten | Personen | Datasets | Projecten | Kaarten
[ meld een fout in dit record ]mandje (0): toevoegen | toon Print deze pagina

Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S)
Bertrand, S.; Charlet, F.; Charlier, B.; Renson, V.; Fagel, N. (2008). Climate variability of southern Chile since the Last Glacial Maximum: a continuous sedimentological record from Lago Puyehue (40°S). J. Paleolimnol. 39(2): 179-195. http://dx.doi.org/10.1007/s10933-007-9117-y
In: Journal of Paleolimnology. Springer: Dordrecht; London; Boston. ISSN 0921-2728; e-ISSN 1573-0417, meer
Peer reviewed article  

Beschikbaar in  Auteurs 

Author keywords
    Sediment; Lake; Grain size; Magnetic susceptibility; Climate; Younger Dryas; South America

Auteurs  Top 

Abstract
    This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100–12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400–2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100–12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years.

Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid Top | Auteurs